1
|
Najjar JA, Calvert JW. Effects of protein glycation and protective mechanisms against glycative stress. Curr Opin Pharmacol 2024; 76:102464. [PMID: 38796877 PMCID: PMC11229435 DOI: 10.1016/j.coph.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Glycation is a posttranslational modification of proteins that contributes to the vast array of biological information that can be conveyed via a singular proteome. Understanding the role of advanced glycation end-products (AGEs) in human health and pathophysiology can be difficult, as the physiological effects of AGEs have been associated with multiple biological processes and disease state development, including acute myocardial ischemia-reperfusion injury, heart failure, and atherosclerosis, as well as tumor cell migration. The critical role of the glyoxalase system in the detoxification of methylglyoxal and other AGEs has been well established. Recently, evidence has emerged that DJ-1 displays antiglycative activity and may contribute to another mechanism of protection against protein glycation outside of the glyoxalase system. Identification of potential substrates of DJ-1 and determination of the pathways in which DJ-1 operates, is needed to fully understand the role of this protein in modulating biological homeostasis and the development of disease.
Collapse
Affiliation(s)
- Jade A Najjar
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, USA
| | - John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, USA.
| |
Collapse
|
2
|
Peter A, Schleicher E, Kliemank E, Szendroedi J, Königsrainer A, Häring HU, Nawroth PP, Fleming T. Accumulation of Non-Pathological Liver Fat Is Associated with the Loss of Glyoxalase I Activity in Humans. Metabolites 2024; 14:209. [PMID: 38668337 PMCID: PMC11051733 DOI: 10.3390/metabo14040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The underlying molecular mechanisms for the development of non-alcoholic fatty liver (NAFL) and its progression to advanced liver diseases remain elusive. Glyoxalase 1 (Glo1) loss, leading to elevated methylglyoxal (MG) and dicarbonyl stress, has been implicated in various diseases, including obesity-related conditions. This study aimed to investigate changes in the glyoxalase system in individuals with non-pathological liver fat. Liver biopsies were obtained from 30 individuals with a narrow range of BMI (24.6-29.8 kg/m2). Whole-body insulin sensitivity was assessed using HOMA-IR. Liver biopsies were analyzed for total triglyceride content, Glo1 and Glo2 mRNA, protein expression, and activity. Liquid chromatography-tandem mass spectrometry determined liver dicarbonyl content and oxidation and glycation biomarkers. Liver Glo1 activity showed an inverse correlation with HOMA-IR and liver triglyceride content, but not BMI. Despite reduced Glo1 activity, no associations were found with elevated liver dicarbonyls or glycation markers. A sex dimorphism was observed in Glo1, with females exhibiting significantly lower liver Glo1 protein expression and activity, and higher liver MG-H1 content compared to males. This study demonstrates that increasing liver fat, even within a non-pathological range, is associated with reduced Glo1 activity.
Collapse
Affiliation(s)
- Andreas Peter
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72016 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72016 Tübingen, Germany
| | - Erwin Schleicher
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Elisabeth Kliemank
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
| | - Julia Szendroedi
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls-University Tübingen, 72016 Tübingen, Germany
| | - Hans-Ulrich Häring
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72016 Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls-University Tübingen, 72016 Tübingen, Germany
| | - Peter P. Nawroth
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, 69120 Heidelberg, Germany
| | - Thomas Fleming
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Lu KJ, Yang CH, Sheu JR, Chung CL, Jayakumar T, Chen CM, Hsieh CY. Overexpressing glyoxalase 1 attenuates acute hyperglycemia-exacerbated neurological deficits of ischemic stroke in mice. Transl Res 2023; 261:57-68. [PMID: 37419278 DOI: 10.1016/j.trsl.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Stress-induced hyperglycemia (SIH) is associated with poor functional recovery and high mortality in patients with acute ischemic stroke (AIS). However, intensive controlling of blood glucose by using insulin was not beneficial in patients with AIS and acute hyperglycemia. This study investigated the therapeutic effects of the overexpression of glyoxalase I (GLO1), a detoxifying enzyme of glycotoxins, on acute hyperglycemia-aggravated ischemic brain injury. In the present study, adeno-associated viral (AAV)-mediated GLO1 overexpression reduced infarct volume and edema level but did not improve neurofunctional recovery in the mice with middle cerebral artery occlusion (MCAO). AAV-GLO1 infection significantly enhanced neurofunctional recovery in the MCAO mice with acute hyperglycemia but not in the mice with normoglycemia. Methylglyoxal (MG)-modified proteins expression significantly increased in the ipsilateral cortex of the MCAO mice with acute hyperglycemia. AAV-GLO1 infection attenuated the induction of MG-modified proteins, ER stress formation, and caspase 3/7 activation in MG-treated Neuro-2A cells, and reductions in synaptic plasticity and microglial activation were mitigated in the injured cortex of the MCAO mice with acute hyperglycemia. Treatment with ketotifen, a potent GLO1 stimulator, after surgery, alleviated neurofunctional deficits and ischemic brain damage in the MCAO mice with acute hyperglycemia. Altogether, our data substantiate that, in ischemic brain injury, GLO1 overexpression can alleviate pathologic alterations caused by acute hyperglycemia. Upregulation of GLO1 may be a therapeutic strategy for alleviating SIH-aggravated poor functional outcomes in patients with AIS.
Collapse
Affiliation(s)
- Kuan-Jung Lu
- College of Medicine, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- College of Medicine, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tanasekar Jayakumar
- Department of Ecology & Environmental Sciences, School of Life Science, Pondicherry University, Kalapet, Puducherry, India
| | - Chieh-Min Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Csongová M, Scheijen JLJM, van de Waarenburg MPH, Gurecká R, Koborová I, Tábi T, Szökö É, Schalkwijk CG, Šebeková K. Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study. Nutrients 2022; 14:nu14224929. [PMID: 36432614 PMCID: PMC9695161 DOI: 10.3390/nu14224929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
α-Dicarbonyls and advanced glycation end products (AGEs) may contribute to the pathogenesis of insulin resistance by a variety of mechanisms. To investigate whether young insulin-resistant subjects present markers of increased dicarbonyl stress, we determined serum α-dicarbonyls-methylglyoxal, glyoxal, 3-deoxyglucosone; their derived free- and protein-bound, and urinary AGEs using the UPLC/MS-MS method; soluble receptors for AGEs (sRAGE), and cardiometabolic risk markers in 142 (49% females) insulin resistant (Quantitative Insulin Sensitivity Check Index (QUICKI) ≤ 0.319) and 167 (47% females) age-, and waist-to-height ratio-matched insulin-sensitive controls aged 16-to-22 years. The between-group comparison was performed using the two-factor (sex, presence/absence of insulin resistance) analysis of variance; multiple regression via the orthogonal projection to latent structures model. In comparison with their insulin-sensitive peers, young healthy insulin-resistant individuals without diabetes manifest alterations throughout the α-dicarbonyls-AGEs-sRAGE axis, dominated by higher 3-deoxyglucosone levels. Variables of α-dicarbonyls-AGEs-sRAGE axis were associated with insulin sensitivity independently from cardiometabolic risk markers, and sex-specifically. Cleaved RAGE associates with QUICKI only in males; while multiple α-dicarbonyls and AGEs independently associate with QUICKI particularly in females, who displayed a more advantageous cardiometabolic profile compared with males. Further studies are needed to elucidate whether interventions alleviating dicarbonyl stress ameliorate insulin resistance.
Collapse
Affiliation(s)
- Melinda Csongová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | | | - Radana Gurecká
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Éva Szökö
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
5
|
Herpich C, Kochlik B, Weber D, Ott C, Grune T, Norman K, Raupbach J. Fasting concentrations and postprandial response of 1,2-dicarbonyl compounds 3-deoxyglucosone, glyoxal and methylglyoxal are not increased in healthy older adults. J Gerontol A Biol Sci Med Sci 2021; 77:934-940. [PMID: 34726231 PMCID: PMC9071428 DOI: 10.1093/gerona/glab331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/04/2022] Open
Abstract
Dicarbonyl stress describes the increased formation of 1,2-dicarbonyl compounds and is associated with age-related pathologies. The role of dicarbonyl stress in healthy aging is poorly understood. In a preliminary study, we analyzed 1,2-dicarbonyl compounds, namely 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in plasma of older (25 months, n = 11) and younger (5 months, n = 14) male C57BL/6J (B6) mice via ultra performance liquid chromatography tandem mass spectrometry. Postprandial 3-DG was higher in younger compared to older mice, whereas no differences were found for GO and MGO. Subsequently, in the main study, we analyzed fasting serum of older women (OW, 72.4 ± 6.14 years, n = 19) and younger women (YW, 27.0 ± 4.42 years, n = 19) as well as older men (OM, 74.3 ± 5.20 years, n = 15) and younger men (YM, 27.0 ± 3.34, n = 15). Serum glucose, insulin, 1,2-dicarbonyl concentrations, and markers of oxidative stress were quantified. In a subgroup of this cohort, an oral dextrose challenge was performed, and postprandial response of 1,2-dicarbonyl compounds, glucose, and insulin were measured. In women, there were no age differences regarding fasting 1,2-dicarbonyl concentrations nor the response after the oral dextrose challenge. In men, fasting MGO was significantly higher in OM compared to YM (median: 231 vs 158 nM, p = .006), whereas no age differences in fasting 3-DG and GO concentrations were found. Glucose (310 ± 71.8 vs 70.8 ± 11.9 min·mmol/L) and insulin (7 149 ± 1 249 vs 2 827 ± 493 min·µIU/mL) response were higher in OM compared to YM, which did not translate into a higher 1,2-dicarbonyl response in older individuals. Overall, aging does not necessarily result in dicarbonyl stress, indicating that strategies to cope with 1,2-dicarbonyl formation can remain intact.
Collapse
Affiliation(s)
- Catrin Herpich
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Bastian Kochlik
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany
| | - Daniela Weber
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Tilman Grune
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany.,German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kristina Norman
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Geriatrics and Medical Gerontology, Berlin, Germany
| | - Jana Raupbach
- German Institute of Human Nutrition, Potsdam - Rehbrücke, Department of Molecular Toxicology, Nuthetal, Germany
| |
Collapse
|
6
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|
7
|
Peters AS, Wortmann M, Fleming TH, Nawroth PP, Bruckner T, Böckler D, Hakimi M. Effect of metformin treatment in patients with type 2 diabetes with respect to glyoxalase 1 activity in atherosclerotic lesions. VASA 2018; 48:186-192. [PMID: 30421661 DOI: 10.1024/0301-1526/a000762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The enzyme glyoxalase1 (GLO1) is the main opponent in the degradation of the reactive metabolite methylglyoxal (MG), which by glycation of macromolecules is involved in atherogenesis. Reduced GLO1-activity in atherosclerotic tissue is known to be associated with diabetes. It has been shown that treatment of patients with type 2 diabetes with metformin leads to increased GLO1-activity in peripheral-blood-cells. The aim of this study was to evaluate whether metformin treatment increases GLO1-activity in atherosclerotic lesions of patients with type 2 diabetes. PATIENTS AND METHODS Patients with type 2 diabetes and carotid artery disease were included into the study prospectively. Type of diabetes-medication was documented upon admission along with demographic and clinical history. Using shock frozen endarterectomy-derived carotid artery plaques, GLO1-activity as well as protein expression was measured by a spectophotometric assay and western-blotting respectively. RESULTS 33 patients (76 % male, mean age 71 years) were included into the study and were divided according to treatment with metformin or not (15 vs. 18 patients). GLO1-activity was increased by the factor 1.36 when treated with metformin - however, not significantly (0.86 vs. 0.63 U/mg, p = 0.056). Normalisation of GLO1-activity onto GLO1-expression level lead to a significant increase by more than twofold (8.48 vs. 3.85, p = 0.044) while GLO1-protein levels did not differ significantly. GLO1-activity correlated positively with increasing HbA1c, especially under metformin treatment. CONCLUSIONS Treatment with metformin in patients with type 2 diabetes is associated with enhanced GLO1-activity in atherosclerotic lesions. Regarding the macro- and microvascular complications in these patients further studies are needed to gain more insight into the effect of metformin on the GLO/MG system.
Collapse
Affiliation(s)
- Andreas S Peters
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany.,4 Vaskuläre Biomaterialbank Heidelberg, VBBH (Vascular Biomaterialbank Heidelberg), University of Heidelberg, Germany
| | - Markus Wortmann
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany.,4 Vaskuläre Biomaterialbank Heidelberg, VBBH (Vascular Biomaterialbank Heidelberg), University of Heidelberg, Germany
| | - Thomas H Fleming
- 2 Department of Internal Medicine I and Clinical Chemistry Heidelberg, University Hospital Heidelberg, Germany.,5 German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter P Nawroth
- 2 Department of Internal Medicine I and Clinical Chemistry Heidelberg, University Hospital Heidelberg, Germany.,5 German Center for Diabetes Research (DZD), Neuherberg, Germany.,6 Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg; Center for Molecular Biology (ZMBH) and University Hospital Heidelberg; University, Heidelberg, Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Thomas Bruckner
- 3 Institute for Medical Biometry and Informatics (IMBI), University of Heidelberg, Germany
| | - Dittmar Böckler
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany
| | - Maani Hakimi
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany.,4 Vaskuläre Biomaterialbank Heidelberg, VBBH (Vascular Biomaterialbank Heidelberg), University of Heidelberg, Germany
| |
Collapse
|
8
|
Reduced glyoxalase 1 activity in carotid artery plaques of nondiabetic patients with increased hemoglobin A1c level. J Vasc Surg 2016; 64:990-4. [DOI: 10.1016/j.jvs.2016.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
|