1
|
Xie Y, Gao R, Gao Y, Dong Z, Ge J. 11S Proteasome Activator REGγ Promotes Aortic Dissection by Inhibiting RBM3 (RNA Binding Motif Protein 3) Pathway. Hypertension 2023; 80:125-137. [PMID: 36330811 DOI: 10.1161/hypertensionaha.122.19618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Aortic dissection (AD) is a life-threatening cardiovascular disorder with high mortality and lacking underlying mechanisms or effective treatments. REGγ, the 11S proteasome activator known to promote the degradation of cellular proteins in a ubiquitin- and ATP-independent manner, emerges as a new regulator in the cardiovascular system. METHODS Using β-aminopropionitrile (BAPN)-subjected REGγ knockout AD mice and Ang II (angiotensin II)-treated REGγ deficiency vascular smooth muscle cells (VSMCs) to explore the effect of REGγ in AD progression. RESULTS REGγ was upregulated in mouse aorta of β-aminopropionitrile-induced AD model in vivo and Ang II-treated VSMCs in vitro. REGγ deficiency ameliorated AD progression in β-aminopropionitrile-induced mice by protecting against the switch in VSMCs from contractile to synthetic phenotype through suppressing RBM3 (RNA-binding motif protein 3) decay. Mechanically, REGγ interacted with and degraded the RNA-binding protein RBM3 directly, leading to decreased mRNA stability, lowered expression and transcriptional activity of transcription factor SRF (serum response factor), subsequently reduced transcription of VSMCs-specific contractile genes, α-SMA (alpha-smooth muscle actin) and SM22α (smooth muscle 22 alpha), caused the switch in VSMCs from contractile to synthetic phenotype and associated AD progression. Ablation of endogenous SRF or RBM3, or overexpressing exogenous RBM3 in VSMCs significantly blocked or reestablished the REGγ-dependent action on VSMCs phenotypic switch of Ang II stimulation in vitro. Furthermore, exogenously introducing RBM3 improved the switch in VSMCs from contractile to synthetic phenotype and associated AD features caused by REGγ in vivo. CONCLUSIONS Our results demonstrated that REGγ promoted the switch in VSMCs from contractile to synthetic phenotype and AD progression by inhibiting RBM3-SRF pathway, indicated that modulating REGγ-proteasome activity may be a potential therapeutic approach for AD-associated cardiovascular dysfunction.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Y.X., R.G., Y.G., Z.D., J.G.).,Shanghai Institute of Cardiovascular Diseases' Shanghai' China (Y.X., R.G., Y.G., Z.D., J.G.).,Institutes of Biomedical Science, Fudan University, Shanghai, China (Y.X., J.G.)
| | - Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Y.X., R.G., Y.G., Z.D., J.G.).,Shanghai Institute of Cardiovascular Diseases' Shanghai' China (Y.X., R.G., Y.G., Z.D., J.G.)
| | - Yang Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Y.X., R.G., Y.G., Z.D., J.G.).,Shanghai Institute of Cardiovascular Diseases' Shanghai' China (Y.X., R.G., Y.G., Z.D., J.G.)
| | - Zheng Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Y.X., R.G., Y.G., Z.D., J.G.).,Shanghai Institute of Cardiovascular Diseases' Shanghai' China (Y.X., R.G., Y.G., Z.D., J.G.)
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Y.X., R.G., Y.G., Z.D., J.G.).,Shanghai Institute of Cardiovascular Diseases' Shanghai' China (Y.X., R.G., Y.G., Z.D., J.G.).,Institutes of Biomedical Science, Fudan University, Shanghai, China (Y.X., J.G.)
| |
Collapse
|
2
|
Silencing IL12p35 Promotes Angiotensin II-Mediated Abdominal Aortic Aneurysm through Activating the STAT4 Pathway. Mediators Inflamm 2021; 2021:9450843. [PMID: 34354545 PMCID: PMC8331298 DOI: 10.1155/2021/9450843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Purpose. Abdominal aortic aneurysm (AAA) is a chronic inflammatory disorder and the important causes of death among men over the age of 65 years. Interleukin-12p35 (IL12p35) is an inflammatory cytokine that participates in a variety of inflammatory diseases. However, the role of IL12p35 in the formation and development of AAA is still unknown. Experimental Approach. Male apolipoprotein E-deficient (Apoe−/−) mice were generated and infused with 1.44 mg/kg angiotensin II (Ang II) per day. We found that IL12p35 expression was noticeably increased in the murine AAA aorta and isolated aortic smooth muscle cells (SMCs) after Ang II stimulation. IL12p35 silencing promoted Ang II-induced AAA formation and rupture in Apoe−/− mice. IL12p35 silencing markedly increased the expression of inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α), in both the serum and AAA aorta. Additionally, IL12p35 silencing exacerbated SMC apoptosis in Apoe−/− mice after Ang II infusion. IL12p35 silencing significantly increased signal transducer and activator of transcription (STAT) 4 phosphorylation levels in AAA mice, and STAT4 knockdown abolished the IL12p35-mediated proinflammatory response and SMC apoptosis. Interpretation. Silencing IL12p35 promotes AAA formation by activating the STAT4 pathway, and IL12p35 may serve as a novel and promising therapeutic target for AAA treatment.
Collapse
|
3
|
Takeda MR, Bansal M, Kamerman-Kretzmer RJ, Church J, Ji J, Warren M. Bronchiectasis and Bronchiolectasis With Severe Herniating Pattern Associated With STAT1 Gain-of-Function Mutation: Detailed Clinicopathological Findings. Pediatr Dev Pathol 2021; 24:131-136. [PMID: 33439110 DOI: 10.1177/1093526620985950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
STAT1 gain-of-function (GOF) mutations are associated with a rare autosomal dominant immunodeficiency disorder with main clinical manifestations including chronic mucocutaneous candidiasis (CMC) and bronchiectasis. In addition, these patients show higher incidences of cerebral and extracerebral aneurysm, malignancies and various autoimmune conditions compared to the general population. Although previous publications have reported clinical findings in patients with STAT1 GOF mutation, they did not include histopathologic features. Herein, we describe the first case with detailed histologic findings in the lung of a 5-year-old patient with a de novo STAT1 GOF mutation, who presented with CMC and bronchiectasis. The biopsy showed severe bronchiolectasis with extensive airway dilatation and occasional disruptions. Peribronchiolar inflammation was not always present and evident mainly in areas of airway disruption; inflammation may have not been a main driver of the airway damage in this case. The airway dilatation often showed an interesting herniating pattern, possibly implying a connective tissue etiology. This case also demonstrates the diagnostic utility of whole exome sequencing as STAT1 GOF mutations are not detected by routine workup. The definitive diagnosis will lead to more specific treatments and increased surveillance for serious conditions, such as cerebral aneurysms and malignancies.
Collapse
Affiliation(s)
- Moe R Takeda
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology, University of Southern California, Los Angeles, California
| | - Manvi Bansal
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, California.,Department of Pulmonology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rory J Kamerman-Kretzmer
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, California.,Division of Pediatric Pulmonology, Department of Pediatrics, University of California, Davis, Sacramento, California
| | - Joseph Church
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
4
|
Bernal S, Lopez-Sanz L, Jimenez-Castilla L, Prieto I, Melgar A, La Manna S, Martin-Ventura JL, Blanco-Colio LM, Egido J, Gomez-Guerrero C. Protective effect of suppressor of cytokine signalling 1-based therapy in experimental abdominal aortic aneurysm. Br J Pharmacol 2020; 178:564-581. [PMID: 33227156 DOI: 10.1111/bph.15330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by chronic inflammation, oxidative stress and proteolytic activity in the aortic wall. Targeting JAK/signal transducer and activator of transcription (JAK/STAT) pathway is a promising strategy for chronic inflammatory diseases. We investigated the vasculo-protective role of suppressor of cytokine signalling-1 (SOCS1), the negative JAK/STAT regulator, in experimental AAA. EXPERIMENTAL APPROACH A synthetic, cell permeable peptide (S1) mimic of SOCS1 kinase inhibitory domain to suppress STAT activation was evaluated in the well-established mouse model of elastase-induced AAA by monitoring changes in aortic diameter, cellular composition and gene expression in abdominal aorta. S1 function was further evaluated in cultured vascular smooth muscle cells (VSMC) and macrophages exposed to elastase or elastin-derived peptides. KEY RESULTS S1 peptide prevented AAA development, evidenced by reduced incidence of AAA, aortic dilation and elastin degradation, partial restoration of medial VSMC and decreased inflammatory cells and oxidative stress in AAA tissue. Mechanistically, S1 suppressed STAT1/3 activation in aorta, down-regulated cytokines, metalloproteinases and altered the expression of cell differentiation markers by favouring anti-inflammatory M2 macrophage and contractile VSMC phenotypes. In vitro, S1 suppressed the expression of inflammatory and oxidative genes, reduced cell migration and reversed the phenotypic switch of macrophages and VSMC. By contrast, SOCS1 silencing promoted inflammatory response. CONCLUSION AND IMPLICATIONS This preclinical study demonstrates the therapeutic potential of SOCS1-derived peptide to halt AAA progression by suppressing JAK/STAT-mediated inflammation and aortic dilation. S1 peptide may therefore be a valuable option for the treatment of AAA.
Collapse
Affiliation(s)
- Susana Bernal
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Laura Lopez-Sanz
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ignacio Prieto
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Melgar
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain
| | - Sara La Manna
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain
| | - Jose Luis Martin-Ventura
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Miguel Blanco-Colio
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
5
|
Liu Y, Wang X, Wang H, Hu T. Identification of key genes and pathways in abdominal aortic aneurysm by integrated bioinformatics analysis. J Int Med Res 2019; 48:300060519894437. [PMID: 31885343 PMCID: PMC7783286 DOI: 10.1177/0300060519894437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objectives To identify key genes associated with abdominal aortic aneurysm (AAA) by
integrating a microarray profile and a single-cell RNA-seq dataset. Methods The microarray profile of GSE7084 and the single-cell RNA-seq dataset were
obtained from the Gene Express Omnibus database. Differentially expressed
genes (DEGs) were chosen using the R package and annotated by Gene Ontology
and Kyoto Encyclopedia of Genes and Genomics analysis. The hub genes were
identified based on their degrees of interaction in the protein-protein
interaction (PPI) network. Expression of hub genes was determined using
single-cell RNA-seq analysis. Results In total, 507 upregulated and 842 downregulated DEGs were identified and
associated with AAA. The upregulated DEGs were enriched into 9 biological
processes and 10 biological pathways, which were closely involved in the
pathogenesis and progression of AAA. Based on the PPI network, we focused on
six hub genes, four of which were novel target genes compared with the known
aneurysm gene database. Using single-cell RNA-seq analysis, we explored the
four genes expressed in vascular cells of AAA: CANX,
CD44, DAXX, and
STAT1. Conclusions We identified key genes that may provide insight into the mechanism of AAA
pathogenesis and progression and that have potential to be therapeutic
targets.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, The
Affiliated Huaian No. 1 People’s Hospital of
Nanjing
Medical University, Huaian, China
| | - Xixi Wang
- Department of Neurology, Affiliated
Shanghai First People’s Hospital of
Nanjing
Medical University, Nanjing, China
| | - Hongye Wang
- Department of Cardiology, The
Affiliated Huaian No. 1 People’s Hospital of
Nanjing
Medical University, Huaian, China
| | - Tingting Hu
- Department of Cardiology, The
Affiliated Huaian No. 1 People’s Hospital of
Nanjing
Medical University, Huaian, China
- Tingting Hu, Department of Cardiology, the
Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Beijing
West Road 6, Huaian 223001, China.
| |
Collapse
|
6
|
Recombinant leptin attenuates abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2018; 503:1450-1456. [DOI: 10.1016/j.bbrc.2018.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
|
7
|
hsa-miR-320d and hsa-miR-582, miRNA Biomarkers of Aortic Dissection, Regulate Apoptosis of Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2018. [DOI: 10.1097/fjc.0000000000000568] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Integrated analysis of microarray data to identify the genes critical for the rupture of intracranial aneurysm. Oncol Lett 2018; 15:4951-4957. [PMID: 29552131 PMCID: PMC5840557 DOI: 10.3892/ol.2018.7935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Intracranial aneurysm (IA) is a localized dilation of the blood vessel. The present study was designed to explore the mechanisms of rupture of IA. GSE13353 (including 11 ruptured and 8 unruptured IA samples) and GSE15629 (including 8 ruptured and 6 unruptured IA samples) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) identified using limma and MetaDE packages were merged, and a protein-protein interaction (PPI) network analysis was performed using Cytoscape software. Pathway enrichment analysis was performed for the nodes of the PPI network using the fisher algorithm. The 100 most prominent genes in the network were designated candidate genes and a hierarchical clustering analysis was performed. The tune.svm function of e1071 package was used to construct a support vector machine (SVM) classifier, and the Candidate Cancer Gene Database was applied to analyze the characterization of gene-associated cancer. Furthermore, the genes involved in the SVM classifier were assessed via principal component analysis (PCA). In the ruptured samples, 1,292 DEGs and 1,029 DEGs separately were identified by limma and MetaDE packages. The 100 most prominent genes in the network included fibronectin 1 (FN1), amyloid β (A4) precursor protein (APP), nuclear RNA export factor 1 (NXF1) and signal transducer and activator of transcription 3 (STAT3). Pathway enrichment analysis identified that toll-like receptor 3 (TLR3) was enriched in the Toll-like receptor signaling pathway. A total of 15 genes (including FN1) were used to construct the SVM classifier. NXF1 was identified to be associated with Nervous System Cancer. PCA revealed that APP, NXF1 and STAT3 were the 3 principal components. TLR3, FN1, APP, NXF1 and STAT3 may affect the rupture of IA.
Collapse
|
9
|
Yamawaki-Ogata A, Oshima H, Usui A, Narita Y. Bone marrow–derived mesenchymal stromal cells regress aortic aneurysm via the NF-kB, Smad3 and Akt signaling pathways. Cytotherapy 2017; 19:1167-1175. [DOI: 10.1016/j.jcyt.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
|
10
|
The incidence and fate of endoleaks vary between ruptured and elective endovascular abdominal aortic aneurysm repair. J Vasc Surg 2017; 65:1617-1624. [DOI: 10.1016/j.jvs.2016.10.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/14/2016] [Indexed: 11/23/2022]
|
11
|
Dadak M, Jacobs R, Skuljec J, Jirmo AC, Yildiz Ö, Donnerstag F, Baerlecken NT, Schmidt RE, Lanfermann H, Skripuletz T, Schwenkenbecher P, Kleinschnitz C, Tumani H, Stangel M, Pul R. Gain-of-function STAT1 mutations are associated with intracranial aneurysms. Clin Immunol 2017; 178:79-85. [PMID: 28161409 DOI: 10.1016/j.clim.2017.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 12/04/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Chronic mucocutaneous candidiasis, characterized by persistent or recurrent fungal infections, represents the clinical hallmark in gain-of-function (GOF) signal transducer and activator of transcription 1 (STAT1) mutation carriers. Several cases of intracranial aneurysms have been reported in patients with GOF STAT1 mutation but the paucity of reported cases likely suggested this association still as serendipity. In order to endorse this association, we link the development of intracranial aneurysms with STAT1 GOF mutation by presenting the two different cases of a patient and her mother, and demonstrate upregulated phosphorylated STAT4 and IL-12 receptor β1 upon stimulation in patient's blood cells. We also detected increased transforming growth factor (TGF)-β type 2 receptor expression, particularly in CD14+ cells, and a slightly higher phosphorylation rate of SMAD3. In addition, the mother of the patient developed disseminated bacille Calmette-Guérin disease after vaccination, speculating that GOF STAT1 mutations may confer a predisposition to weakly virulent mycobacteria.
Collapse
Affiliation(s)
- Mete Dadak
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany
| | - Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany
| | - Özlem Yildiz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Frank Donnerstag
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Reinhold Ernst Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Refik Pul
- Department of Neurology, University Clinic Essen, Essen, Germany.
| |
Collapse
|
12
|
Chmielewski S, Piaszyk-Borychowska A, Wesoly J, Bluyssen HAR. STAT1 and IRF8 in Vascular Inflammation and Cardiovascular Disease: Diagnostic and Therapeutic Potential. Int Rev Immunol 2015; 35:434-454. [DOI: 10.3109/08830185.2015.1087519] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stefan Chmielewski
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
13
|
Chang MT, Schwam ZG, Hajek MA, Paskhover B, Judson BL. Severe epistaxis due to aberrant vasculature in a patient with STAT-1 mutation. Head Neck 2015; 38:E68-70. [PMID: 26445901 DOI: 10.1002/hed.24165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/30/2015] [Accepted: 06/11/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Signal transducer and activator 1 (STAT-1) mutations are rare and have been implicated in combined immunodeficiency, enhanced tumorigenesis, and vascular defects. METHODS A 60-year-old woman with a novel STAT-1 mutation and resulting immunodeficiency, squamous cell carcinoma, and vascular disease presented with profuse epistaxis secondary to rupture of an aberrant artery that she developed in part because of this mutation. After unsuccessful posterior packing, embolization was initiated but subsequently aborted because of a bovine origin carotid artery and a history of multiple carotid dissections. RESULTS After repeat posterior packing, hemostasis was achieved. No additional episodes of epistaxis occurred in the subsequent 13 months. CONCLUSION Vascular anomalies can present challenges in epistaxis management. In patients with conditions known to cause vascular anomalies, it is critical to obtain vascular imaging before intervention.
Collapse
Affiliation(s)
- Michael T Chang
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut
| | - Zachary G Schwam
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael A Hajek
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut
| | - Boris Paskhover
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin L Judson
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Dale MA, Ruhlman MK, Baxter BT. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy. Arterioscler Thromb Vasc Biol 2015; 35:1746-55. [PMID: 26044582 DOI: 10.1161/atvbaha.115.305269] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention.
Collapse
Affiliation(s)
- Matthew A Dale
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| | - Melissa K Ruhlman
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| | - B Timothy Baxter
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| |
Collapse
|
15
|
Trachet B, Fraga-Silva RA, Londono FJ, Swillens A, Stergiopulos N, Segers P. Performance comparison of ultrasound-based methods to assess aortic diameter and stiffness in normal and aneurysmal mice. PLoS One 2015; 10:e0129007. [PMID: 26023786 PMCID: PMC4449181 DOI: 10.1371/journal.pone.0129007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/03/2015] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Several ultrasound-based methods are currently used to assess aortic diameter, circumferential strain and stiffness in mice, but none of them is flawless and a gold standard is lacking. We aimed to assess the validity and sensitivity of these methods in control animals and animals developing dissecting abdominal aortic aneurysm. METHODS AND RESULTS We first compared systolic and diastolic diameters as well as local circumferential strains obtained in 47 Angiotensin II-infused ApoE(-/-) mice with three different techniques (BMode, short axis MMode, long axis MMode), at two different abdominal aortic locations (supraceliac and paravisceral), and at three different time points of abdominal aneurysm formation (baseline, 14 days and 28 days). We found that short axis BMode was preferred to assess diameters, but should be avoided for strains. Short axis MMode gave good results for diameters but high standard deviations for strains. Long axis MMode should be avoided for diameters, and was comparable to short axis MMode for strains. We then compared pulse wave velocity measurements using global, ultrasound-based transit time or regional, pressure-based transit time in 10 control and 20 angiotensin II-infused, anti-TGF-Beta injected C57BL/6 mice. Both transit-time methods poorly correlated and were not able to detect a significant difference in PWV between controls and aneurysms. However, a combination of invasive pressure and MMode diameter, based on radio-frequency data, detected a highly significant difference in local aortic stiffness between controls and aneurysms, with low standard deviation. CONCLUSIONS In small animal ultrasound the short axis view is preferred over the long axis view to measure aortic diameters, local methods are preferred over transit-time methods to measure aortic stiffness, invasive pressure-diameter data are preferred over non-invasive strains to measure local aortic stiffness, and the use of radiofrequency data improves the accuracy of diameter, strain as well as stiffness measurements.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rodrigo A. Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Abigaïl Swillens
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Patrick Segers
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| |
Collapse
|
16
|
Xu J, Ehrman B, Graham LM, Eagleton MJ. Interleukin-5 is a potential mediator of angiotensin II-induced aneurysm formation in apolipoprotein E knockout mice. J Surg Res 2012; 178:512-8. [PMID: 22459292 PMCID: PMC3394914 DOI: 10.1016/j.jss.2011.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/31/2011] [Accepted: 12/08/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND The aim of this study was to evaluate alterations in Th1 and Th2 cytokines during experimental abdominal aortic aneurysm (AAA) formation. METHODS AAAs were induced in apolipoprotein E null mice by infusing angiotensin II (Ang II, 1000 ng/kg/min). Aortic homogenates were assessed at 0, 7, 14, and 28 d (n = 11/time point) for select Th1 and Th2 cytokines by ELISA. Additional mice had co-administration of anti-IgG (n = 20) or anti-IL-5 (n = 20) and were assessed at 28 d for AAA. Aortic homogenates were assessed for MMP-2 and MMP-9 expression. Mouse aortic SMC (MASMC) and peritoneal-derived macrophages were treated with IL-5 (0-40 ng/mL), and cell extracts and media (0-48 h) were assessed for MMP-2 and MMP-9 expression. RESULTS Ang II infusion was associated with a 3.4-fold (P < 0.01) and 3.6-fold (P < 0.01) increase in IL-5 and IL-10 (respectively), and a 0.6-fold reduction in IL-6, by 7 d. Anti-IL-5, but not anti-IgG, ameliorated Ang II-induced AAA formation. Up-regulation of MMP-2 and MMP-9 was observed in aneurysmal aortas, but not in the aortas obtained from mice treated with anti-IL-5. IL-5 stimulation of MASMC increased MMP-2 and MMP-9 mRNA (2.1-fold and 2.7-fold, respectively, P < 0.01) and protein (1.6-fold and 1.9-fold, respectively, P < 0.01) by 24 h. IL-5 stimulation of macrophages did not alter MMP expression. CONCLUSIONS Ang II induces increased Th2 cytokines IL-5 and IL-10 early in the course of experimental AAA formation, and inhibition of IL-5 prevents AAA formation suggesting an important role. While IL-5 is capable of up-regulating MMP-2 and MMP-9 expression in MASMC, investigations into alternate roles in AAA formation is warranted.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/cytology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/genetics
- Cells, Cultured
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-5/immunology
- Interleukin-5/metabolism
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Th1 Cells/immunology
- Th2 Cells/immunology
- Vasculitis/chemically induced
- Vasculitis/immunology
- Vasculitis/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Jun Xu
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| | - Brittney Ehrman
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| | - Linda M. Graham
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| | - Matthew J. Eagleton
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| |
Collapse
|
17
|
Eagleton MJ. Inflammation in abdominal aortic aneurysms: cellular infiltrate and cytokine profiles. Vascular 2012; 20:278-83. [DOI: 10.1258/vasc.2011.201207] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) pathogenesis occurs as a result of the altered homeostasis of the aortic vessel wall structural proteins. This results in weakening, and subsequent expansion, of the aorta leading to aneurysm formation. Multiple mechanisms are involved in this process, including genetic abnormalities, biomechanical wall stress, apoptosis, and proteolytic degradation of the aortic wall. One key hallmark of this pathology, which orchestrates the interaction of the various pathologic processes, is inflammation. The inflammatory process is characterized by the infiltration of a variety of cells, which leads to the upregulation of multiple cytokines. The balance of the cellular type and resultant cytokine milieu determines the ultimate fate of the aortic wall – healing, atherosclerosis or aneurysm formation. This review highlights some of the known cellular and cytokine inflammatory events that are involved in aortic aneurysm formation.
Collapse
Affiliation(s)
- Matthew J Eagleton
- Department of Vascular Surgery, Cleveland Clinic, Lerner College of Medicine-CWRU, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (Lond) 2012; 123:531-43. [PMID: 22788237 DOI: 10.1042/cs20120097] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aortic aneurysms are relatively common maladies that may lead to the devastating consequence of aortic rupture. AAAs (abdominal aortic aneurysms) and TAAs (thoracic aortic aneurysms) are two common forms of aneurysmal diseases in humans that appear to have distinct pathologies and mechanisms. Despite this divergence, there are numerous and consistent demonstrations that overactivation of the RAS (renin-angiotensin system) promotes both AAAs and TAAs in animal models. For example, in mice, both AAAs and TAAs are formed during infusion of AngII (angiotensin II), the major bioactive peptide in the RAS. There are many proposed mechanisms by which the RAS initiates and perpetuates aortic aneurysms, including effects of AngII on a diverse array of cell types and mediators. These experimental findings are complemented in humans by genetic association studies and retrospective analyses of clinical data that generally support a role of the RAS in both AAAs and TAAs. Given the lack of a validated pharmacological therapy for any form of aortic aneurysm, there is a pressing need to determine whether the consistent findings on the role of the RAS in animal models are translatable to humans afflicted with these diseases. The present review compiles the recent literature that has shown the RAS as a critical component in the pathogenesis of aortic aneurysms.
Collapse
|
19
|
Liao M, Xu J, Clair AJ, Ehrman B, Graham LM, Eagleton MJ. Local and systemic alterations in signal transducers and activators of transcription (STAT) associated with human abdominal aortic aneurysms. J Surg Res 2011; 176:321-8. [PMID: 21764069 DOI: 10.1016/j.jss.2011.05.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/21/2011] [Accepted: 05/24/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Signal transducers and activators of transcription (STAT) proteins are transcription factors that, when activated by phosphorylation, regulate gene expression and cellular activity. The aim of this study was to evaluate the local and systemic expression and activation of STAT proteins associated with abdominal aortic aneurysms (AAA). METHODS Expression and activation of STAT proteins were assessed in aortic wall samples obtained from patients undergoing repair of AAA (n = 9) and from non-aneurysmal (NA) donors (n = 17). Aortic samples were evaluated for mRNA and protein expression for STAT1, 2, 3, 4, 5a, and 5b using RT-PCR and immunoblot (WB) assays and normalized to ß-actin (expressed as arbitrary units). STAT activation was assessed with WB assays using phosphorylated (p)-STAT-specific antibodies. Alterations in STAT activation were calculated by normalizing pSTAT proteins to corresponding total STAT levels. Immunohistochemistry was performed on AAA and NA samples using the total and pSTAT antibodies. Systemic alterations in STAT activation were assessed by evaluating circulating leukocytes for the presence of pSTAT from patients with AAA (AAA, n = 8), repaired aneurysm (RA, n = 8), or age/gender matched controls with no AAA (CT, n = 8). Flow cytometry was performed to assess for circulating levels of STAT1 (pY701), STAT3 (pY705), and STAT5a (pY694) in monocytes, granulocytes, and lymphocytes. Assessments were made at baseline and in response to in vitro stimulation with IFN-γ (50 ng/mL) or IL-6 (100 ng/mL). Results were analyzed using Student's t-test and are expressed as mean ± SEM. RESULTS In AAA tissue compared with NA, STAT-1 (1.08 ± 0.09 versus 0.62 ± 0.07), -2 (0.98 ± 0.07 versus 0.55 ± 0.08), and -4 (0.89 ± 0.12 versus 0.35 ± 0.11) mRNA levels were elevated (P < 0.01, all). Corresponding increases in STAT protein were only observed for STAT1 (2.77 ± 0.93 versus 0.93 ± 0.08, P < 0.05). Increases in activation were observed in AAA compared with NA in pSTAT2 (0.77 ± 0.1 versus 0.1 ± 0.02, P < 0.01), pSTAT3 (1.6 ± 0.3 versus 0.2 ± 0.06, P < 0.02) and pSTAT5 (0.57 ± 0.03 versus 0.2 ± 0.03, P < 0.05) levels. Phosphorylated STAT1, 2, 3, and 5 were observed in inflammatory cells invading the AAA adventitia. In addition, STAT3 was observed in the media of AAA and NA, but pSTAT3 was only observed in the media of AAA. There were no differences in baseline levels of pSTAT-positive circulating leukocytes. IFN-γ stimulation decreased STAT-5a (pY694)-positive CT lymphocytes to 40% ± 13% of baseline, but had no effect on AAA or RA lymphocytes (116% ± 35%, 102% ± 19%, respectively; P = 0.01). STAT-5a (pY694)-positive CT granulocytes also decreased to 62% ± 18% of baseline compared with AAA or RA granulocytes (122% ± 25%, 126% ± 17%, respectively; P = 0.01). Alterations in STAT1 (pY701) and STAT3 (pY705) were not observed in leukocytes following cytokine stimulation. CONCLUSIONS STAT proteins are important regulators of transcriptional activity and have been linked to cardiovascular disease. The present data suggest that altered levels of phosphorylated STATs are associated with AAA. Understanding their role may provide further insight into the mechanisms of AAA formation and allow for the development of medical treatment options.
Collapse
Affiliation(s)
- Mingfang Liao
- Department of Vascular Surgery, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
20
|
Trusca VG, Fuior EV, Florea IC, Kardassis D, Simionescu M, Gafencu AV. Macrophage-specific up-regulation of apolipoprotein E gene expression by STAT1 is achieved via long range genomic interactions. J Biol Chem 2011; 286:13891-904. [PMID: 21372127 DOI: 10.1074/jbc.m110.179572] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In atherogenesis, macrophage-derived apolipoprotein E (apoE) has an athero-protective role by a mechanism that is not fully understood. We investigated the regulatory mechanisms involved in the modulation of apoE expression in macrophages. The experiments showed that the promoters of all genes of the apoE/apoCI/apoCIV/apoCII gene cluster are enhanced by multienhancer 2 (ME.2), a regulatory region that is located 15.9 kb downstream of the apoE gene. ME.2 interacts with the apoE promoter in a macrophage-specific manner. Transient transfections in RAW 264.7 macrophages showed that the activity of ME.2 was strongly decreased by deletion of either 87 bp from the 5' end or 131 bp from the 3' end. We determined that the minimal fragment of this promoter that can be activated by ME.2 is the proximal -100/+73 region. The analysis of the deletion mutants of ME.2 revealed the importance of the 5' end of ME.2 in apoE promoter transactivation. Chromatin conformational capture assays demonstrated that both ME.2 and ME.1 physically interacted with the apoE promoter in macrophages. Our data showed that phorbol 12-myristate 13-acetate-induced differentiation of macrophages is accompanied by a robust induction of apoE and STAT1 expression. In macrophages (but not in hepatocytes), STAT1 up-regulated apoE gene expression via ME.2. The STAT1 binding site was located in the 174-182 region of ME.2. In conclusion, the specificity of the interactions between the two multienhancers (ME.1 and ME.2) and the apoE promoter indicates that these distal regulatory elements play an important role in the modulation of apoE gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Violeta Georgeta Trusca
- Institute of Cellular Biology and Pathology, Nicolae Simionescu, Romanian Academy, Bucharest 050568, Romania
| | | | | | | | | | | |
Collapse
|