1
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
2
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
3
|
Hayashi K. Targeting DNA Methylation in Podocytes to Overcome Chronic Kidney Disease. Keio J Med 2023; 72:67-76. [PMID: 37271519 DOI: 10.2302/kjm.2022-0017-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The number of patients with chronic kidney disease (CKD) is on the rise worldwide, and there is urgent need for the development of effective plans against the increasing incidence of CKD. Podocytes, glomerular epithelial cells, are an integral part of the primary filtration unit of the kidney and form a slit membrane as a barrier to prevent proteinuria. The role of podocytes in the pathogenesis and progression of CKD is now recognized. Podocyte function depends on a specialized morphology with the arranged foot processes, which is directly related to their function. Epigenetic changes responsible for the regulation of gene expression related to podocyte morphology have been shown to be important in the pathogenesis of CKD. Although epigenetic mechanisms include DNA methylation, histone modifications, and RNA-based regulation, we have focused on DNA methylation changes because they are more stable than other epigenetic modifications. This review summarizes recent literature about the role of altered DNA methylation in the kidney, especially in glomerular podocytes, focusing on transcription factors and DNA damage responses that are closely associated with the formation of DNA methylation changes.
Collapse
Affiliation(s)
- Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Zhang J, Zhang Y, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Gu M, Tan R. Disruption of RCAN1.4 expression mediated by YY1/HDAC2 modulates chronic renal allograft interstitial fibrosis. Cell Death Discov 2023; 9:271. [PMID: 37507403 PMCID: PMC10382480 DOI: 10.1038/s41420-023-01574-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic allograft dysfunction (CAD) is a major factor that hinders kidney transplant survival in the long run. Epithelial-mesenchymal transition (EMT) has been confirmed to significantly contribute to interstitial fibrosis/tubular atrophy (IF/TA), which is the main histopathological feature of CAD. Aberrant expression of the regulator of calcineurin 1 (RCAN1), recognized as an endogenous inhibitor of the calcineurin phosphatase, has been shown to be extensively involved in various kidney diseases. However, it remains unclear how RCAN1.4 regulates IF/TA formation in CAD patients. Herein, an in vivo mouse renal transplantation model and an in vitro model of human renal tubular epithelial cells (HK-2) treated with tumor necrosis factor-α (TNF-α) were employed. Our results proved that RCAN1.4 expression was decreased in vivo and in vitro, in addition to the up-regulation of Yin Yang 1 (YY1), a transcription factor that has been reported to convey multiple functions in chronic kidney disease (CKD). Knocking in of RCAN1.4 efficiently attenuated chronic renal allograft interstitial fibrosis in vivo and inhibited TNF-α-induced EMT in vitro through regulating anti-oxidative stress and the calcineurin/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. In addition, suppression of YY1 mediated by shRNA or siRNA alleviated TNF-α-induced EMT through abolishing reactive species partly in an RCAN1.4-dependent manner. Notably, we confirmed that YY1 negatively regulated RCAN1.4 transcription by directly interacting with the RCAN1.4 promoter. In addition, histone deacetylase 2 (HDAC2) interacted with YY1 to form a multi-molecular complex, which was involved in TNF-α-induced RCAN1.4 transcriptional repression. Therefore, RCAN1.4 is suggested to be modulated by the YY1/HDAC2 transcription repressor complex in an epigenetic manner, which is a mediated nephroprotective effect partly through modulating O2⋅- generation and the calcineurin/NFATc1 signaling pathway. Thus, the YY1-RCAN1.4 axis constitutes an innovative target for IF/TA treatment in CAD patients.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Yao Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Hai Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zeping Gui
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ming Zheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zhou Hang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China.
| |
Collapse
|
5
|
Wang X, Zhao J, Li Y, Rao J, Xu G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front Immunol 2022; 13:1090989. [PMID: 36618403 PMCID: PMC9813850 DOI: 10.3389/fimmu.2022.1090989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Proteinuria or nephrotic syndrome are symptoms of podocytopathies, kidney diseases caused by direct or indirect podocyte damage. Human health worldwide is threatened by diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD) in the world. DN development and progression are largely dependent on inflammation. The effects of podocyte damage on metabolic disease and inflammatory disorders have been documented. Epigenetic and endoplasmic reticulum (ER) stress are also evident in DN. Targeting inflammation pathway and ER stress in podocytes may be a prospective therapy to prevent the progression of DN. Here, we review the mechanism of epigenetics and ER stress on podocyte inflammation and apoptosis, and discuss the potential amelioration of podocytopathies by regulating epigenetics and ER stress as well as by targeting inflammatory signaling, which provides a theoretical basis for drug development to ameliorate DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China,*Correspondence: Xiaokang Wang,
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
6
|
Xu N, Liu J, Li X. Lupus nephritis: The regulatory interplay between epigenetic and MicroRNAs. Front Physiol 2022; 13:925416. [PMID: 36187762 PMCID: PMC9523357 DOI: 10.3389/fphys.2022.925416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, non-coding RNA molecules that act as epigenetic modifiers to regulate the protein levels of target messenger RNAs without altering their genetic sequences. The highly complex role of miRNAs in the epigenetics of lupus nephritis (LN) is increasingly being recognized. DNA methylation and histone modifications are focal points of epigenetic research. miRNAs play a critical role in renal development and physiology, and dysregulation may result in abnormal renal cell proliferation, inflammation, and fibrosis of the kidneys in LN. However, epigenetic and miRNA-mediated regulation are not mutually exclusive. Further research has established a link between miRNA expression and epigenetic regulation in various disorders, including LN. This review summarizes the most recent evidence regarding the interaction between miRNAs and epigenetics in LN and highlights potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Ning Xu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Xiangling Li,
| |
Collapse
|
7
|
Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway. Cell Death Dis 2022; 13:774. [PMID: 36071051 PMCID: PMC9452577 DOI: 10.1038/s41419-022-05220-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion (I/R) induced acute kidney injury (AKI), characterized by excessive mitochondrial damage and cell apoptosis, remains a clinical challenge. Recent studies suggest that regulator of calcineurin 1 (RCAN1) regulates mitochondrial function in different cell types, but the underlying mechanisms require further investigation. Herein, we aim to explore whether RCAN1 involves in mitochondrial dysfunction in AKI and the exact mechanism. In present study, AKI was induced by I/R and cisplatin in RCAN1flox/flox mice and mice with renal tubular epithelial cells (TECs)-specific deletion of RCAN1. The role of RCAN1 in hypoxia-reoxygenation (HR) and cisplatin-induced injury in human renal proximal tubule epithelial cell line HK-2 was also examined by overexpression and knockdown of RCAN1. Mitochondrial function was assessed by transmission electron microscopy, JC-1 staining, MitoSOX staining, ATP production, mitochondrial fission and mitophagy. Apoptosis was detected by TUNEL assay, Annexin V-FITC staining and Western blotting analysis of apoptosis-related proteins. It was found that protein expression of RCAN1 was markedly upregulated in I/R- or cisplatin-induced AKI mouse models, as well as in HR models in HK-2 cells. RCAN1 deficiency significantly reduced kidney damage, mitochondrial dysfunction, and cell apoptosis, whereas RCAN1 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration demonstrated that RCAN1 increases the phosphorylation of mitochondrial fission factor (Mff) by binding to downstream c-Jun N-terminal kinase (JNK), then promotes dynamin related protein 1 (Drp1) migration to mitochondria, ultimately leads to excessive mitochondrial fission of renal TECs. In conclusion, our study suggests that RCAN1 could induce mitochondrial dysfunction and apoptosis by activating the downstream JNK/Mff signaling pathway. RCAN1 may be a potential therapeutic target for conferring protection against I/R- or cisplatin-AKI.
Collapse
|
8
|
Zhao X, Xu M, Tang Y, Xie D, Wang Y, Chen M. Changes in miroRNA-103 expression in wound margin tissue are related to wound healing of diabetes foot ulcers. Int Wound J 2022; 20:467-483. [PMID: 35837786 PMCID: PMC9885465 DOI: 10.1111/iwj.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
To investigate the relationship between small noncoding microRNA-103 (miR-103) and wound healing of diabetic foot ulcers (DFU) and the underlying molecular mechanism, forty type 2 diabetes mellitus with DFU (DFU group), and 20 patients with a chronic skin ulcer of lower limbs and normal glucose tolerance (SUC group) were included. Quantitative real-time PCR method was used to determine miR-103 expression levels in the wound margin tissue of subjects, and to analyse the relationship between the expression of miR-103 and DFU wound healing. In vitro experiments were also performed to understand the effect of miR-103 on the high glucose-induced injury of normal human dermal fibroblasts (NHDFs) cells. The results showed that the miR-103 expression level in the DFU group was significantly higher than that in the SUC group [5.81 (2.25-9.36) vs 2.08 (1.15-5.72)] (P < 0.05). The expression level of miR-103 in the wound margin tissue of DFU was negatively correlated with the healing rate of foot ulcers after four weeks (P = 0.037). In vitro experiments revealed that miR-103 could inhibit the proliferation and migration of NHDF cells and promote the apoptosis of NHDF cells by targeted regulation of regulator of calcineurin 1 (RCAN1) gene expression in a high glucose environment. Down-regulation of miR-103 could alleviate high glucose-induced NHDF cell injury by promoting RCAN1 expression. Therefore, the increased expression of miR-103 is involved in the functional damage of NHDF cells induced by high-glucose conditions, which is related to poor wound healing of DFU. These research findings will provide potential targets for the diagnosis and treatment of chronic skin wounds in diabetes.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Murong Xu
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Ying Tang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Dandan Xie
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Youmin Wang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Mingwei Chen
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| |
Collapse
|
9
|
Altered DNA methylation in kidney disease: useful markers and therapeutic targets. Clin Exp Nephrol 2022; 26:309-315. [PMID: 35024974 PMCID: PMC8930790 DOI: 10.1007/s10157-022-02181-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 01/19/2023]
Abstract
Recent studies have demonstrated the association of altered epigenomes with lifestyle-related diseases. Epigenetic regulation promotes biological plasticity in response to environmental changes, and such plasticity may cause a ‘memory effect’, a sustained effect of transient treatment or an insult in the course of lifestyle-related diseases. We investigated the significance of epigenetic changes in several genes required for renal integrity, including the nephrin gene in podocytes, and the sustained anti-proteinuric effect, focusing on the transcription factor Krüppel-like factor 4 (KLF4). We further reported the role of the DNA repair factor lysine-acetyl transferase 5 (KAT5), which acts coordinately with KLF4, in podocyte injury caused by a hyperglycemic state through the acceleration of DNA damage and epigenetic alteration. In contrast, KAT5 in proximal tubular cells prevents acute kidney injury via glomerular filtration regulation by an epigenetic mechanism as well as promotion of DNA repair, indicating the cell type-specific action and roles of DNA repair factors. This review summarizes epigenetic alterations in kidney diseases, especially DNA methylation, and their utility as markers and potential therapeutic targets. Focusing on transcription factors or DNA damage repair factors associated with epigenetic changes may be meaningful due to their cell-specific expression or action. We believe that a better understanding of epigenetic alterations in the kidney will lead to the development of a novel strategy for chronic kidney disease (CKD) treatment.
Collapse
|
10
|
YANG X, ZHANG Y, YANG N, YU X, GAO X, ZHAO M. Parthenolide regulates DNMT1-mediated methylation of VDR promoter to relieve podocyte damage in mice with diabetic nephropathy. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Ni YANG
- University of Chinese Medicine, China
| | - Xiao YU
- University of Chinese Medicine, China
| | - Xin GAO
- University of Chinese Medicine, China
| | - Meiyun ZHAO
- Xi’an Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
11
|
Zhang J, Chen H, Weng X, Liu H, Chen Z, Huang Q, Wang L, Liu X. RCAN1.4 attenuates renal fibrosis through inhibiting calcineurin-mediated nuclear translocation of NFAT2. Cell Death Discov 2021; 7:317. [PMID: 34707090 PMCID: PMC8551295 DOI: 10.1038/s41420-021-00713-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is thus deemed to a global health problem. Renal fibrosis, characterized by accumulation of extracellular matrix (ECM) components in the kidney, is considered a common pathway leading to CKD. Regulator of calcineurin1 (RCAN1), identified as a competitive endogenous inhibitor of the phosphatase calcineurin, participates in ECM deposition in various organs. However, the role of RCAN1 in renal fibrosis remains unclear. Here, unilateral ureteral obstruction (UUO), a well-known model to induce renal fibrosis in vivo, was performed on mice for a week. To overexpress RCAN1.4 in vivo, recombinant adeno-associated virus 9-packed RCAN1.4 over-expression plasm was employed in mice kidney. Lentivirus-packed RCAN1.4 over-expression plasm was employed to transfer into HK-2 and NRK-49F cells in vitro. The results indicated that RCAN1.4 expression was impaired both in UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibrosis in vitro. However, knocking in of RCAN1.4 suppressed the production of extracellular matrix (ECM) both in vivo and in vitro. Furthermore, in vitro, the apoptosis-related proteins, including the ratio of Bax/Bcl-2 and cleaved-caspase3, were elevated in cells transfected with RCAN1.4 overexpression plasmid. In addition, we found that RCAN1.4 could rugulated NFAT2 nuclear distribution by inhibiting calcineurin pathway. So overexpression of RCAN1.4 could reverse renal fibrosis, attenuate ECM related protein accumulation, promote apoptosis of myofibroblast via inhibiting Calcineurin/NFAT2 signaling pathway. Taken together, our study demonstrated that targeting RCAN1.4 may be therapeutic efficacy in renal fibrosis.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qin Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
12
|
Sugita E, Hayashi K, Hishikawa A, Itoh H. Epigenetic Alterations in Podocytes in Diabetic Nephropathy. Front Pharmacol 2021; 12:759299. [PMID: 34630127 PMCID: PMC8497789 DOI: 10.3389/fphar.2021.759299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, epigenetic alterations have been shown to be involved in the pathogenesis of diabetes and its complications. Kidney podocytes, which are glomerular epithelial cells, are important cells that form a slit membrane—a barrier for proteinuria. Podocytes are terminally differentiated cells without cell division or replenishment abilities. Therefore, podocyte damage is suggested to be one of the key factors determining renal prognosis. Recent studies, including ours, suggest that epigenetic changes in podocytes are associated with chronic kidney disease, including diabetic nephropathy. Furthermore, the association between DNA damage repair and epigenetic changes in diabetic podocytes has been demonstrated. Detection of podocyte DNA damage and epigenetic changes using human samples, such as kidney biopsy and urine-derived cells, may be a promising strategy for estimating kidney damage and renal prognoses in patients with diabetes. Targeting epigenetic podocyte changes and associated DNA damage may become a novel therapeutic strategy for preventing progression to end-stage renal disease (ESRD) and provide a possible prognostic marker in diabetic nephropathy. This review summarizes recent advances regarding epigenetic changes, especially DNA methylation, in podocytes in diabetic nephropathy and addresses detection of these alterations in human samples. Additionally, we focused on DNA damage, which is increased under high-glucose conditions and associated with the generation of epigenetic changes in podocytes. Furthermore, epigenetic memory in diabetes is discussed. Understanding the role of epigenetic changes in podocytes in diabetic nephropathy may be of great importance considering the increasing diabetic nephropathy patient population in an aging society.
Collapse
Affiliation(s)
- Erina Sugita
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kaori Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
13
|
Abstract
The term "epigenetics" refers to a series of meiotically/mitotically inheritable alterations in gene expression, related to environmental factors, without disruption on DNA sequences of bases. Recently, the pathophysiology of autoimmune diseases (ADs) has been closely linked to epigenetic modifications. Actually, epigenetic mechanisms can modulate gene expression or repression of targeted cells and tissues involved in autoimmune/inflammatory conditions acting as keys effectors in regulation of adaptive and innate responses. ADs, as systemic lupus erythematosus (SLE), a rare disease that still lacks effective treatment, is characterized by epigenetic marks in affected cells.Taking into account that epigenetic mechanisms have been proposed as a winning strategy in the search of new more specific and personalized therapeutics agents. Thus, pharmacology and pharmacoepigenetic studies about epigenetic regulations of ADs may provide novel individualized therapies. Focussing in possible implicated factors on development and predisposition of SLE, diet is feasibly one of the most important factors since it is linked directly to epigenetic alterations and these epigenetic changes may augment or diminish the risk of SLE. Nevertheless, several studies have guaranteed that dietary therapy could be a promise to SLE patients via prophylactic actions deprived of side effects of pharmacology, decreasing co-morbidities and improving lifestyle of SLE sufferers.Herein, we review and discuss the cross-link between epigenetic mechanisms on SLE predisposition and development, as well as the influence of dietary factors on regulation epigenetic modifications that would eventually make a positive impact on SLE patients.
Collapse
|
14
|
Fan Y, Cheng J, Yang Q, Feng J, Hu J, Ren Z, Yang H, Yang D, Ding G. Sirt6-mediated Nrf2/HO-1 activation alleviates angiotensin II-induced DNA DSBs and apoptosis in podocytes. Food Funct 2021; 12:7867-7882. [PMID: 34240732 DOI: 10.1039/d0fo03467c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies suggested that DNA double-strand breaks (DSBs) were associated with the pathogenesis of chronic kidney disease (CKD). The purpose of this investigation was to determine the role of Sirtuin6 (Sirt6), a histone deacetylase related to DNA damage repair, in angiotensin (Ang) II-induced DNA DSBs and the cell injury of podocytes and explore the possible mechanism. Here we showed that an increase of DNA DSBs was accompanied by a reduction in Sirt6 expression in the glomeruli of patients with hypertensive nephropathy (HN). Similar results were found in rat kidneys infused with Ang II and in cultured podocytes stimulated with Ang II. Sirt6 overexpression inhibited Ang II-induced ROS generation and DNA DSBs, and thus served as a protection against Ang II-induced apoptosis in podocytes. Moreover, Sirt6 activation enhanced Nrf2 and HO-1 gene expressions in podocytes after Ang II treatment. Furthermore, Nrf2 knockdown could partly reverse the cytoprotective effects of Sirt6 activation. In conclusion, our observations demonstrated that the Sirt6-Nrf2-HO-1 pathway played a vital role in relieving Ang II-mediated oxidative DNA damage and podocyte injury.
Collapse
Affiliation(s)
- Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lane BM, Murray S, Benson K, Bierzynska A, Chryst-Stangl M, Wang L, Wu G, Cavalleri G, Doyle B, Fennelly N, Dorman A, Conlon S, Vega-Warner V, Fermin D, Vijayan P, Qureshi MA, Shril S, Barua M, Hildebrandt F, Pollak M, Howell D, Sampson MG, Saleem M, Conlon PJ, Spurney R, Gbadegesin R. A Rare Autosomal Dominant Variant in Regulator of Calcineurin Type 1 ( RCAN1) Gene Confers Enhanced Calcineurin Activity and May Cause FSGS. J Am Soc Nephrol 2021; 32:1682-1695. [PMID: 33863784 PMCID: PMC8425665 DOI: 10.1681/asn.2020081234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3β, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3β, in the treatment of FSGS.
Collapse
Affiliation(s)
- Brandon M. Lane
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Murray
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Katherine Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Agnieszka Bierzynska
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Megan Chryst-Stangl
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Guanghong Wu
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Brendan Doyle
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Neil Fennelly
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Shane Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | | | - Damian Fermin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Poornima Vijayan
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Mohammad Azfar Qureshi
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Moumita Barua
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Martin Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Hospital and Harvard University Medical School, Boston, Massachusetts
| | - David Howell
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Moin Saleem
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Peter J. Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
- Division of Nephrology, Department of Medicine, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Robert Spurney
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
16
|
Pereira BMV, Katakia YT, Majumder S, Thieme K. Unraveling the epigenetic landscape of glomerular cells in kidney disease. J Mol Med (Berl) 2021; 99:785-803. [PMID: 33763722 DOI: 10.1007/s00109-021-02066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern and its prevalence and incidence are rising quickly. It is a non-communicable disease primarily caused by diabetes and/or hypertension and is associated with high morbidity and mortality. Despite decades of research efforts, the pathogenesis of CKD remains a puzzle with missing pieces. Understanding the cellular and molecular mechanisms that govern the loss of kidney function is crucial. Abrupt regulation of gene expression in kidney cells is apparent in CKD and shown to be responsible for disease onset and progression. Gene expression regulation extends beyond DNA sequence and involves epigenetic mechanisms including changes in DNA methylation and post-translational modifications of histones, driven by the activity of specific enzymes. Recent advances demonstrate the essential participation of epigenetics in kidney (patho)physiology, as its actions regulate both the integrity of cells but also triggers deleterious signaling pathways. Here, we review the known epigenetic processes regulating the complex filtration unit of the kidney, the glomeruli. The review will elaborate on novel insights into how epigenetics contributes to cell injury in the CKD setting majorly focusing on kidney glomerular cells: the glomerular endothelial cells, the mesangial cells, and the specialized and terminally differentiated podocyte cells.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Karina Thieme
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
17
|
RCAN1.4 mediates high glucose-induced matrix production by stimulating mitochondrial fission in mesangial cells. Biosci Rep 2021; 40:221739. [PMID: 31894838 PMCID: PMC6970086 DOI: 10.1042/bsr20192759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
High glucose (HG)-induced mitochondrial dynamic changes and oxidative damage are closely related to the development and progression of diabetic kidney disease (DKD). Recent studies suggest that regulators of calcineurin 1 (RCAN1) is involved in the regulation of mitochondrial function in different cell types, so we investigate the role of RCAN1 in mitochondrial dynamics under HG ambience in rat glomerular mesangial cells (MCs). MCs subjected to HG exhibited an isoform-specific up-regulation of RCAN1.4 at both mRNA and protein levels. RCAN1.4 overexpression induced translocation of Dynamin related protein 1 (Drp1) to mitochondria, mitochondrial fragmentation and depolarization, accompanied by increased matrix production under normal glucose and HG ambience. In contrast, decreasing the expression of RCAN1.4 by siRNA inhibited HG-induced mitochondrial fragmentation and matrix protein up-regulation. Moreover, both mitochondrial fission inhibitor Mdivi-1 and Drp1 shRNA prevented RCAN1.4-induced fibronectin up-regulation, suggesting that RCAN1.4-induced matrix production is dependent on its modulation of mitochondrial fission. Although HG-induced RCAN1.4 up-regulation was achieved by activating calcineurin, RCAN1.4-mediated mitochondrial fragmentation and matrix production is independent of calcineurin activity. These results provide the first evidence for the HG-induced RCAN1.4 up-regulation involving increased mitochondrial fragmentation, leading to matrix protein up-regulation.
Collapse
|
18
|
Sang XY, Xiao JJ, Liu Q, Zhu R, Dai JJ, Zhang C, Yu H, Yang SJ, Zhang BF. Regulators of calcineurin 1 deficiency attenuates tubulointerstitial fibrosis through improving mitochondrial fitness. FASEB J 2020; 34. [PMID: 32896034 DOI: 10.1096/fj.202000781rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the common pathological process of various chronic kidney diseases (CKD). Recent studies indicate that mitochondrial fragmentation is closely associated with renal fibrosis in CKD. However, the molecular mechanisms leading to mitochondrial fragmentation remain to be elucidated. The present study investigated the role of regulators of calcineurin 1 (RCAN1) in mitochondrial fission and renal interstitial fibrosis using conditional knockout mice in which RCAN1 was genetically deleted in tubular epithelial cells (TECs). TEC-specific deletion of RCAN1 attenuated tubulointerstitial fibrosis and epithelial to mesenchymal transition (EMT)-like phenotype change after unilateral ureteral obstruction (UUO) and ischemia reperfusion injury (IRI) through suppressing TGF-β1/Smad3 signaling pathway. TEC-specific deletion of RCAN1 also reduced the tubular apoptosis after UUO by inhibiting cytochrome c/caspase-9 pathway. Ultrastructure analysis revealed a marked decrease in mitochondrial fragmentation in TECs of RCAN1-deficient mice in experimental CKD models. The expression of mitochondrial profission proteins dynamin-related protein 1 (Drp1) and mitochondrial fission factor (Mff) was also downregulated in obstructed kidney of TEC-specific RCAN1-deficient mice. Furthermore, TEC-specific deletion of RCAN1 attenuated the dysfunctional tubular autophagy by regulating PINK1/Parkin-induced mitophagy in CKD. RCAN1 knockdown and knockout similarly improved the mitochondrial quality control in HK-2 cells and primary cultured mouse tubular cells stimulated by TGF-β1. Put together, our data indicated that RCAN1 plays an important role in the progression of tubulointerstitial fibrosis through regulating the mitochondrial quality. Therefore, targeting RCAN1 may provide a potential therapeutic approach in CKD.
Collapse
Affiliation(s)
- Xue-Yu Sang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Jing-Jie Xiao
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Qing Liu
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Rui Zhu
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Jia-Jia Dai
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Cheng Zhang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Hong Yu
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| | - Si-Jun Yang
- ABSL-3 Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, P.R. China
| | - Bai-Fang Zhang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
| |
Collapse
|
19
|
Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol Cells 2020; 43:671-685. [PMID: 32576715 PMCID: PMC7468584 DOI: 10.14348/molcells.2020.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
20
|
Epigenetic Modifiers as Potential Therapeutic Targets in Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21114113. [PMID: 32526941 PMCID: PMC7312774 DOI: 10.3390/ijms21114113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease is one of the fastest growing causes of death worldwide. Epigenetic regulators control gene expression and are potential therapeutic targets. There is functional interventional evidence for a role of DNA methylation and the histone post-translational modifications-histone methylation, acetylation and crotonylation-in the pathogenesis of kidney disease, including diabetic kidney disease. Readers of epigenetic marks, such as bromodomain and extra terminal (BET) proteins, are also therapeutic targets. Thus, the BD2 selective BET inhibitor apabetalone was the first epigenetic regulator to undergo phase-3 clinical trials in diabetic kidney disease with an endpoint of kidney function. The direct therapeutic modulation of epigenetic features is possible through pharmacological modulators of the specific enzymes involved and through the therapeutic use of the required substrates. Of further interest is the characterization of potential indirect effects of nephroprotective drugs on epigenetic regulation. Thus, SGLT2 inhibitors increase the circulating and tissue levels of β-hydroxybutyrate, a molecule that generates a specific histone modification, β-hydroxybutyrylation, which has been associated with the beneficial health effects of fasting. To what extent this impact on epigenetic regulation may underlie or contribute to the so-far unclear molecular mechanisms of cardio- and nephroprotection offered by SGLT2 inhibitors merits further in-depth studies.
Collapse
|
21
|
Gao X, Rosales A, Karttunen H, Bommana GM, Tandoh B, Yi Z, Habib Z, D'Agati V, Zhang W, Ross MJ. The HIV protease inhibitor darunavir prevents kidney injury via HIV-independent mechanisms. Sci Rep 2019; 9:15857. [PMID: 31676833 PMCID: PMC6825220 DOI: 10.1038/s41598-019-52278-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
HIV-associated nephropathy (HIVAN) is a rapidly progressive kidney disease that is caused by HIV infection of renal epithelial cells with subsequent expression of viral genes, including vpr. Antiretroviral therapy ameliorates HIVAN without eradicating HIV from the kidneys and the mechanism by which it protects kidneys is poorly understood. Since HIV protease inhibitors have "off target" cellular effects, we studied whether darunavir, the most commonly prescribed protease inhibitor, protects kidneys from HIV-induced injury via mechanisms independent of HIV protease and viral replication. Renal epithelial cells were transduced with lentiviruses encoding HIV (lacking protease and reverse transcriptase), Vpr, or vector control. Darunavir attenuated HIV and Vpr-induced activation of Stat3, Src, Erk, and cytokines, which are critical for HIVAN pathogenesis. We then studied HIV-transgenic mice, which develop HIVAN in the absence of HIV protease or reverse transcriptase. Mice were treated with darunavir, zidovudine, darunavir + zidovudine, or control. Darunavir and darunavir + zidovudine reduced albuminuria and histologic kidney injury and normalized expression of dysregulated proteins. RNA-seq analyses demonstrated that darunavir suppressed HIV-induced upregulation of immune response genes in human kidney cells. These data demonstrate that darunavir protects against HIV-induced renal injury via mechanisms that are independent of inhibition of HIV protease.
Collapse
Affiliation(s)
- Xiaobo Gao
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Alan Rosales
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Heidi Karttunen
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | | | - Buadi Tandoh
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Vivette D'Agati
- Department of Pathology, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael J Ross
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|