1
|
Lu FT, Huang CC, Lai WY, Yang GY, Liang ZJ, Zhang ZY, Chokshi T, Guo KM, Tang YB, Chen Y, Yang ZH, Liang SJ, Pang RP, Zhou JG, Guan YY, Lv XF, Ma MM. Vascular smooth muscle-specific LRRC8A knockout ameliorates angiotensin II-induced cerebrovascular remodeling by inhibiting the WNK1/FOXO3a/MMP signaling pathway. Acta Pharmacol Sin 2024; 45:1848-1860. [PMID: 38719954 PMCID: PMC11335743 DOI: 10.1038/s41401-024-01280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 08/22/2024] Open
Abstract
Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.
Collapse
Affiliation(s)
- Feng-Ting Lu
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Cheng-Cui Huang
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Wen-Yi Lai
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Gui-Yong Yang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhu-Jun Liang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zi-Yi Zhang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tanvi Chokshi
- Research Division, Joslin Diabetes Center, Harvard University, Boston, MA, USA
| | - Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yu-Bo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Chen
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhong-Han Yang
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Jia Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Guo Zhou
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yong-Yuan Guan
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ming-Ming Ma
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Gedney JR, Mattia V, Figueroa M, Barksdale C, Fannin E, Silverman J, Xiong Y, Mukherjee R, Jones JA, Ruddy JM. Biomechanical dysregulation of SGK-1 dependent aortic pathologic markers in hypertension. Front Cardiovasc Med 2024; 11:1359734. [PMID: 38903966 PMCID: PMC11187291 DOI: 10.3389/fcvm.2024.1359734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction In hypertension (HTN), biomechanical stress may drive matrix remodeling through dysfunctional VSMC activity. Prior evidence has indicated VSMC tension-induced signaling through the serum and glucocorticoid inducible kinase-1 (SGK-1) can impact cytokine abundance. Here, we hypothesize that SGK-1 impacts production of additional aortic pathologic markers (APMs) representing VSMC dysfunction in HTN. Methods Aortic VSMC expression of APMs was quantified by QPCR in cyclic biaxial stretch (Stretch) +/- AngiotensinII (AngII). APMs were selected to represent VSMC dedifferentiated transcriptional activity, specifically Interleukin-6 (IL-6), Cathepsin S (CtsS), Cystatin C (CysC), Osteoprotegerin (OPG), and Tenascin C (TNC). To further assess the effect of tension alone, abdominal aortic rings from C57Bl/6 WT mice were held in a myograph at experimentally derived optimal tension (OT) or OT + 30% +/-AngII. Dependence on SGK-1 was assessed by treating with EMD638683 (SGK-1 inhibitor) and APMs were measured by QPCR. Then, WT and smooth muscle cell specific SGK-1 heterozygous knockout (SMC-SGK-1KO+/-) mice had AngII-induced HTN. Systolic blood pressure and mechanical stress parameters were assessed on Day 0 and Day 21. Plasma was analyzed by ELISA to quantify APMs. Statistical analysis was performed by ANOVA. Results In cultured aortic VSMCs, expression of all APMs was increased in response to biomechanical stimuli (Stretch +/-AngII,). Integrating the matrix contribution to signal transduction in the aortic rings led to IL-6 and CysC demonstrating SGK-1 dependence in response to elevated tension and interactive effect with concurrent AngII stimulation. CtsS and TNC, on the other hand, primarily responded to AngII, and OPG expression was unaffected in aortic ring experimentation. Both mouse strains had >30% increase in blood pressure with AngII infusion, reduced aortic distensibility and increased PPV, indicating increased aortic stiffness. In WT + AngII mice, IL-6, CtsS, CysC, and TNC plasma levels were significantly elevated, but these APMs were unaffected by HTN in the SMC-SGK-1KO+/- +AngII mice, suggesting SGK-1 plays a major role in VSMC biomechanical signaling to promote dysfunctional production of selected APMs. Conclusion In HTN, changes in the plasma levels of markers associated with aortic matrix homeostasis can reflect remodeling driven by mechanobiologic signaling in dysfunctional VSMCs, potentially through the activity of SGK-1. Further defining these pathways may identify therapeutic targets to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- J. Ryan Gedney
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Christian Barksdale
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ethan Fannin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jonah Silverman
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Figueroa M, Hall S, Mattia V, Mendoza A, Brown A, Xiong Y, Mukherjee R, Jones JA, Richardson W, Ruddy JM. Vascular smooth muscle cell mechanotransduction through serum and glucocorticoid inducible kinase-1 promotes interleukin-6 production and macrophage accumulation in murine hypertension. JVS Vasc Sci 2023; 4:100124. [PMID: 37920479 PMCID: PMC10618507 DOI: 10.1016/j.jvssci.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/01/2023] [Indexed: 11/04/2023] Open
Abstract
Objective The objective of this investigation was to demonstrate that in vivo induction of hypertension (HTN) and in vitro cyclic stretch of aortic vascular smooth muscle cells (VSMCs) can cause serum and glucocorticoid-inducible kinase (SGK-1)-dependent production of cytokines to promote macrophage accumulation that may promote vascular pathology. Methods HTN was induced in C57Bl/6 mice with angiotensin II infusion (1.46 mg/kg/day × 21 days) with or without systemic infusion of EMD638683 (2.5 mg/kg/day × 21 days), a selective SGK-1 inhibitor. Systolic blood pressure was recorded. Abdominal aortas were harvested to quantify SGK-1 activity (pSGK-1/SGK-1) by immunoblot. Flow cytometry quantified the abundance of CD11b+/F480+ cells (macrophages). Plasma interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was assessed by enzyme-linked immunosorbent assay. Aortic VSMCs from wild-type mice were subjected to 12% biaxial cyclic stretch (Stretch) for 3 or 12 hours with or without EMD638683 (10 μM) and with or without SGK-1 small interfering RNA with subsequent quantitative polymerase chain reaction for IL-6 and MCP-1 expression. IL-6 and MCP-1 in culture media were analyzed by enzyme-linked immunosorbent assay. Aortic VSMCs from SGK-1flox+/+ mice were transfected with Cre-Adenovirus to knockdown SGK-1 (SGK-1KD VSMCs) and underwent parallel tension experimentation. Computational modeling was used to simulate VSMC signaling. Statistical analysis included analysis of variance with significance at a P value of <.05. Results SGK-1 activity, abundance of CD11b+/F4-80+ cells, and plasma IL-6 were increased in the abdominal aorta of mice with HTN and significantly reduced by treatment with EMD638683. This outcome mirrored the increased abundance of IL-6 in media from Stretch C57Bl/6 VSMCs and attenuation of the effect with EMD638683 or SGK-1 small interfering RNA. C57Bl/6 VSMCs also responded to Stretch with increased MCP-1 expression and secretion into the culture media. Further supporting the integral role of mechanical signaling through SGK-1, target gene expression and cytokine secretion was unchanged in SGK-1KD VSMCs with Stretch, and computer modeling confirmed SGK-1 as an intersecting node of signaling owing to mechanical strain and angiotensin II. Conclusions Mechanical activation of SGK-1 in aortic VSMCs can promote inflammatory signaling and increased macrophage abundance, therefore this kinase warrants further exploration as a pharmacotherapeutic target to abrogate hypertensive vascular pathology.
Collapse
Affiliation(s)
- Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Alex Mendoza
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Adam Brown
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| | - William Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AK
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
4
|
Simões G, Pereira T, Caseiro A. Matrix metaloproteinases in vascular pathology. Microvasc Res 2022; 143:104398. [PMID: 35671836 DOI: 10.1016/j.mvr.2022.104398] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022]
Abstract
Vascular diseases are the main cause of morbidity and mortality. The vascular extracellular matrix (ECM) is essential in mechanical support, also regulating the cellular behavior fundamental to vascular function and homeostasis. Vascular remodeling is an adaptive response to various physiological and pathological changes and is associated with aging and vascular diseases. The aim of this review is provide a general overview of the involvement of MMPs in the pathogenesis of vascular diseases, namely, arterial hypertension, atherosclerosis, aortic aneurysms and myocardial infarction. The change in the composition of the ECM by matrix metalloproteinases (MMPs) generates a pro-inflammatory microenvironment that modifies the phenotypes of endothelial cells and vascular smooth muscle cells. They play a central role in morphogenesis, tissue repair and remodeling in response to injury, e.g., after myocardial infarction, and in progression of diseases such as atherosclerosis. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension and aneurysm formation. MMPs are regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio generally determines the extent of ECM protein degradation and tissue remodeling. Studies are currently focused on improving the diagnostic and prognostic value of MMPs involved in the pathogenic process, increasing their therapeutic potential, and monitoring the disease. New selective MMP inhibitors may improve the specificity of these inhibitors, target specific MMPs in relevant pathological conditions and mitigate some of the side effects.
Collapse
Affiliation(s)
- Gonçalo Simões
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Telmo Pereira
- LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Politécnico de Coimbra, ESTeSC, Fisiologia Clínica, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Armando Caseiro
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Unidade I&D Química-Física Molecular, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Hall S, Ward ND, Patel R, Amin-Javaheri A, Lanford H, Grespin RT, Couch C, Xiong Y, Mukherjee R, Jones JA, Ruddy JM. Mechanical activation of the angiotensin II type 1 receptor contributes to abdominal aortic aneurysm formation. JVS Vasc Sci 2021; 2:194-206. [PMID: 34761239 PMCID: PMC8567200 DOI: 10.1016/j.jvssci.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Objective The angiotensin II type 1 receptor (AT1R) can be activated under conditions of mechanical stretch in some cellular systems. Whether this activity influences signaling within the abdominal aorta to promote to abdominal aortic aneurysm (AAA) development remains unknown. We evaluated the hypothesis that mechanical AT1R activation can occur under conditions of hypertension (HTN) and contribute to AAA formation. Methods BPH/2 mice, which demonstrate spontaneous neurogenic, low-renin HTN, and normotensive BPN/3 mice underwent AAA induction via the calcium chloride model, with or without an osmotic minipump delivering 30 mg/kg/d of the AT1R blocker Losartan. Systolic blood pressure (SBP) was measured at baseline and weekly via a tail cuff. The aortic diameter (AoD) was measured at baseline and terminal surgery at 21 days by digital microscopy. Aortic tissue was harvested for immunoblotting (phosphorylated extracellular signal-regulated kinase-1 and -2 [pERK1/2] to ERK1/2 ratio) and expressed as the fold-change from the BPN/3 control mice. Aortic vascular smooth muscle cells (VSMCs) underwent stretch with or without Losartan (1 μM) treatment to assess the mechanical stimulation of ERK1/2 activity. Statistical analysis of the blood pressure, AoD, and VSMC ERK1/2 activity was performed using analysis of variance. However, the data distribution was determined to be log-normal (Shapiro-Wilk test) for ERK1/2 activity. Therefore, it was logarithmically transformed before analysis of variance. Results At baseline, the SBP was elevated in the BPH/2 mice relative to the BPN/3 mice (P < .05). Losartan treatment significantly reduced the SBP in both mouse strains (P < .05). AAA induction did not affect the SBP. At 21 days after induction, the percentage of increase in the AoD from baseline was significantly greater in the BPH/2 mice than in the BPN/3 mice (101.28% ± 4.19% vs 75.59% ± 1.67% above baseline; P < .05). Losartan treatment significantly attenuated AAA growth in both BPH/2 and BPN/3 mice (33.88% ± 2.97% and 43.96% ± 3.05% above baseline, respectively; P < .05). ERK1/2 activity was increased approximately fivefold in the BPH/2 control mice relative to the BPN/3 control mice (P < .05). In the BPH/2 and BPN/3 mice with AAA, ERK1/2 activity was significantly increased relative to the respective baseline control (P < .05) and effectively reduced by concomitant Losartan therapy (P < .05). Biaxial stretch of the VSMCs in the absence of angiotensin II demonstrated increased ERK1/2 activation (P < .05 vs static control), which was significantly inhibited by Losartan. Conclusions In BPH/2 mice with spontaneous neurogenic, low-renin HTN, AAA growth was amplified compared with the normotensive control and was effectively attenuated using Losartan. ERK1/2 activity was significantly elevated in the BPH/2 mice and after AAA induction in the normotensive and hypertensive mice but was attenuated by Losartan treatment. These data suggest that AT1R activation contributes to AAA development. Therefore, further investigation into this signaling pathway could establish targets for pharmacotherapeutic engineering to slow AAA growth. (JVS-Vascular Science 2021;2:194-206.). Clinical Relevance Hypertension (HTN) and abdominal aortic aneurysm (AAA) have been epidemiologically linked for decades; however, a biomechanical link has not yet been identified. Using a murine model of spontaneous neurogenic HTN experimentally demonstrated to have low circulating renin, mechanical activation of the angiotensin II type 1 receptor (AT1R) was identified with elevated blood pressure and AAA induction. HTN amplified AAA growth. However, more importantly, blocking the activation of AT1R with the angiotensin receptor blocker Losartan effectively abrogated AAA development. Although inhibiting the production of angiotensin II has previously been unsuccessful in altering AAA growth, the results from the present study suggest that blocking the activation of AT1R through direct ligand binding or mechanical stimulation might alter aortic wall signaling and warrants further investigation.
Collapse
Affiliation(s)
- SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Nicholas D Ward
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Raj Patel
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Armaan Amin-Javaheri
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Hayes Lanford
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - R Tyler Grespin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Christine Couch
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jeffrey A Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
6
|
Hu M, Jana S, Kilic T, Wang F, Shen M, Winkelaar G, Oudit GY, Rayner K, Zhang DW, Kassiri Z. Loss of TIMP4 (Tissue Inhibitor of Metalloproteinase 4) Promotes Atherosclerotic Plaque Deposition in the Abdominal Aorta Despite Suppressed Plasma Cholesterol Levels. Arterioscler Thromb Vasc Biol 2021; 41:1874-1889. [PMID: 33792349 DOI: 10.1161/atvbaha.120.315522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/metabolism
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/blood
- Cell Transdifferentiation
- Cells, Cultured
- Cholesterol/blood
- Disease Models, Animal
- Disease Progression
- Down-Regulation
- Female
- Foam Cells/metabolism
- Foam Cells/pathology
- Humans
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Proteolysis
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Tissue Inhibitor of Metalloproteinases/deficiency
- Tissue Inhibitor of Metalloproteinases/genetics
- Tissue Inhibitor of Metalloproteinase-4
- Mice
Collapse
Affiliation(s)
- Mei Hu
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Sayantan Jana
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Tolga Kilic
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Faqi Wang
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Mengcheng Shen
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Gerrit Winkelaar
- Division of Vascular Surgery, University of Alberta and The Northern Alberta Vascular Center, Grey Nuns Hospital, Edmonton, Canada (G.W.)
| | - Gavin Y Oudit
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
- Department of Medicine/Division of Cardiology, Mazankowski Alberta Heart Institute, Cardiovascular Research Center (G.Y.O.), University of Alberta, Edmonton, Canada
| | - Katey Rayner
- University of Ottawa Heart Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (K.R.)
| | - Da-Wei Zhang
- Department of Pediatrics, Lipid Group (D.-w.Z.), University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Scola L, Giarratana RM, Pisano C, Ruvolo G, Marinello V, Lio D, Balistreri CR. Genotyping strategy of SMAD-3 rs3825977 gene variant for a differential management of ascending aorta aneurysm in women people: Gender oriented diagnostic tools. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
8
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Zeng XL, Sun L, Zheng HQ, Wang GL, Du YH, Lv XF, Ma MM, Guan YY. Smooth muscle-specific TMEM16A expression protects against angiotensin II-induced cerebrovascular remodeling via suppressing extracellular matrix deposition. J Mol Cell Cardiol 2019; 134:131-143. [PMID: 31301303 DOI: 10.1016/j.yjmcc.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
Abstract
Cerebrovascular remodeling is the leading factor for stroke and characterized by increased extracellular matrix deposition, migration and proliferation of vascular smooth muscle cells, and inhibition of their apoptosis. TMEM16A is an important component of Ca2+-activated Cl- channels. Previously, we showed that downregulation of TMEM16A in the basilar artery was negatively correlated with cerebrovascular remodeling during hypertension. However, it is unclear whether TMEM16A participates in angiotensin II (Ang II)-induced vascular remodeling in mice that have TMEM16A gene modification. In this study, we generated a transgenic mouse that overexpresses TMEM16A specifically in vascular smooth muscle cells. We observed that vascular remodeling in the basilar artery during Ang II-induced hypertension was significantly suppressed upon vascular smooth muscle-specific overexpression of TMEM16A relative to control mice. Specifically, we observed a large reduction in the deposition of fibronectin and collagen I. The expression of matrix metalloproteinases (MMP-2, MMP-9, and MMP-14), and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were upregulated in the basilar artery during Ang II-induced hypertension, but this was suppressed upon overexpression of TMEM16A in blood vessels. Furthermore, TMEM16A overexpression alleviated the overactivity of the canonical TGF-β1/Smad3, and non-canonical TGF-β1/ERK and JNK pathways in the basilar artery during Ang II-induced hypertension. These in vivo results were similar to the results derived in vitro with basilar artery smooth muscle cells stimulated by Ang II. Moreover, we observed that the inhibitory effect of TMEM16A on MMPs was mediated by decreasing the activation of WNK1, which is a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrates that TMEM16A protects against cerebrovascular remodeling during hypertension by suppressing extracellular matrix deposition. We also showed that TMEM16A exerts this effect by reducing the expression of MMPs via inhibiting WNK1, and decreasing the subsequent activities of TGF-β1/Smad3, ERK, and JNK. Accordingly, our results suggest that TMEM16A may serve as a novel therapeutic target for vascular remodeling.
Collapse
Affiliation(s)
- Xue-Lin Zeng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lu Sun
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Qing Zheng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guan-Lei Wang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yan-Hua Du
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Ming-Ming Ma
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yong-Yuan Guan
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Akerman AW, Stroud RE, Barrs RW, Grespin RT, McDonald LT, LaRue RAC, Mukherjee R, Ikonomidis JS, Jones JA, Ruddy JM. Elevated Wall Tension Initiates Interleukin-6 Expression and Abdominal Aortic Dilation. Ann Vasc Surg 2017; 46:193-204. [PMID: 29107003 DOI: 10.1016/j.avsg.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/10/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hypertension (HTN) has long been associated with abdominal aortic aneurysm (AAA) development, and these cardiovascular pathologies are biochemically characterized by elevated plasma levels of angiotensin II (AngII) as well as interleukin-6 (IL-6). A biologic relationship between HTN and AAA has not been established, however. Accordingly, the objective of this study was to evaluate whether elevated tension may initiate IL-6 production to accumulate monocyte/macrophages and promote dilation of the abdominal aorta (AA). METHODS An IL-6 infusion model (4.36 μg/kg/day) was created utilizing an osmotic infusion pump, and after 4 weeks, AA diameter was measured by digital microscopy. The AA was then excised for CD68 immunostaining and flow cytometric analysis with CD11b and F4/80 to identify macrophages. Aortic segments from wild-type mice were suspended on parallel wires in an ex vivo tissue myograph at experimentally derived optimal tension (1.2 g) and in the presence of elevated tension (ET, 1.7 g) for 3 hr, and expression of IL-6 and monocyte chemoattractant protein-1 (MCP-1) was evaluated by quantitative polymerase chain reaction (QPCR). Isolated aortic vascular smooth muscle cells (VSMCs) were subjected to 12% biaxial cyclic stretch or held static (control) for 3 hr (n = 7), and IL-6 and MCP-1 expressions were evaluated by QPCR. RESULTS Four-week IL-6 infusion resulted in an AA outer diameter that was 72.5 ± 5.6% (P < 0.05) greater than that of control mice, and aortic dilation was accompanied by an accumulation of macrophages in the AA medial layer as defined by an increase in CD68 + staining as well as an increase by flow cytometric quantification of CD11b+/F4/80+ cells. Wild-type AA segments did not respond to ex vivo application of ET but cyclic stretch of isolated VSMCs increased IL-6 (2.03 ± 0.3 fold) and MCP-1 (1.51 ± 0.11 fold) expression compared to static control (P < 0.05). Pretreatment with the selective STAT3 inhibitor WP1066 blunted the response in both cases. Interestingly, AngII did not stimulate expression of IL-6 and MCP-1 above that initiated by tension and again, the response was inhibited by WP1066, supporting an integral role of STAT3 in this pathway. CONCLUSIONS An IL-6 infusion model can initiate macrophage accumulation as well as aortic dilation, and under conditions of elevated tension, this proinflammatory cytokine can be produced by aortic VSMCs. By activation of STAT3, MCP-1 is expressed to increase media macrophage abundance and create an environment susceptible to dilation. This biomechanical association between HTN and aortic dilation may allow for the identification of novel therapeutic strategies.
Collapse
Affiliation(s)
- Adam W Akerman
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Robert E Stroud
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Ryan W Barrs
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - R Tyler Grespin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Lindsay T McDonald
- Medical University of South Carolina, Division of Pathology and Laboratory Medicine, Charleston, SC; Ralph H. Johnson VAMC, Charleston, SC
| | - R Amanda C LaRue
- Medical University of South Carolina, Division of Pathology and Laboratory Medicine, Charleston, SC; Ralph H. Johnson VAMC, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC; Ralph H. Johnson VAMC, Charleston, SC
| | - John S Ikonomidis
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Jeffery A Jones
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC; Ralph H. Johnson VAMC, Charleston, SC
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|