1
|
Pawnikar S, Magenheimer BS, Joshi K, Nevarez-Munoz E, Haldane A, Maser RL, Miao Y. Activation of polycystin-1 signaling by binding of stalk-derived peptide agonists. eLife 2024; 13:RP95992. [PMID: 39373641 PMCID: PMC11458180 DOI: 10.7554/elife.95992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Polycystin-1 (PC1) is the protein product of the PKD1 gene whose mutation causes autosomal dominant Polycystic Kidney Disease (ADPKD). PC1 is an atypical G protein-coupled receptor (GPCR) with an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal and membrane-embedded C-terminal (CTF) fragments. Recently, activation of PC1 CTF signaling was shown to be regulated by a stalk tethered agonist (TA), resembling the mechanism observed for adhesion GPCRs. Here, synthetic peptides of the first 9- (p9), 17- (p17), and 21-residues (p21) of the PC1 stalk TA were shown to re-activate signaling by a stalkless CTF mutant in human cell culture assays. Novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) simulations elucidated binding conformations of p9, p17, and p21 and revealed multiple specific binding regions to the stalkless CTF. Peptide agonists binding to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of stalk TA-mediated PC1 CTF activation. Additional sequence coevolution analyses showed the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. These insights into the structural dynamic mechanism of PC1 activation by TA peptide agonists provide an in-depth understanding that will facilitate the development of therapeutics targeting PC1 for ADPKD treatment.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Brenda S Magenheimer
- Clinical Laboratory Sciences, University of Kansas Medical CenterKansas CityUnited States
- The Jared Grantham Kidney Institute, University of Kansas Medical CenterKansas CityUnited States
| | - Keya Joshi
- Department of Pharmacology and Computational Medicine Program, University of North CarolinaChapel HillUnited States
| | - Ericka Nevarez-Munoz
- Clinical Laboratory Sciences, University of Kansas Medical CenterKansas CityUnited States
| | - Allan Haldane
- Department of Physics, and Center for Biophysics and Computational Biology, Temple UniversityPhiladelphiaUnited States
| | - Robin L Maser
- Clinical Laboratory Sciences, University of Kansas Medical CenterKansas CityUnited States
- The Jared Grantham Kidney Institute, University of Kansas Medical CenterKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North CarolinaChapel HillUnited States
| |
Collapse
|
2
|
Pawnikar S, Magenheimer BS, Joshi K, Munoz EN, Haldane A, Maser RL, Miao Y. Activation of Polycystin-1 Signaling by Binding of Stalk-derived Peptide Agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574465. [PMID: 38260358 PMCID: PMC10802338 DOI: 10.1101/2024.01.06.574465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polycystin-1 (PC1) is the membrane protein product of the PKD1 gene whose mutation is responsible for 85% of the cases of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is primarily characterized by the formation of renal cysts and potential kidney failure. PC1 is an atypical G protein-coupled receptor (GPCR) consisting of 11 transmembrane helices and an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal (NTF) and membrane-embedded C-terminal (CTF) fragments. Recently, signaling activation of the PC1 CTF was shown to be regulated by a stalk tethered agonist (TA), a distinct mechanism observed in the adhesion GPCR family. A novel allosteric activation pathway was elucidated for the PC1 CTF through a combination of Gaussian accelerated molecular dynamics (GaMD), mutagenesis and cellular signaling experiments. Here, we show that synthetic, soluble peptides with 7 to 21 residues derived from the stalk TA, in particular, peptides including the first 9 residues (p9), 17 residues (p17) and 21 residues (p21) exhibited the ability to re-activate signaling by a stalkless PC1 CTF mutant in cellular assays. To reveal molecular mechanisms of stalk peptide-mediated signaling activation, we have applied a novel Peptide GaMD (Pep-GaMD) algorithm to elucidate binding conformations of selected stalk peptide agonists p9, p17 and p21 to the stalkless PC1 CTF. The simulations revealed multiple specific binding regions of the stalk peptide agonists to the PC1 protein including an "intermediate" bound yet inactive state. Our Pep-GaMD simulation findings were consistent with the cellular assay experimental data. Binding of peptide agonists to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of the PC1 CTF signaling activation mechanism. Using sequence covariation analysis of PC1 homologs, we further showed that the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. Therefore, structural dynamic insights into the mechanisms of PC1 activation by stalk-derived peptide agonists have enabled an in-depth understanding of PC1 signaling. They will form a foundation for development of PC1 as a therapeutic target for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047
| | - Brenda S. Magenheimer
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160
| | - Keya Joshi
- Department of Pharmacology and Computational Medicine Program, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Ericka Nevarez Munoz
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Allan Haldane
- Dept of Physics, and Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA 19122
| | - Robin L. Maser
- Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
3
|
Wang Y, Wang Z, Pavel MA, Ng C, Kashyap P, Li B, Morais TDC, Ulloa GA, Yu Y. The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2. J Biol Chem 2023; 299:104674. [PMID: 37028763 PMCID: PMC10192930 DOI: 10.1016/j.jbc.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Mahmud Arif Pavel
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Courtney Ng
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Parul Kashyap
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Bin Li
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Tiago D C Morais
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Gabriella A Ulloa
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, New York, USA.
| |
Collapse
|
4
|
Zhang Y, Xu S, Jin Q, Luo J, Gao C, Jayaprakash S, Wang H, Zhuang L, He J. Establishment of transgenic pigs overexpressing human PKD2-D511V mutant. Front Genet 2022; 13:1059682. [DOI: 10.3389/fgene.2022.1059682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous missense mutations have been reported in autosomal dominant polycystic kidney disease which is one of the most common renal genetic disorders. The underlying mechanism for cystogenesis is still elusive, partly due to the lack of suitable animal models. Currently, we tried to establish a porcine transgenic model overexpressing human PKD2-D511V (hPKD2-D511V), which is a dominant-negative mutation in the vertebrate in vitro models. A total of six cloned pigs were finally obtained using somatic cell nuclear transfer. However, five with functional hPKD2-D511V died shortly after birth, leaving only one with the dysfunctional transgenic event to survive. Compared with the WT pigs, the demised transgenic pigs had elevated levels of hPKD2 expression at the mRNA and protein levels. Additionally, no renal malformation was observed, indicating that hPKD2-D511V did not alter normal kidney development. RNA-seq analysis also revealed that several ADPKD-related pathways were disturbed when overexpressing hPKD2-D511V. Therefore, our study implies that hPKD2-D511V may be lethal due to the dominant-negative effect. Hence, to dissect how PKD2-D511V drives renal cystogenesis, it is better to choose in vitro or invertebrate models.
Collapse
|
5
|
Wildtype heterogeneity contributes to clonal variability in genome edited cells. Sci Rep 2022; 12:18211. [PMID: 36307508 PMCID: PMC9616811 DOI: 10.1038/s41598-022-22885-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
Genome editing tools such as CRISPR/Cas9 enable the rapid and precise manipulation of genomes. CRISPR-based genome editing has greatly simplified the study of gene function in cell lines, but its widespread use has also highlighted challenges of reproducibility. Phenotypic variability among different knockout clones of the same gene is a common problem confounding the establishment of robust genotype-phenotype correlations. Optimized genome editing protocols to enhance reproducibility include measures to reduce off-target effects. However, even if current state-of-the-art protocols are applied phenotypic variability is frequently observed. Here we identify heterogeneity of wild-type cells as an important and often neglected confounding factor in genome-editing experiments. We demonstrate that isolation of individual wild-type clones from an apparently homogenous stable cell line uncovers significant phenotypic differences between clones. Strikingly, we observe hundreds of differentially regulated transcripts (477 up- and 306 downregulated) when comparing two populations of wild-type cells. Furthermore, we show a variety of cellular and biochemical alterations in different wild-type clones in a range that is commonly interpreted as biologically relevant in genome-edited cells. Heterogeneity of wild-type cells thus contributes to variability in genome-edited cells when these are generated through isolation of clones. We show that the generation of monoclonal isogenic wild-type cells prior to genomic manipulation reduces phenotypic variability. We therefore propose to generate matched isogenic control cells prior to genome editing to increase reproducibility.
Collapse
|
6
|
Sundar SV, Zhou JX, Magenheimer BS, Reif GA, Wallace DP, Georg GI, Jakkaraj SR, Tash JS, Yu ASL, Li X, Calvet JP. The lonidamine derivative H2-gamendazole reduces cyst formation in polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F492-F506. [PMID: 35979967 PMCID: PMC9529276 DOI: 10.1152/ajprenal.00095.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shirin V Sundar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie Xia Zhou
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail A Reif
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sudhakar R Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Tash
- Department of Molecular and Integrated Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
7
|
Identification of pathological transcription in autosomal dominant polycystic kidney disease epithelia. Sci Rep 2021; 11:15139. [PMID: 34301992 PMCID: PMC8302622 DOI: 10.1038/s41598-021-94442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects more than 12 million people worldwide. Mutations in PKD1 and PKD2 cause cyst formation through unknown mechanisms. To unravel the pathogenic mechanisms in ADPKD, multiple studies have investigated transcriptional mis-regulation in cystic kidneys from patients and mouse models, and numerous dysregulated genes and pathways have been described. Yet, the concordance between studies has been rather limited. Furthermore, the cellular and genetic diversity in cystic kidneys has hampered the identification of mis-expressed genes in kidney epithelial cells with homozygous PKD mutations, which are critical to identify polycystin-dependent pathways. Here we performed transcriptomic analyses of Pkd1- and Pkd2-deficient mIMCD3 kidney epithelial cells followed by a meta-analysis to integrate all published ADPKD transcriptomic data sets. Based on the hypothesis that Pkd1 and Pkd2 operate in a common pathway, we first determined transcripts that are differentially regulated by both genes. RNA sequencing of genome-edited ADPKD kidney epithelial cells identified 178 genes that are concordantly regulated by Pkd1 and Pkd2. Subsequent integration of existing transcriptomic studies confirmed 31 previously described genes and identified 61 novel genes regulated by Pkd1 and Pkd2. Cluster analyses then linked Pkd1 and Pkd2 to mRNA splicing, specific factors of epithelial mesenchymal transition, post-translational protein modification and epithelial cell differentiation, including CD34, CDH2, CSF2RA, DLX5, HOXC9, PIK3R1, PLCB1 and TLR6. Taken together, this model-based integrative analysis of transcriptomic alterations in ADPKD annotated a conserved core transcriptomic profile and identified novel candidate genes for further experimental studies.
Collapse
|
8
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
9
|
Drosophila as a model to understand autophagy deregulation in human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020. [PMID: 32620249 DOI: 10.1016/bs.pmbts.2020.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Autophagy has important functions in normal physiology to maintain homeostasis and protect against cellular stresses by the removal of harmful cargos such as dysfunctional organelles, protein aggregates and invading pathogens. The deregulation of autophagy is a hallmark of many diseases and therapeutic targeting of autophagy is highly topical. With the complex role of autophagy in disease it is essential to understand the genetic and molecular basis of the contribution of autophagy to pathogenesis. The model organism, Drosophila, provides a genetically amenable system to dissect out the contribution of autophagy to human disease models. Here we review the roles of autophagy in human disease and how autophagy studies in Drosophila have contributed to the understanding of pathophysiology.
Collapse
|
10
|
Magistroni R, Mangolini A, Guzzo S, Testa F, Rapanà MR, Mignani R, Russo G, di Virgilio F, Aguiari G. TRPP2 dysfunction decreases ATP-evoked calcium, induces cell aggregation and stimulates proliferation in T lymphocytes. BMC Nephrol 2019; 20:355. [PMID: 31514750 PMCID: PMC6743124 DOI: 10.1186/s12882-019-1540-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/27/2019] [Indexed: 03/07/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is mainly characterised by the development and enlargement of renal cysts that lead to end-stage renal disease (ESRD) in adult patients. Other clinical manifestations of this pathology include hypertension, haematuria, abdominal pain, cardiovascular system alterations and intracranial aneurysms. ADPKD is linked to mutations in either PKD1 or PKD2 that codifies polycystin-1 (PC1) and polycystin-2 (PC2 or TRPP2), respectively. PC1 and TRPP2 are membrane proteins that function as receptor-channel elements able to regulate calcium homeostasis. The function of polycystins has been mainly studied in kidney cells; but the role of these proteins in T lymphocytes is not well defined. Methods T lymphocytes were produced from ADPKD1 and ADPKD2 patients as well as from non-ADPKD subjects undergoing renal replacement therapy (RRT) and healthy controls. Protein expression and phosphorylation levels were analysed by western blotting, cell proliferation was calculated by direct counting using trypan blue assay and intracellular calcium concentration was measured by Fura-2 method. Results PKD2 mutations lead to the significant reduction of TRPP2 expression in T lymphocytes derived from ADPKD patients. Furthermore, a smaller TRPP2 truncated protein in T lymphocytes of patients carrying the mutation R872X in PKD2 was also observed, suggesting that TRPP2 mutated proteins may be stably expressed. The silencing or mutation of PKD2 causes a strong reduction of ATP-evoked calcium in Jurkat cells and ADPKD2 T lymphocytes, respectively. Moreover, T lymphocytes derived from both ADPKD1 and ADPKD2 patients show increased cell proliferation, basal chemotaxis and cell aggregation compared with T lymphocytes from non-ADPKD subjects. Similarly to observations made in kidney cells, mutations in PKD1 and PKD2 dysregulate ERK, mTOR, NFkB and MIF pathways in T lymphocytes. Conclusions Because the alteration of ERK, mTOR, NFkB and MIF signalling found in T lymphocytes of ADPKD patients may contribute to the development of interstitial inflammation promoting cyst growth and kidney failure (ESRD), the targeting of inflammasome proteins could be an intriguing option to delay the progression of ADPKD. Electronic supplementary material The online version of this article (10.1186/s12882-019-1540-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Magistroni
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Azienda Opedaliero-Universitaria di Modena, Largo del Pozzo, Modena, Italy
| | - Alessandra Mangolini
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Luigi Borsari 46, 44100, Ferrara, Italy
| | - Sonia Guzzo
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Luigi Borsari 46, 44100, Ferrara, Italy
| | - Francesca Testa
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Azienda Opedaliero-Universitaria di Modena, Largo del Pozzo, Modena, Italy
| | - Mario R Rapanà
- Unità Operativa di Nefrologia e Dialisi, Azienda USL Ospedale Santa Maria della Scaletta di Imola, via Montericco 4, Imola, Italy
| | - Renzo Mignani
- Unità Operativa di Nefrologia e Dialisi, Azienda AUSL Ospedale degli Infermi di Rimini, viale Luigi Settembrini 2, Rimini, Italy
| | - Giorgia Russo
- Unità Operativa di Nefrologia e Dialisi, Azienda Ospedaliero Universitaria Arcispedale Sant'Anna di Ferrara, via Aldo Moro 8, Ferrara, Italy
| | - Francesco di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Luigi Borsari 46, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Luigi Borsari 46, 44100, Ferrara, Italy.
| |
Collapse
|
11
|
Su TT. Drug screening in Drosophila; why, when, and when not? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e346. [PMID: 31056843 DOI: 10.1002/wdev.346] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
The best global seller among oncology drugs in 2018 is lenalidomide, an analog of thalidomide. It took 53 years and a circuitous route from the discovery of thalidomide to approval of an analog for use in treatment of cancer. We understand now a lot more about the genetic and molecular basis of diseases than we did in 1953 when thalidomide was discovered. We have also no shortage of chemical libraries with hundreds of thousands of compounds, both synthetic and natural. What we need are better ways to search among these rich resources for compounds with the potential to do what we want them to do. This review summarizes examples from the literature that make Drosophila melanogaster a good model to screen for drugs, and discusses knowledge gaps and technical challenges that make Drosophila models not as widely used as they could or should be. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado.,Molecular, Cellular and Developmental Biology, University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
12
|
Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P. Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet 2019; 10:51. [PMID: 30881374 PMCID: PMC6405444 DOI: 10.3389/fgene.2019.00051] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariateresa Allocca
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Biosciences, University of Milan, Milan, Italy.,Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
13
|
Hofherr A, Seger C, Fitzpatrick F, Busch T, Michel E, Luan J, Osterried L, Linden F, Kramer-Zucker A, Wakimoto B, Schütze C, Wiedemann N, Artati A, Adamski J, Walz G, Kunji ERS, Montell C, Watnick T, Köttgen M. The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biol 2018; 16:e2005651. [PMID: 30080851 PMCID: PMC6095617 DOI: 10.1371/journal.pbio.2005651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/16/2018] [Accepted: 07/27/2018] [Indexed: 02/02/2023] Open
Abstract
Cilia are organelles specialized in movement and signal transduction. The ciliary transient receptor potential ion channel polycystin-2 (TRPP2) controls elementary cilia-mediated physiological functions ranging from male fertility and kidney development to left-right patterning. However, the molecular components translating TRPP2 channel-mediated Ca2+ signals into respective physiological functions are unknown. Here, we show that the Ca2+-regulated mitochondrial ATP-Mg/Pi solute carrier 25 A 25 (SLC25A25) acts downstream of TRPP2 in an evolutionarily conserved metabolic signaling pathway. We identify SLC25A25 as an essential component in this cilia-dependent pathway using a genome-wide forward genetic screen in Drosophila melanogaster, followed by a targeted analysis of SLC25A25 function in zebrafish left-right patterning. Our data suggest that TRPP2 ion channels regulate mitochondrial SLC25A25 transporters via Ca2+ establishing an evolutionarily conserved molecular link between ciliary signaling and mitochondrial metabolism.
Collapse
Affiliation(s)
- Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Claudia Seger
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fiona Fitzpatrick
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Tilman Busch
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Elisabeth Michel
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jingting Luan
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lea Osterried
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Frieder Linden
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Albrecht Kramer-Zucker
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Barbara Wakimoto
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Conny Schütze
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Terry Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
14
|
Maharjan Y, Lee JN, Kwak S, Lim H, Dutta RK, Liu ZQ, So HS, Park R. Autophagy alteration prevents primary cilium disassembly in RPE1 cells. Biochem Biophys Res Commun 2018; 500:242-248. [DOI: 10.1016/j.bbrc.2018.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/07/2018] [Indexed: 01/14/2023]
|
15
|
Strange K. Drug Discovery in Fish, Flies, and Worms. ILAR J 2017; 57:133-143. [PMID: 28053067 DOI: 10.1093/ilar/ilw034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies.
Collapse
Affiliation(s)
- Kevin Strange
- Kevin Strange, Ph.D., is President and CEO of the MDI Biological Laboratory and CEO of Novo Biosciences, Inc
| |
Collapse
|
16
|
Busch T, Köttgen M, Hofherr A. TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease. Cell Calcium 2017; 66:25-32. [PMID: 28807147 DOI: 10.1016/j.ceca.2017.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Ion channels control the membrane potential and mediate transport of ions across membranes. Archetypical physiological functions of ion channels include processes such as regulation of neuronal excitability, muscle contraction, or transepithelial ion transport. In that regard, transient receptor potential ion channel polycystin 2 (TRPP2) is remarkable, because it controls complex morphogenetic processes such as the establishment of properly shaped epithelial tubules and left-right-asymmetry of organs. The fascinating question of how an ion channel regulates morphogenesis has since captivated the attention of scientists in different disciplines. Four loosely connected key insights on different levels of biological complexity ranging from protein to whole organism have framed our understanding of TRPP2 physiology: 1) TRPP2 is a non-selective cation channel; 2) TRPP2 is part of a receptor-ion channel complex; 3) TRPP2 localizes to primary cilia; and 4) TRPP2 is required for organ morphogenesis. In this review, we will discuss the current knowledge in these key areas and highlight some of the challenges ahead.
Collapse
Affiliation(s)
- Tilman Busch
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
17
|
Bartram MP, Mishra T, Reintjes N, Fabretti F, Gharbi H, Adam AC, Göbel H, Franke M, Schermer B, Haneder S, Benzing T, Beck BB, Müller RU. Characterization of a splice-site mutation in the tumor suppressor gene FLCN associated with renal cancer. BMC MEDICAL GENETICS 2017; 18:53. [PMID: 28499369 PMCID: PMC5429543 DOI: 10.1186/s12881-017-0416-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/04/2017] [Indexed: 01/24/2023]
Abstract
Background Renal cell carcinoma is among the most prevalent malignancies. It is generally sporadic. However, genetic studies of rare familial forms have led to the identification of mutations in causative genes such as VHL and FLCN. Mutations in the FLCN gene are the cause of Birt-Hogg-Dubé syndrome, a rare tumor syndrome which is characterized by the combination of renal cell carcinoma, pneumothorax and skin tumors. Methods Using Sanger sequencing we identify a heterozygous splice-site mutation in FLCN in lymphocyte DNA of a patient suffering from renal cell carcinoma. Furthermore, both tumor DNA and DNA from a metastasis are analyzed regarding this mutation. The pathogenic effect of the sequence alteration is confirmed by minigene assays and the biochemical consequences on the protein are examined using TALEN-mediated transgenesis in cultured cells. Results Here we describe an FLCN mutation in a 55-year-old patient who presented himself with progressive weight loss, bilateral kidney cysts and renal tumors. He and members of his family had a history of recurrent pneumothorax during the last few decades. Histology after tumor nephrectomy showed a mixed kidney cancer consisting of elements of a chromophobe renal cell carcinoma and dedifferentiated small cell carcinoma component. Subsequent FLCN sequencing identified an intronic c.1177-5_-3delCTC alteration that most likely affected the correct splicing of exon 11 of the FLCN gene. We demonstrate skipping of exon 11 to be the consequence of this mutation leading to a shift in the reading frame and the insertion of a premature stop codon. Interestingly, the truncated protein was still expressed both in cell culture and in tumor tissue, though it was strongly destabilized and its subcellular localization differed from wild-type FLCN. Both, altered protein stability and subcellular localization could be partly reversed by blocking proteasomal and lysosomal degradation. Conclusions Identification of disease-causing mutations in BHD syndrome requires the analysis of intronic sequences. However, biochemical validation of the consecutive alterations of the resulting protein is especially important in these cases. Functional characterization of the disease-causing mutations in BHD syndrome may guide further research for the development of novel diagnostic and therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0416-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malte P Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Tripti Mishra
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Nadine Reintjes
- Institute of Human Genetics, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Hakam Gharbi
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexander C Adam
- Department of Pathology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Heike Göbel
- Department of Pathology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Mareike Franke
- Department of Radiology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Dr. Hancken Clinic, Harsefelder Str. 8, 21680, Stade, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Stefan Haneder
- Department of Radiology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|
18
|
Hofherr A, Busch T, Huber N, Nold A, Bohn A, Viau A, Bienaimé F, Kuehn EW, Arnold SJ, Köttgen M. Efficient genome editing of differentiated renal epithelial cells. Pflugers Arch 2016; 469:303-311. [PMID: 27987038 PMCID: PMC5222933 DOI: 10.1007/s00424-016-1924-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.
Collapse
Affiliation(s)
- Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Tilman Busch
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Nora Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Nold
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Albert Bohn
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Amandine Viau
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Frank Bienaimé
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - E Wolfgang Kuehn
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|