1
|
Takenaka T, Kobori H, Kurosaki Y, Ishii N, Inoue T, Miyazaki T, Suzuki H, Hasan A, Nishiyama A, Hayashi M. Klotho supplementation decreases blood pressure and albuminuria in mice with lupus nephritis. Eur J Pharmacol 2024; 988:177229. [PMID: 39725133 DOI: 10.1016/j.ejphar.2024.177229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Klotho deficiency is prevalent in various chronic kidney diseases. Although klotho is known to bind transforming growth factor β (TGFβ) receptor 1 to antagonize renal fibrosis, TGFβ also maintains regulatory T cells with inducing forkhead box protein P3 (FOXP3). Female New Zealand Black/White F1 (NZBWF1) mice were divided into two groups (n = 10 for each): one group was treated with daily subcutaneous injection of klotho protein (30 μg/kg/day) for 8 weeks, and the other only received vehicle. Klotho supplementation suppressed blood pressure, 8-epi-prostaglandin F2α excretion, albuminuria, and renal angiotensin II levels (p < 0.05 for all) without affecting the glomerular filtration rate (GFR) in NZBWF1 mice. Klotho protein supplementation reduced the number of cluster of differentiation (CD)4+FOXP3+ T cells (p < 0.05) without altering the anti-DNA antibody levels. Klotho supplementation augmented glomerular cellularity, but decreased glomerular crescent formation and interstitial fibrosis in NZBWF1 mice (p < 0.05). Klotho protein supplementation inactivated renal renin-angiotensin system, ameliorating blood pressure and albuminuria in NZBWF1 mice. Klotho supplementation hampered regulatory T cells without altering autoantibodies, exerting dual effects on glomerular pathology in NZBWF1 mice without changes in GFR.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Tokyo, Japan.
| | - Hiroyuki Kobori
- International University of Health and Welfare, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Mutua F, Su RC, Mesa C, Lopez C, Ball TB, Kiazyk S. Type I interferons and Mycobacterium tuberculosis whole cell lysate induce distinct transcriptional responses in M. tuberculosis infection. Tuberculosis (Edinb) 2023; 143:102409. [PMID: 37729851 DOI: 10.1016/j.tube.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Type I interferon (IFN)-induced genes have the potential for distinguishing active tuberculosis (ATB) from latent TB infection (LTBI) and healthy controls (HC), monitoring treatment, and detection of individuals at risk of progression to active disease. We examined the differential effects of IFN-α, IFN-β and Mycobacterium tuberculosis whole cell lysate (Mtb WCL) stimulation on the expression of selected IFN-stimulated genes in peripheral blood mononuclear cells from individuals with either LTBI, ATB, and healthy controls. Stimulation with IFN-α and IFN-β induced a higher expression of the interrogated genes while Mtb WCL stimulation induced expression similar to that observed at baseline, with the exception of IL-1A and IL-1B genes that were downregulated. The expression of IFN-α-induced FCGR1A gene, IFN-β-induced FCGR1A, FCGR1B, and SOCS3 genes, and Mtb WCL-induced IFI44, IFI44L, IFIT1, and IFITM3 genes differed significantly between LTBI and ATB. These findings suggest stimulation-driven gene expression patterns could potentially discriminate LTBI and ATB. Mechanistic studies are necessary to define the processes through which distinct type I IFNs and downstream ISGs determine infection outcomes and identify potential host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Florence Mutua
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; Department of Medical Microbiology and Immunology, Kenyatta National Hospital Campus, University of Nairobi, Kenya
| | - Ruey-Chyi Su
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Christine Mesa
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Carmen Lopez
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Sandra Kiazyk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada.
| |
Collapse
|
3
|
Hernandez GN, Seffah K, Zaman MA, Awais N, Satnarine T, Haq A, Patel D, Gutlapalli SD, Ahmed A, Khan S. Unraveling the Secrets Behind the Multidrug-Resistant Tuberculosis Treatment Outcome in Chronic Renal Failure Patients Requiring Hemodialysis: A Systematic Review. Cureus 2023; 15:e36833. [PMID: 37123717 PMCID: PMC10147484 DOI: 10.7759/cureus.36833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR TB) is a global concern, with 450,000 new cases and 191,000 deaths in 2021. TB and chronic kidney disease (CKD) have been associated since 1974, with suggested explanations such as oxidative stress, malnutrition, dysfunction in vitamin D metabolism, and a compromised cell-mediated immune response. End-stage renal failure patients are more likely to acquire drug resistance due to poor adherence, adverse drug reactions, and inappropriate dose adjustment. We then aim to evaluate the therapeutic outcome of multidrug-resistant TB of the lungs in patients who require hemodialysis in terms of successful treatment (cured and treatment completed) and the associated factors for a favorable outcome. Our secondary goal is to identify unfavorable treatment outcomes (treatment failed, patient died, or patient lost to follow-up) and the underlying associated factors. We conformed to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Guidelines for this systematic review. We included adults (>19 years old) with chronic kidney disease who needed hemodialysis and had microbiologically confirmed multidrug-resistant pulmonary TB, excluding patients who had a renal allograft transplant, were on peritoneal dialysis, had extrapulmonary TB, were children and pregnant patients. We searched PubMed, MEDLINE, PubMed Central, ScienceDirect, Public Library of Science (PLOS), and Google Scholar. Keywords were combined with the Boolean "AND" operator to gather results as well as the medical subject heading (MeSH) search strategy. After screening study articles by reading their titles and abstracts, the following tools were used to assess the risk of bias: the Newcastle-Ottawa scale for observational studies, the Assessment of Multiple Systematic Reviews (AMSTAR) checklist for systematic reviews, and the Joanna Briggs Institute (JBI) assessment tool for case reports. Primary and secondary outcomes were assessed, and a conclusion was made. We gathered 21,570 studies from the databases between 2013 and 2023, with 30,062 total participants. There were eight eligible studies for review. Patients with CKD, particularly those on dialysis, are at increased risk of TB due to a combination of factors that contribute to immunosuppression. TB reactivation is common in chronic renal failure patients. Diagnostic samples such as sputum and pleural fluid had lower sensitivity rates compared to tissue samples, which led to delays in diagnosis and treatment and, most importantly, contributed to drug resistance. All new dialysis patients should undergo interferon-gamma release assay testing. TB-infected patients with severe renal disease (eGFR 30 ml/min) had increased morbidity and mortality; however, the use of directly observed treatment, short-course (DOTS), and renal-dose adjustment of anti-TB medications significantly reduced these risks. Drug-induced hepatitis and cutaneous reactions were common adverse effects of anti-TB medications. A therapeutic drug monitoring guideline is required to reduce these adverse events and even mortality. Additional research is required to assess the safety and efficacy of therapeutic regimens, as well as their outcomes, in this population with multidrug-resistant TB.
Collapse
Affiliation(s)
- Grethel N Hernandez
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kofi Seffah
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Piedmont Athens Regional, Athens, USA
| | - Mustafa Abrar Zaman
- Internal Medicine, St. George's University School of Medicine, Newcastle upon Tyne, GBR
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nimra Awais
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Travis Satnarine
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayesha Haq
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Deepkumar Patel
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Areeg Ahmed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
4
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
5
|
McLean MR, Wragg KM, Lopez E, Kiazyk SA, Ball TB, Bueti J, Kent SJ, Juno JA, Chung AW. Serological and cellular inflammatory signatures in end-stage kidney disease and latent tuberculosis. Clin Transl Immunology 2021; 10:e1355. [PMID: 34765193 PMCID: PMC8569694 DOI: 10.1002/cti2.1355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/08/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Tuberculosis comorbidity with chronic diseases including diabetes, HIV and chronic kidney disease is of rising concern. In particular, latent tuberculosis infection (LTBI) comorbidity with end‐stage kidney disease (ESKD) is associated with up to 52.5‐fold increased risk of TB reactivation to active tuberculosis infection (ATBI). The immunological mechanisms driving this significant rise in TB reactivation are poorly understood. To contribute to this understanding, we performed a comprehensive assessment of soluble and cellular immune features amongst a unique cohort of patients comorbid with ESKD and LTBI. Methods We assessed the plasma and cellular immune profiles from patients with and without ESKD and/or LTBI (N = 40). We characterised antibody glycosylation, serum complement and cytokine levels. We also assessed classical and non‐classical monocytes and T cells with flow cytometry. Using a systems‐based approach, we identified key immunological features that discriminate between the different disease states. Results Individuals with ESKD exhibited a highly inflammatory plasma profile and an activated cellular state compared with those without ESKD, including higher levels of inflammatory antibody Fc glycosylation structures and activated CX3CR1+ monocytes that correlate with increased inflammatory plasma cytokines. Similar elevated inflammatory signatures were also observed in ESKD+/LTBI+ compared with ESKD−/LTBI+, suggesting that ESKD induces an overwhelming inflammatory immune state. In contrast, no significant inflammatory differences were observed when comparing LTBI+ and LTBI− individuals. Conclusion Our study highlights the highly inflammatory state induced by ESKD. We hypothesise that this inflammatory state could contribute to the increased risk of TB reactivation in ESKD patients.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Ester Lopez
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Sandra A Kiazyk
- National HIV and Retrovirology Laboratory National Microbiology Laboratory JC Wilt Infectious Diseases Research Centre Public Health Agency of Canada Winnipeg MB Canada.,Department of Medical Microbiology and Infectious Diseases University of Manitoba Winnipeg MB Canada
| | - Terry Blake Ball
- National HIV and Retrovirology Laboratory National Microbiology Laboratory JC Wilt Infectious Diseases Research Centre Public Health Agency of Canada Winnipeg MB Canada
| | - Joe Bueti
- Department of Internal Medicine University of Manitoba Winnipeg MB Canada.,Section of Nephrology Department of Internal Medicine University of Manitoba MB Canada.,Health Sciences Centre Winnipeg MB Canada
| | - Stephen J Kent
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology University of Melbourne Melbourne VIC Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases Alfred Hospital and Central Clinical School Monash University Melbourne VIC Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Amy W Chung
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| |
Collapse
|
6
|
Wragg KM, Tan HX, Kristensen AB, Nguyen-Robertson CV, Kelleher AD, Parsons MS, Wheatley AK, Berzins SP, Pellicci DG, Kent SJ, Juno JA. High CD26 and Low CD94 Expression Identifies an IL-23 Responsive Vδ2 + T Cell Subset with a MAIT Cell-like Transcriptional Profile. Cell Rep 2021; 31:107773. [PMID: 32553157 DOI: 10.1016/j.celrep.2020.107773] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Vδ2+ T cells play a critical role in immunity to micro-organisms and cancer but exhibit substantial heterogeneity in humans. Here, we demonstrate that CD26 and CD94 define transcriptionally, phenotypically, and functionally distinct Vδ2+ T cell subsets. Despite distinct antigen specificities, CD26hiCD94lo Vδ2+ cells exhibit substantial similarities to CD26hi mucosal-associated invariant T (MAIT) cells, although CD26- Vδ2+ cells exhibit cytotoxic, effector-like profiles. At birth, the Vδ2+Vγ9+ population is dominated by CD26hiCD94lo cells; during adolescence and adulthood, Vδ2+ cells acquire CD94/NKG2A expression and the relative frequency of the CD26hiCD94lo subset declines. Critically, exposure of the CD26hiCD94lo subset to phosphoantigen in the context of interleukin-23 (IL-23) and CD26 engagement drives the acquisition of a cytotoxic program and concurrent loss of the MAIT cell-like phenotype. The ability to modulate the cytotoxic potential of CD26hiCD94lo Vδ2+ cells, combined with their adenosine-binding capacity, may make them ideal targets for immunotherapeutic expansion and adoptive transfer.
Collapse
Affiliation(s)
- Kathleen M Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Catriona V Nguyen-Robertson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia; St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, NSW 2011, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Federation University and Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, VIC 3053, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
Olusola BA, Kabelitz D, Olaleye DO, Odaibo GN. Early HIV infection is associated with reduced proportions of gamma delta T subsets as well as high creatinine and urea levels. Scand J Immunol 2020; 91:e12868. [PMID: 32052490 PMCID: PMC7335456 DOI: 10.1111/sji.12868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/19/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023]
Abstract
Renal dysfunctions are major predictors of co-morbidities and mortality in HIV-infected individuals. Unconventional T cells have been shown to regulate kidney functions. However, there is dearth of information on the effect of HIV-associated nephropathies on γδ and DN T cells. It is also not clear whether γδ T cell perturbations observed during the early stages of HIV infection occur before immune activation. In this study, we investigated the relationship between creatinine and urea on the number of unconventional T cells in HIV-infected individuals at the early and chronic stages of infection. Persons in the chronic stage of infection were divided into treatment naïve and exposed groups. Treatment exposed individuals were further subdivided into groups with undetectable and detectable HIV-1RNA in their blood. Creatinine and urea levels were significantly higher among persons in the early HIV infection compared with the other groups. Proportions of γδ T, γδ + CD8, γδ + CD16 cells were also significantly reduced in the early stage of HIV infection (P < .01). Markers of immune activation, CD4 + HLA-DR and CD8 + HLA-DR, were also significantly reduced during early HIV infection (P < .01). Taken together, our findings suggest that high levels of renal markers as well as reduced proportions of gamma delta T cells are associated with the early stages of HIV infection. This event likely occurs before systemic immune activation reaches peak levels. This study provides evidence for the need for early HIV infection diagnosis and treatment.
Collapse
Affiliation(s)
- Babatunde A. Olusola
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Dieter Kabelitz
- Institute of Immunology, UKSH Campus Kiel,
Christian-Albrechts-University, Kiel, Germany
| | - David O. Olaleye
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
8
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Juno JA, Eriksson EM. γδ T-cell responses during HIV infection and antiretroviral therapy. Clin Transl Immunology 2019; 8:e01069. [PMID: 31321033 PMCID: PMC6636517 DOI: 10.1002/cti2.1069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
HIV infection is associated with a rapid and sustained inversion of the Vδ1:Vδ2 T‐cell ratio in peripheral blood. Studies of antiretroviral therapy (ART)‐treated cohorts suggest that ART is insufficient to reconstitute either the frequency or function of the γδ T‐cell subset. Recent advances are now beginning to shed light on the relationship between microbial translocation, chronic inflammation, immune ageing and γδ T‐cell immunology. Here, we review the impact of acute, chronic untreated and treated HIV infection on circulating and mucosal γδ T‐cell subsets and highlight novel approaches to harness γδ T cells as components of anti‐HIV immunotherapy.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Emily M Eriksson
- Division of Population Health and Immunity Walter and Eliza Hall Institute of Medical Science Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
10
|
Zhuang Q, Peng B, Wei W, Gong H, Yu M, Yang M, Liu L, Ming Y. The detailed distribution of T cell subpopulations in immune-stable renal allograft recipients: a single center study. PeerJ 2019; 7:e6417. [PMID: 30775184 PMCID: PMC6369828 DOI: 10.7717/peerj.6417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 01/03/2023] Open
Abstract
Background Most renal allograft recipients reach a stable immune state (neither rejection nor infection) after transplantation. However, the detailed distribution of overall T lymphocyte subsets in the peripheral blood of these immune-stable renal transplant recipients remains unclear. We aim to identify differences between this stable immune state and a healthy immune state. Methods In total, 103 recipients underwent renal transplantation from 2012 to 2016 and received regular follow-up in our clinic. A total of 88 of these 103 recipients were enrolled in our study according to the inclusion and exclusion criteria. A total of 47 patients were 1 year post-transplantation, and 41 were 5 years post-transplantation. In addition, 41 healthy volunteers were recruited from our physical examination clinic. Detailed T cell subpopulations from the peripheral blood were assessed via flow cytometry. The parental frequency of each subset was calculated and compared among the diverse groups. Results The demographics and baseline characteristics of every group were analyzed. The frequency of total T cells (CD3+) was decreased in the renal allograft recipients. No difference in the variation of the CD4+, CD8+, and activated (HLA-DR+) T cell subsets was noted among the diverse groups. Regarding T cell receptor (TCR) markers, significant reductions were found in the proportion of γδ T cells and their Vδ2 subset in the renal allograft recipients. The proportions of both CD4+ and CD8+ programmed cell death protein (PD) 1+ T cell subsets were increased in the renal allograft recipients. The CD27+CD28+ T cell proportions in both the CD4+ and CD8+ populations were significantly decreased in the allograft recipients, but the opposite results were found for both CD4+ and CD8+ CD27-CD28- T cells. An increased percentage of CD4+ effector memory T cells and a declined fraction of CD8+ central memory T cells were found in the renal allograft recipients. Conclusion Limited differences in general T cell subsets (CD4+, CD8+, and HLA-DR+) were noted. However, obvious differences between renal allograft recipients and healthy volunteers were identified with TCR, PD1, costimulatory molecules, and memory T cell markers.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bo Peng
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wei
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hang Gong
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meng Yu
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lian Liu
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Juno JA, Waruk JLM, Wragg KM, Mesa C, Lopez C, Bueti J, Kent SJ, Ball TB, Kiazyk SA. Mucosal-Associated Invariant T Cells Are Depleted and Exhibit Altered Chemokine Receptor Expression and Elevated Granulocyte Macrophage-Colony Stimulating Factor Production During End-Stage Renal Disease. Front Immunol 2018; 9:1076. [PMID: 29868028 PMCID: PMC5967229 DOI: 10.3389/fimmu.2018.01076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Background End-stage renal disease (ESRD) is associated with an increased susceptibility to infectious diseases, including infection with Mycobacterium tuberculosis (Mtb). Mucosal-associated invariant T (MAIT) cells recognize vitamin B metabolites produced by many bacterial species, including Mtb, and may play an important role in providing protective immunity against tuberculosis infection in the lung. To date, little is known about MAIT cell frequency, phenotype, or function in ESRD patients. Methods MAIT cells, identified by surface marker expression or MR1 tetramer binding, were characterized in 20 ESRD and 20 healthy control participants by multicolor flow cytometry. Ex vivo MAIT cell phenotype and cytokine production following PMA/ionomycin, IL-12/IL-18, or Escherichia coli stimulation were determined. Monocyte phenotype and plasma C-reactive protein/inflammatory cytokine levels were quantified by flow cytometry, ELISA, and multiplex bead array. Results Peripheral blood MAIT cells were significantly depleted among ESRD patients compared to controls by both phenotypic and tetramer analysis and exhibited a loss of CXCR3 expression coupled to increased expression of CCR6 and CXCR6. ESRD was also associated with a shift in MAIT PMA-induced cytokine production away from IFNγ production and toward granulocyte macrophage-colony stimulating factor (GM-CSF) secretion, and a loss of E. coli-stimulated tumor necrosis factor α expression. Loss of IFNγ expression was associated with a combination of age, alterations in Tbet and Eomes expression, and inflammatory plasma cytokine levels. Conclusion The loss of peripheral blood MAIT cells and associated shifts in tissue homing receptor expression and GM-CSF production may contribute to an immune environment that is permissive to bacterial replication, particularly in the lungs.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jillian L M Waruk
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Christine Mesa
- National Laboratory for HIV Immunology, HIV/TB Co-Infection Unit, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Carmen Lopez
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Joe Bueti
- Renal Program, Health Sciences Centre, Winnipeg, MB, Canada
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - T Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National Laboratory for HIV Immunology, HIV/TB Co-Infection Unit, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sandra A Kiazyk
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National Laboratory for HIV Immunology, HIV/TB Co-Infection Unit, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|