1
|
Bernhardt A, Krause A, Reichardt C, Steffen H, Isermann B, Völker U, Hammer E, Geffers R, Philipsen L, Dhjamandi K, Ahmad S, Brandt S, Lindquist JA, Mertens PR. Excessive sodium chloride ingestion promotes inflammation and kidney fibrosis in aging mice. Am J Physiol Cell Physiol 2023; 325:C456-C470. [PMID: 37399499 DOI: 10.1152/ajpcell.00230.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In aging kidneys, a decline of function resulting from extracellular matrix (ECM) deposition and organ fibrosis is regarded as "physiological." Whether a direct link between high salt intake and fibrosis in aging kidney exists autonomously from arterial hypertension is unclear. This study explores kidney intrinsic changes (inflammation, ECM derangement) induced by a high-salt diet (HSD) in a murine model lacking arterial hypertension. The contribution of cold shock Y-box binding protein (YB-1) as a key orchestrator of organ fibrosis to the observed differences is determined by comparison with a knockout strain (Ybx1ΔRosaERT+TX). Comparisons of tissue from mice fed with normal-salt diet (NSD, standard chow) or high-salt diet (HSD, 4% NaCl in chow; 1% NaCl in water) for up to 16 mo revealed that with HSD tubular cell numbers decrease and tubulointerstitial scarring [periodic acid-Schiff (PAS), Masson's trichrome, Sirius red staining] prevails. In Ybx1ΔRosaERT+TX animals tubular cell damage, a loss of cell contacts with profound tubulointerstitial alterations, and tubular cell senescence was seen. A distinct tubulointerstitial distribution of fibrinogen, collagen type VI, and tenascin-C was detected under HSD, transcriptome analyses determined patterns of matrisome regulation. Temporal increase of immune cell infiltration was seen under HSD of wild type, but not Ybx1ΔRosaERT+TX animals. In vitro Ybx1ΔRosaERT+TX bone marrow-derived macrophages exhibited a defect in polarization (IL-4/IL-13) and abrogated response to sodium chloride. Taken together, HSD promotes progressive kidney fibrosis with premature cell aging, ECM deposition, and immune cell recruitment that is exacerbated in Ybx1ΔRosaERT+TX animals.NEW & NOTEWORTHY Short-term experimental studies link excessive sodium ingestion with extracellular matrix accumulation and inflammatory cell recruitment, yet long-term data are scarce. Our findings with a high-salt diet over 16 mo in aging mice pinpoints to a decisive tipping point after 12 mo with tubular stress response, skewed matrisome transcriptome, and immune cell infiltration. Cell senescence was aggravated in knockout animals for cold shock Y-box binding protein (YB-1), suggesting a novel protective protein function.
Collapse
Affiliation(s)
- Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Kristin Dhjamandi
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Sohail Ahmad
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
2
|
Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023; 9:212. [PMID: 37393391 DOI: 10.1038/s41420-023-01524-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Chemokines are a large family mediating a lot of biological behaviors including chemotaxis, tumor growth, angiogenesis and so on. As one member of this family, CXC subfamily possesses the same ability. CXC chemokines can recruit and migrate different categories of immune cells, regulate tumor's pathological behaviors like proliferation, invasion and metastasis, activate angiogenesis, etc. Due to these characteristics, CXCL subfamily is extensively and closely associated with tumors and inflammatory diseases. As studies are becoming more and more intensive, CXCLs' concrete roles are better described, and CXCLs' therapeutic applications including biomarkers and targets are also deeply explained. In this review, the role of CXCL family members in various diseases is summarized.
Collapse
Affiliation(s)
- Chenjia Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| |
Collapse
|
3
|
Wang J, Liu X, Gu Y, Gao Y, Jankowski V, Was N, Leitz A, Reiss LK, Shi Y, Cai J, Fang Y, Song N, Zhao S, Floege J, Ostendorf T, Ding X, Raffetseder U. DNA binding protein YB-1 is a part of the neutrophil extracellular trap mediation of kidney damage and cross-organ effects. Kidney Int 2023; 104:124-138. [PMID: 36963487 DOI: 10.1016/j.kint.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
Open-heart surgery is associated with high morbidity, with acute kidney injury (AKI) being one of the most commonly observed postoperative complications. Following open-heart surgery, in an observational study we found significantly higher numbers of blood neutrophils in a group of 13 patients with AKI compared to 25 patients without AKI (AKI: 12.9±5.4 ×109 cells/L; non-AKI: 10.1±2. 9 ×109 cells/L). Elevated serum levels of neutrophil extracellular trap (NETs) components, such as dsDNA, histone 3, and DNA binding protein Y-box protein (YB)-1, were found within the first 24 hours in patients who later developed AKI. We could demonstrate that NET formation and hypoxia triggered the release of YB-1, which was subsequently shown to act as a mediator of kidney tubular damage. Experimentally, in two models of AKI mimicking kidney hypoperfusion during cardiac surgery (bilateral ischemia/reperfusion (I/R) and systemic lipopolysaccharide (LPS) administration), a neutralizing YB-1 antibody was administered to mice. In both models, prophylactic YB-1 antibody administration significantly reduced the tubular damage (damage score range 1-4, the LPS model: non-specific IgG control, 0.92±0.23; anti-YB-1 0.65±0.18; and in the I/R model: non-specific IgG control 2.42±0.23; anti-YB-1 1.86±0.44). Even in a therapeutic, delayed treatment model, antagonism of YB-1 ameliorated AKI (damage score, non-specific IgG control 3.03±0.31; anti-YB-1 2.58±0.18). Thus, blocking extracellular YB-1 reduced the effects induced by hypoxia and NET formation in the kidney and significantly limited AKI, suggesting that YB-1 is part of the NET formation process and an integral mediator of cross-organ effects.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiyang Liu
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Yulu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yingying Gao
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH, Aachen University, Aachen, Germany
| | - Nina Was
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Anna Leitz
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Lucy K Reiss
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH, Aachen University, Germany
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany.
| |
Collapse
|
4
|
Maddali P, Ambesi A, McKeown-Longo PJ. Induction of pro-inflammatory genes by fibronectin DAMPs in three fibroblast cell lines: Role of TAK1 and MAP kinases. PLoS One 2023; 18:e0286390. [PMID: 37228128 DOI: 10.1371/journal.pone.0286390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4). However, the role of signaling molecules downstream of TLR-4 such as TGF-β Activated Kinase 1 (TAK1) and Mitogen activated protein kinases (MAPK) in regulating the expression of fibronectin DAMP induced inflammatory genes in specific cell types is not known. In the current study, we evaluate the molecular steps regulating the fibronectin driven induction of inflammatory genes in three human fibroblast cell lines: embryonic foreskin, adult dermal, and adult kidney. The fibronectin derived DAMPs each induce the phosphorylation and activation of TAK1 which results in the activation of two downstream signaling arms, IKK/NF-κB and MAPK. Using the specific inhibitor 5Z-(7)-Oxozeanol as well as siRNA, we show TAK1 to be a crucial signaling mediator in the release of cytokines in response to fibronectin DAMPs in all three cell types. Finally, we show that FnEDA and FnIII-1c induce several pro-inflammatory cytokines whose expression is dependent on both TAK1 and JNK MAPK and highlight cell-type specific differences in the gene-expression profiles of the fibroblast cell-lines.
Collapse
Affiliation(s)
- Pranav Maddali
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Anthony Ambesi
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Paula J McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
5
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
6
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|
7
|
Rybalkina EY, Moiseeva NI. Role of YB-1 Protein in Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S94-S202. [PMID: 35501989 DOI: 10.1134/s0006297922140085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
This review discusses the role of the multifunctional DNA/RNA-binding protein YB-1 in inflammation. YB-1 performs multiple functions in the cell depending on its location: it acts as transcriptional factor for many genes in the nucleus, regulates translation and stability of mRNA in the cytoplasm, and becomes a paracrine factor when secreted from the cells. The review presents the data on the YB-1-mediated regulation of inflammation-associated genes, as well as results of studies on the YB-1 role in animal model of various inflammatory diseases, such as glomerulonephritis, tubulointerstitial fibrosis, and bacterial sepsis, and on the YB-1 expression in different human diseases associated with inflammatory processes in kidney, liver, and endometrium. The last section of the review presents several approaches to the regulation of YB-1 with small molecules in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ekaterina Yu Rybalkina
- Blokhin National Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Natalia I Moiseeva
- Blokhin National Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
8
|
Wu CL, Yin R, Wang SN, Ying R. A Review of CXCL1 in Cardiac Fibrosis. Front Cardiovasc Med 2021; 8:674498. [PMID: 33996954 PMCID: PMC8113392 DOI: 10.3389/fcvm.2021.674498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C motif ligand-1 (CXCL1), principally expressed in neutrophils, macrophages and epithelial cells, is a valid pro-inflammatory factor which performs an important role in mediating the infiltration of neutrophils and monocytes/macrophages. Elevated serum level of CXCL1 is considered a pro-inflammatory reaction by the organism. CXCL1 is also related to diverse organs fibrosis according to relevant studies. A growing body of evidence suggests that CXCL1 promotes the process of cardiac remodeling and fibrosis. Here, we review structure and physiological functions of CXCL1 and recent progress on the effects and mechanisms of CXCL1 in cardiac fibrosis. In addition, we explore the role of CXCL1 in the fibrosis of other organs. Besides, we probe the possibility that CXCL1 can be a therapeutic target for the treatment of cardiac fibrosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng-Long Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Su-Nan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Pham TP, Bink DI, Stanicek L, van Bergen A, van Leeuwen E, Tran Y, Matic L, Hedin U, Wittig I, Dimmeler S, Boon RA. Long Non-coding RNA Aerrie Controls DNA Damage Repair via YBX1 to Maintain Endothelial Cell Function. Front Cell Dev Biol 2021; 8:619079. [PMID: 33505972 PMCID: PMC7829583 DOI: 10.3389/fcell.2020.619079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is accompanied by many physiological changes. These changes can progressively lead to many types of cardiovascular diseases. During this process blood vessels lose their ability to maintain vascular homeostasis, ultimately resulting in hypertension, stroke, or myocardial infarction. Increase in DNA damage is one of the hallmarks of aging and can be repaired by the DNA signaling and repair system. In our study we show that long non-coding RNA Aerrie (linc01013) contributes to the DNA signaling and repair mechanism. Silencing of Aerrie in endothelial cells impairs angiogenesis, migration, and barrier function. Aerrie associates with YBX1 and together they act as important factors in DNA damage signaling and repair. This study identifies Aerrie as a novel factor in genomic stability and as a binding partner of YBX1 in responding to DNA damage.
Collapse
Affiliation(s)
- Tan Phát Pham
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diewertje I. Bink
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura Stanicek
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Anke van Bergen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esmee van Leeuwen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvonne Tran
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ljubica Matic
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ilka Wittig
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Reinier A. Boon
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| |
Collapse
|
10
|
Hessman CL, Hildebrandt J, Shah A, Brandt S, Bock A, Frye BC, Raffetseder U, Geffers R, Brunner-Weinzierl MC, Isermann B, Mertens PR, Lindquist JA. YB-1 Interferes with TNFα-TNFR Binding and Modulates Progranulin-Mediated Inhibition of TNFα Signaling. Int J Mol Sci 2020; 21:ijms21197076. [PMID: 32992926 PMCID: PMC7583764 DOI: 10.3390/ijms21197076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation and an influx of macrophages are common elements in many diseases. Among pro-inflammatory cytokines, tumor necrosis factor α (TNFα) plays a central role by amplifying the cytokine network. Progranulin (PGRN) is a growth factor that binds to TNF receptors and interferes with TNFα-mediated signaling. Extracellular PGRN is processed into granulins by proteases released from immune cells. PGRN exerts anti-inflammatory effects, whereas granulins are pro-inflammatory. The factors coordinating these ambivalent functions remain unclear. In our study, we identify Y-box binding protein-1 (YB-1) as a candidate for this immune-modulating activity. Using a yeast-2-hybrid assay with YB-1 protein as bait, clones encoding for progranulin were selected using stringent criteria for strong interaction. We demonstrate that at physiological concentrations, YB-1 interferes with the binding of TNFα to its receptors in a dose-dependent manner using a flow cytometry-based binding assay. We show that YB-1 in combination with progranulin interferes with TNFα-mediated signaling, supporting the functionality with an NF-κB luciferase reporter assay. Together, we show that YB-1 displays immunomodulating functions by affecting the binding of TNFα to its receptors and influencing TNFα-mediated signaling via its interaction with progranulin.
Collapse
Affiliation(s)
- Christopher L. Hessman
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Josephine Hildebrandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Antonia Bock
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Björn C. Frye
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | | | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| |
Collapse
|
11
|
Nangaku M. Schlöndorff and Lee revealed crosstalk between glomerular cells and a role of BAMBI in diabetic kidney disease. Kidney Int 2020; 98:539-541. [PMID: 32828232 DOI: 10.1016/j.kint.2020.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022]
Abstract
The editorial team of Kidney International feels truly proud to publish Detlef Schlöndorff's legacy work. This seminal paper with Lee and Schlöndorff as joint senior authors revealed the importance of crosstalks between different glomerular cell types in diabetic kidney disease. Furthermore, they showed that bone morphogenetic protein (BMP) and activin membrane-bound inhibitor, an endogenous modulator of transforming growth factor-β signaling, plays a cell type-specific role and may be a good target for intervention against diabetic kidney disease.
Collapse
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|