1
|
Shi DC, Feng SZ, Zhong Z, Cai L, Wang M, Fu DY, Yu XQ, Li M. Functional variant rs12614 in CFB confers a low risk of IgA nephropathy by attenuating complement alternative pathway activation in Han Chinese. Front Immunol 2022; 13:973169. [PMID: 36311737 PMCID: PMC9606215 DOI: 10.3389/fimmu.2022.973169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022] Open
Abstract
Activation of the alternative pathway (AP) of complement is thought to play an important role in Immunoglobin A nephropathy (IgAN). Our previous study showed that rs4151657 within the complement factor B (CFB) gene increased the risk of IgAN. The protein encoded by the CFB gene is an initial factor that promotes AP activation. The aim of this study was to investigate whether other variants of CFB confer susceptibility to IgAN and elucidate their potential roles in AP activation. A total of 1,350 patients with IgAN and 1,420 healthy controls were enrolled and five tag single-nucleotide polymorphisms were selected for genotyping. The levels of key AP components, such as CFB, complement factor H and complement split product C3a, were measured by enzyme-linked immunosorbent assay. Molecular docking and molecular dynamic simulation were carried out to characterize the mutation of residues in the protein structure and the dynamic properties of wide type and mutation models of CFB protein. The allele-specific effect on CFB expression and its binding affinity to C3b were investigated through cell transfection and surface plasmon resonance analysis, respectively. We found that rs12614 significantly reduced the risk of IgAN (OR = 0.69, 95% CI = 0.52-0.91, P = 0.009), and the rs12614-T (R32W mutation) was correlated with lower CFB levels, higher serum C3 level, and less mesangial C3 deposition in patients with IgAN. The structural model showed that the R32W mutation reduced the structural stability of CFB protein. Furthermore, in vitro study revealed that rs12614-T decreased the expression of CFB and reduced its binding affinity to C3b by four-fold compared with rs12614-C. In conclusion, the rs12614-T in CFB was associated with low risk of IgAN probably by attenuating AP activation.
Collapse
Affiliation(s)
- Dian-Chun Shi
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shao-Zhen Feng
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Lu Cai
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Meng Wang
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Dong-Ying Fu
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming Li
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
2
|
Vahabi M, Ghazanfari T, Sepehrnia S. Molecular Mimicry, Hyperactive Immune System, And SARS-COV-2 Are Three Prerequisites of the Autoimmune Disease Triangle Following COVID-19 Infection. Int Immunopharmacol 2022; 112:109183. [PMID: 36182877 PMCID: PMC9393178 DOI: 10.1016/j.intimp.2022.109183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 infection can produce a variety of clinical manifestations, which are either directly related to viral tissue damage or indirectly induced by the antiviral immune response. Molecular mimicry enables this virus to undermine self-tolerance in a host's immune system also immune system's attempts to eliminate SARS-COV-2 may trigger autoimmunity by hyper-activating the innate and adaptive immune systems. Auto immune diseases include Systemic lupus erythematosus, autoimmune thyroid diseases, Guillain‐Barre syndrome, Immune thrombocytopenic purpura, and the detection of autoantibodies are the cues to the discovery of the potential of COVID‐19 in inducing autoimmunity. As COVID-19 and autoimmune diseases share a common pathogenesis, autoimmune drugs may be an effective treatment option. Susceptible patients must be monitored for autoimmune symptoms after contracting CVID-19. In light of the SARS-COV-2 virus' ability to induce autoimmunity in susceptible patients, will the various COVID-19 vaccines that are the only way to end the pandemic induce autoimmunity?
Collapse
|
3
|
Hanna RM, Henriksen K, Kalantar-Zadeh K, Ferrey A, Burwick R, Jhaveri KD. Thrombotic Microangiopathy Syndromes-Common Ground and Distinct Frontiers. Adv Chronic Kidney Dis 2022; 29:149-160.e1. [PMID: 35817522 DOI: 10.1053/j.ackd.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022]
Abstract
Thrombotic microangiopathies (TMAs) have in common a terminal phenotype of microangiopathic hemolytic anemia with end-organ dysfunction. Thrombotic thrombocytopenic purpura results from von Willebrand factor multimerization, Shiga toxin-mediated hemolytic uremic syndrome causes toxin-induced endothelial dysfunction, while atypical hemolytic uremic syndrome results from complement system dysregulation. Drug-induced TMA, rheumatological disease-induced TMA, and renal-limited TMA exist in an intermediate space that represents secondary complement activation and may overlap with atypical hemolytic uremic syndrome clinically. The existence of TMA without microangiopathic hemolytic features, renal-limited TMA, represents an undiscovered syndrome that responds incompletely and inconsistently to complement blockade. Hematopoietic stem cell transplant-TMA represents another more resistant form of TMA with different therapeutic needs and clinical course. It has become apparent that TMA syndromes are an emerging field in nephrology, rheumatology, and hematology. Much work remains in genetics, molecular biology, and therapeutics to unravel the puzzle of the relationships and distinctions apparent between the different subclasses of TMA syndromes.
Collapse
Affiliation(s)
- Ramy M Hanna
- UCI Medical Center Department of Medicine, Division of Nephrology, University of California Irvine, Orange, CA.
| | - Kammi Henriksen
- Department of Pathology, University of Chicago Medical Center, Chicago, IL
| | - Kamyar Kalantar-Zadeh
- UCI Medical Center Department of Medicine, Division of Nephrology, University of California Irvine, Orange, CA
| | - Antoney Ferrey
- UCI Medical Center Department of Medicine, Division of Nephrology, University of California Irvine, Orange, CA
| | - Richard Burwick
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Kenar D Jhaveri
- Glomerular Disease Center at Northwell Health, Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| |
Collapse
|
4
|
Verma S, Chaturvedi V, Ganguly NK, Mittal SA. Vitamin D deficiency: concern for rheumatoid arthritis and COVID-19? Mol Cell Biochem 2021; 476:4351-4362. [PMID: 34453644 PMCID: PMC8401347 DOI: 10.1007/s11010-021-04245-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Vitamin D is an immunomodulatory hormone with an established role in calcium and phosphate metabolism and skeletal mineralization. Evidence showing its immunological benefits by regulating essential components of the innate and adaptive immune system is prevalent. Vitamin D deficiency is reported worldwide and is thereby found to be associated with various immune-related diseases. Rheumatoid Arthritis and COVID-19 are two such diseases, sharing a similar hyperinflammatory response. Various studies have found an association of lower Vitamin D levels to be associated with both these diseases. However, contrasting data is also reported. We review here the available scientific data on risk factor association and supplementation benefits of Vitamin D in Rheumatoid Arthritis and COVID-19, intending to critically evaluate the literature.
Collapse
Affiliation(s)
- Sneha Verma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ved Chaturvedi
- Department of Rheumatology & Clinical Immunology, Sir Ganga Ram Hospital, New Delhi, India
| | - N K Ganguly
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
5
|
Wang FM, Yang Y, Zhang XL, Wang YL, Tu Y, Liu BC, Wang B. Combination of a Novel Genetic Variant in CFB Gene and a Pathogenic Variant in COL4A5 Gene in a Sibling Renal Disease: A Case Report. Front Genet 2021; 12:690952. [PMID: 34349783 PMCID: PMC8326751 DOI: 10.3389/fgene.2021.690952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Complement factor B (CFB) variants have been described to play a causative role in auto-immune associated C3 glomerulopathy (C3G) and/or atypical hemolytic uremic syndrome (aHUS) by affecting the dysregulations of alternative pathway activation. However, CFB variant concomitant with COL4A5 variant is scarce. Here, we depict two intriguing cases with concurrent novel heterozygosity for CFB c.2054_2057del (p.Ser687Profs∗16) variant and a previous reported COL4A5 c.2999G > T (p.Gly1000Val) variant in a pair of siblings. The clinical feature of either paternal CFB variant or maternal COL4A5 variant is just mild microscopic hematuria. Interestingly, their two children with paternal CFB c.2054_2057del (p.Ser687Profs∗16) variant and maternal COL4A5 c.2999G > T (p.Gly1000Val) variant presented with massive proteinuria, hematuria, and progressive renal failure with poor treatment response. Moreover, complement pathway activation in renal tissue further supports and strengthens the pathogenic role of CFB variant in the development of renal injury in the presence of COL4A5 variant. In conclusion, the rare sibling cases highlight that the extension of genetic analyses in the proband is helpful for the diagnosis and understanding of some family cluster renal diseases.
Collapse
Affiliation(s)
- Feng-Mei Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan Yang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiao-Liang Zhang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan-Li Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan Tu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
6
|
Aradottir SS, Kristoffersson AC, Roumenina LT, Bjerre A, Kashioulis P, Palsson R, Karpman D. Factor D Inhibition Blocks Complement Activation Induced by Mutant Factor B Associated With Atypical Hemolytic Uremic Syndrome and Membranoproliferative Glomerulonephritis. Front Immunol 2021; 12:690821. [PMID: 34177949 PMCID: PMC8222914 DOI: 10.3389/fimmu.2021.690821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
Complement factor B (FB) mutant variants are associated with excessive complement activation in kidney diseases such as atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy and membranoproliferative glomerulonephritis (MPGN). Patients with aHUS are currently treated with eculizumab while there is no specific treatment for other complement-mediated renal diseases. In this study the phenotype of three FB missense variants, detected in patients with aHUS (D371G and E601K) and MPGN (I242L), was investigated. Patient sera with the D371G and I242L mutations induced hemolysis of sheep erythrocytes. Mutagenesis was performed to study the effect of factor D (FD) inhibition on C3 convertase-induced FB cleavage, complement-mediated hemolysis, and the release of soluble C5b-9 from glomerular endothelial cells. The FD inhibitor danicopan abrogated C3 convertase-associated FB cleavage to the Bb fragment in patient serum, and of the FB constructs, D371G, E601K, I242L, the gain-of-function mutation D279G, and the wild-type construct, in FB-depleted serum. Furthermore, the FD-inhibitor blocked hemolysis induced by the D371G and D279G gain-of-function mutants. In FB-depleted serum the D371G and D279G mutants induced release of C5b-9 from glomerular endothelial cells that was reduced by the FD-inhibitor. These results suggest that FD inhibition can effectively block complement overactivation induced by FB gain-of-function mutations.
Collapse
Affiliation(s)
| | | | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pavlos Kashioulis
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Runolfur Palsson
- Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
7
|
COVID-19: imbalance of multiple systems during infection and importance of therapeutic choice and dosing of cardiac and anti-coagulant therapies. Mol Biol Rep 2021; 48:2917-2928. [PMID: 33837899 PMCID: PMC8035598 DOI: 10.1007/s11033-021-06333-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
The renin-angiotensin-aldosterone system and its metabolites play an important role in homeostasis of body, especially the cardiovascular system. In this study, we discuss the imbalance of multiple systems during the infection and the importance of therapeutic choice, dosing, and laboratory monitoring of cardiac and anti-coagulant therapies in COVID-19 patients. The crosstalk between angiotensin, kinin-kallikrein system, as well as inflammatory and coagulation systems plays an essential role in COVID-19. Cardiac complications and coagulopathies imply the crosstalks between the mentioned systems. We believe that the blockage of bradykinin can be a good option in the management of COVID-19 and CVD in patients and that supportive treatment of respiratory and cardiologic complications is needed in COVID-19 patients. Ninety-one percent of COVID-19 patients who were admitted to hospital with a prolonged aPTT were positive for lupus anticoagulant, which increases the risk of thrombosis and prolonged aPTT. Therefore, the question that is posed at this juncture is whether it is safe to use the prophylactic dose of heparin particularly in those with elevated D-dimer levels. It should be noted that timing is of high importance in anti-coagulant therapy; therefore, we should consider the level of D-dimer, fibrinogen, drug-drug interactions, and risk factors during thromboprophylaxis administration. Fibrinogen is an independent predictor of resistance to heparin and should be considered before thromboprophylaxis. Alteplase and Futhan might be a good choice to assess the condition of heparin resistance. Finally, the treatment option, dosing, and laboratory monitoring of anticoagulant therapy are critical decisions in COVID-19 patients.
Collapse
|
8
|
Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb Thrombolysis 2021; 51:657-662. [PMID: 33063256 PMCID: PMC7561230 DOI: 10.1007/s11239-020-02297-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 12/18/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is a rapidly evolving health crisis caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a novel disease entity and we are in a learning phase with regards to the pathogenesis, disease manifestations, and therapeutics. In addition to the primary lung injury, many patients especially the ones with moderate to severe COVID-19 display evidence of endothelial damage, complement activation, which leads to a pro-coagulable state. While there are still missing links in our understanding, the interplay of endothelium, complement system activation, and immune response to the SARS-CoV-2 virus is a surprisingly major factor in COVID-19 pathogenesis. One could envision COVID-19 becoming a novel hematological syndrome. This review is to discuss the available literature with regards to the involvement of the complement system, and coagulation cascade and their interaction with endothelium.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicine, UMass Memorial Health Care, University of Massachusetts Medical School, Worcester, MA USA
| | - Kamal Kant Sahu
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608 USA
| | - Jan Cerny
- Department of Medicine - Hematology, and Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|