1
|
Georg B, Jørgensen HL, Hannibal J. PER1 Oscillation in Rat Parathyroid Hormone and Calcitonin Producing Cells. Int J Mol Sci 2024; 25:13006. [PMID: 39684716 DOI: 10.3390/ijms252313006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Many endocrine glands exhibit circadian rhythmicity, but the interplay between the central circadian clock in the suprachiasmatic nucleus (SCN), the peripheral endocrine clock, and hormones is sparsely understood. We therefore studied the cellular localizations of the clock protein PER1, parathyroid hormone (PTH) and calcitonin (CT) in the parathyroid and thyroid glands, respectively. Thyroid glands, including the parathyroids, were dissected at different time-points from rats housed in 12 h:12 h light-darkness cycles, and were double-immunostained for PER1 and PTH or CT. Sera were analyzed for PTH, CT, phosphate, and calcium. In both glands, PER1 expression peaked late at night, while limited staining was seen during the daytime. High-resolution microscopy revealed cytosolic PER1 at zeitgeber time (ZT)12, and nucleic staining at ZT24 in both PTH and CT cells. PTH peaked at Z12-ZT16, while neither CT staining nor serum CT oscillated during the daily cycle. Serum PTH was significantly higher at ZT12 than ZT24, but only phosphate was found to exhibit significant diurnal oscillation. The staining of the calcium-sensitive receptor (CSR) did not demonstrate circadian oscillation. In conclusion, PER1 expression peaked late at night/early in the morning in hormone-producing cells of both the thyroid and parathyroid glands. In the parathyroids, this was preceded by a PTH peak, while neither CT nor CRS were found to oscillate.
Collapse
Affiliation(s)
- Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg University Hospital, 2400 Copenhagen, Denmark
| | - Henrik L Jørgensen
- Department of Clinical Biochemistry, Amager and Hvidovre Hospital, 2650 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg University Hospital, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Borge SJ, Sennels HP, Schwarz P, Jørgensen HL. Diurnal fluctuations in biochemical parameters related to calcium homeostasis - the Bispebjerg study of diurnal variations. Scand J Clin Lab Invest 2024; 84:305-310. [PMID: 39163206 DOI: 10.1080/00365513.2024.2392116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/21/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE This aim of this study was to assess the possible association between diurnal oscillations and biochemical markers associated with calcium homeostasis. This included the markers parathyroid hormone (PTH), total calcium, total alkaline phosphatase, phosphate, and 25-hydroxyvitamin D (25-OH-D). By examining the influence of circadian rhythms on these parameters, the study aimed to deepen the understanding of calcium metabolism dynamics and its clinical implications. PATIENTS AND METHODS Blood samples from 24 Caucasian male volunteers aged 20 to 40 (mean age 26) with normal pulse, blood pressure, and BMI were analyzed for biochemical markers related to calcium homeostasis. Data was obtained from the Bispebjerg study of diurnal variations. Blood samples were collected every three hours over a 24-hour period. Patients were fasting from 22:00 to 09:00. The participants spent 24 h in the hospital ward, receiving regular meals and engaging in low-intensity activities. They experienced 15 h of daylight and 9 h of complete darkness during sleep. Diurnal oscillations were analyzed using cosinor analysis with statistical significance set at p < 0.05. RESULTS Total calcium, phosphate, and PTH exhibited significant diurnal variations. Total calcium and PTH were inversely synchronized while PTH and phosphate oscillated in synchronization. The three parameters showed relatively large amplitude/reference range ratios from 25.4% to 41.5%. CONCLUSION This study found notable fluctuations in total calcium, phosphate, and PTH levels over a 24-hour cycle, while 25-OH-D and total alkaline phosphatase remained consistent. It highlights the importance of considering sampling times for total calcium, PTH, and phosphate in clinical settings.
Collapse
Affiliation(s)
- Silje J Borge
- Department of Clinical Biochemistry, Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Henriette P Sennels
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, København, NV, Denmark
| | - Peter Schwarz
- Department of Endocrinology, Rigshospitalet, København Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik L Jørgensen
- Department of Clinical Biochemistry, Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Mei G, Wang J, Wang J, Ye L, Yi M, Chen G, Zhang Y, Tang Q, Chen L. The specificities, influencing factors, and medical implications of bone circadian rhythms. FASEB J 2024; 38:e23758. [PMID: 38923594 DOI: 10.1096/fj.202302582rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
4
|
Chan K, Tseng CC, Milarachi E, Goldrich DY, King TS, Fernandez-Mendoza J, Saadi RA, Saunders B, Boltz M, Goldenberg D. Actigraphy measures show sleep improvement after parathyroidectomy for primary hyperparathyroidism. Am J Otolaryngol 2024; 45:104297. [PMID: 38692072 DOI: 10.1016/j.amjoto.2024.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
IMPORTANCE The symptoms of primary hyperparathyroidism are often subtle, such as fatigue, mood changes, and sleep disturbances. After parathyroidectomy, patients often report improvement in sleep and mood; however, objective data supporting these improvements is lacking. OBJECTIVE This prospective study uses standard measures to objectively and subjectively assess sleep in patients with primary hyperparathyroidism before and after parathyroidectomy. DESIGN A longitudinal prospective study was conducted over three one-week-long periods: pre-parathyroidectomy, 1-week post-parathyroidectomy, and three months post-parathyroidectomy. During each time point, patients wore an actigraphy device, recorded a sleep diary, and completed the Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), and Depression Anxiety Stress Scale (DASS). Statistical analysis was performed using repeated measures models to compare the average measures among the three time points and test for trends over time. SETTING Single institution, tertiary care center. PARTICIPANTS Patients with primary hyperparathyroidism from ages 18 to 89 years old. EXPOSURE Parathyroidectomy between September 2020 and January 2024. MAIN OUTCOMES AND MEASURES Actigraphy data, consensus sleep diary, Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), Depression Anxiety Stress Scales - 21 Items (DASS). RESULTS Thirty-six patients were enrolled, and 34 patients completed the study. Actigraphy data showed a significant negative trend in average sleep latency (p = 0.045) and average time in bed (p = 0.046). Sleep diary data showed additional differences in the number of awakenings (p = 0.002), wake after sleep onset (p < 0.001), sleep quality (p < 0.001), and sleep efficiency (p = 0.02) among the three time points and/or as a significant negative trend. PSQI and ISI scores were significantly different among the three time points (p = 0.002 and p < 0.001, respectively) and also declined significantly over time (p = 0.008 and p = 0.007, respectively). DASS depression, anxiety, and stress scores were significantly different among the three time points (p < 0.001, p = 0.01, and p < 0.001, respectively), and stress also declined significantly over time (p = 0.005). CONCLUSION AND RELEVANCE This study represents the most extensive prospective study demonstrating objective and subjective sleep and mood improvement in patients with primary hyperparathyroidism after parathyroidectomy.
Collapse
Affiliation(s)
- Kimberly Chan
- Department of Otolaryngology-Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Christopher C Tseng
- Department of Otolaryngology-Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Emily Milarachi
- Department of Otolaryngology-Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - David Y Goldrich
- Department of Otolaryngology-Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Tonya S King
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Robert A Saadi
- University of Arkansas for Medical Sciences, Department of Otolaryngology-Head and Neck Surgery, Little Rock, AR, USA
| | - Brian Saunders
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Melissa Boltz
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - David Goldenberg
- Department of Otolaryngology-Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Feger M, Alber J, Strotmann J, Grund A, Leifheit-Nestler M, Haffner D, Föller M. Short-term fasting of mice elevates circulating fibroblast growth factor 23 (FGF23). Acta Physiol (Oxf) 2023; 239:e14049. [PMID: 37746883 DOI: 10.1111/apha.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
AIMS Phosphate and vitamin D homeostasis are controlled by fibroblast growth factor 23 (FGF23) from bone suppressing renal phosphate transport and enhancing 24-hydroxylase (Cyp24a1), thereby inactivating 1,25(OH)2 D3 . Serum FGF23 is correlated with outcomes in several diseases. Fasting stimulates the production of ketone bodies. We hypothesized that fasting can induce FGF23 synthesis through the production of ketone bodies. METHODS UMR106 cells and isolated neonatal rat ventricular myocytes (NRVM) were treated with ketone body β-hydroxybutyrate. Mice were fasted overnight, fed ad libitum, or treated with β-hydroxybutyrate. Proteins and further blood parameters were determined by enzyme-linked immunoassay (ELISA), western blotting, immunohistochemistry, fluorometric or colorimetric methods, and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS β-Hydroxybutyrate stimulated FGF23 production in UMR106 cells in a nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB)-dependent manner, and in NRVMs. Compared to fed animals, fasted mice exhibited higher β-hydroxybutyrate and FGF23 serum levels (based on assays either detecting C-terminal or intact, biologically active FGF23 only), cardiac, pancreatic, and thymic Fgf23 and renal Cyp24a1 expression, and lower 1,25(OH)2 D3 serum concentration as well as renal Slc34a1 and αKlotho (Kl) expression. In contrast, Fgf23 expression in bone and serum phosphate, calcium, plasma parathyroid hormone (PTH) concentration, and renal Cyp27b1 expression were not significantly affected by fasting. CONCLUSION Short-term fasting increased FGF23 production, as did administration of β-hydroxybutyrate, effects possibly of clinical relevance in view of the increasing use of FGF23 as a surrogate parameter in clinical monitoring of diseases. The fasting state of patients might therefore affect FGF23 tests.
Collapse
Affiliation(s)
- Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Strotmann
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
He SK, Wang JH, Li T, Yin S, Cui JW, Xiao YF, Tang Y, Wang J, Bai YJ. Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1293685. [PMID: 38089624 PMCID: PMC10711275 DOI: 10.3389/fendo.2023.1293685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The circadian rhythm generated by circadian clock genes functions as an internal timing system. Since the circadian rhythm controls abundant physiological processes, the circadian rhythm evolved in organisms is salient for adaptation to environmental change. A disturbed circadian rhythm is a trigger for numerous pathological events. Recently, accumulated data have indicated that kidney stone disease (KSD) is related to circadian rhythm disturbance. However, the mechanism between them has not been fully elucidated. In this narrative review, we summarized existing evidence to illustrate the possible association between circadian rhythm disturbance and KSD based on the epidemiological studies and risk factors that are linked to circadian rhythm disturbance and discuss some chronotherapies for KSD. In summary, KSD is associated with systemic disorders. Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are the major risk factors supported by sufficient data to cause KSD in patients with circadian rhythm disturbance, while others including hypertension, vitamin D deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction need further investigation. Then, some chronotherapies for KSD were confirmed to be effective, but the molecular mechanism is still unclear.
Collapse
Affiliation(s)
- Si-Ke He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian-Wei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Mace ML, Lewin E. Frontiers in Bone Metabolism and Disorder in Chronic Kidney Disease. Metabolites 2023; 13:1034. [PMID: 37887359 PMCID: PMC10608583 DOI: 10.3390/metabo13101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Chronic Kidney Disease (CKD) is a progressive condition that affects 10-15% of the adult population, a prevalence expected to increase worldwide [...].
Collapse
Affiliation(s)
- Maria L. Mace
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ewa Lewin
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2100 Copenhagen, Denmark;
| |
Collapse
|
8
|
Chai R, Ye Z, Wu Q, Xue W, Shi S, Du Y, Wu H, Wei Y, Hu Y. Circadian rhythm in cardiovascular diseases: a bibliometric analysis of the past, present, and future. Eur J Med Res 2023; 28:194. [PMID: 37355671 DOI: 10.1186/s40001-023-01158-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND One of the most prominent features of living organisms is their circadian rhythm, which governs a wide range of physiological processes and plays a critical role in maintaining optimal health and function in response to daily environmental changes. This work applied bibliometric analysis to explore quantitative and qualitative trends in circadian rhythm in cardiovascular diseases (CVD). It also aims to identify research hotspots and provide fresh suggestions for future research. METHODS The Web of Science Core Collection was used to search the data on circadian rhythm in CVD. HistCite, CiteSpace, and VOSviewer were used for bibliometric analysis and visualization. The analysis included the overall distribution of yearly outputs, top nations, active institutions and authors, core journals, co-cited references, and keywords. To assess the quality and efficacy of publications, the total global citation score (TGCS) and total local citation score (TLCS) were calculated. RESULTS There were 2102 papers found to be associated with the circadian rhythm in CVD, with the overall number of publications increasing year after year. The United States had the most research citations and was the most prolific country. Hermida RC, Young ME, and Ayala DE were the top three writers. The three most notable journals on the subject were Chronobiology International, Hypertension Research, and Hypertension. In the early years, the major emphasis of circadian rhythm in CVD was hormones. Inflammation, atherosclerosis, and myocardial infarction were the top developing research hotspots. CONCLUSION Circadian rhythm in CVD has recently received a lot of interest from the medical field. These topics, namely inflammation, atherosclerosis, and myocardial infarction, are critical areas of investigation for understanding the role of circadian rhythm in CVD. Although they may not be future research priorities, they remain of significant importance. In addition, how to implement these chronotherapy theories in clinical practice will depend on additional clinical trials to get sufficient trustworthy clinical evidence.
Collapse
Affiliation(s)
- Ruoning Chai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zelin Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Sharma RK, Kamble SH, Krishnan S, Gomes J, To B, Li S, Liu IC, Gumz ML, Mohandas R. Involvement of lysyl oxidase in the pathogenesis of arterial stiffness in chronic kidney disease. Am J Physiol Renal Physiol 2023; 324:F364-F373. [PMID: 36825626 PMCID: PMC10069822 DOI: 10.1152/ajprenal.00239.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk for adverse cardiovascular events. CKD is associated with increases in arterial stiffness, whereas improvements in arterial stiffness correlate with better survival. However, arterial stiffness is increased early in CKD, suggesting that there might be additional factors, unique to kidney disease, that increase arterial stiffness. Lysyl oxidase (LOX) is a key mediator of collagen cross linking and matrix remodeling. LOX is predominantly expressed in the cardiovascular system, and its upregulation has been associated with increased tissue stiffening and extracellular matrix remodeling. Thus, this study was designed to evaluate the role of increased LOX activity in inducing aortic stiffness in CKD and whether β-aminopropionitrile (BAPN), a LOX inhibitor, could prevent aortic stiffness by reducing collagen cross linking. Eight-week-old male C57BL/6 mice were subjected to 5/6 nephrectomy (Nx) or sham surgery. Two weeks after surgery, mice were randomized to BAPN (300 mg/kg/day in water) or vehicle treatment for 4 wk. Aortic stiffness was assessed by pulse wave velocity (PWV) using Doppler ultrasound. Aortic levels of LOX were assessed by ELISA, and cross-linked total collagen levels were analyzed by mass spectrometry and Sircol assay. Nx mice showed increased PWV and aortic wall remodeling compared with control mice. Collagen cross linking was increased in parallel with the increases in total collagen in the aorta of Nx mice. In contrast, Nx mice that received BAPN treatment showed decreased cross-linked collagens and PWV compared with that received vehicle treatment. Our results indicated that LOX might be an early and key mediator of aortic stiffness in CKD.NEW & NOTEWORTHY Arterial stiffness in CKD is associated with adverse cardiovascular outcomes. However, the mechanisms underlying increased aortic stiffness in CKD are unclear. Herein, we demonstrated that 1) increased aortic stiffness in CKD is independent of hypertension and calcification and 2) LOX-mediated changes in extracellular matrix are at least in part responsible for increased aortic stiffness in CKD. Prevention of excess LOX may have therapeutic potential in alleviating increased aortic stiffness and improving cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Ravindra K Sharma
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Shyam H Kamble
- Department of Pharmacology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Suraj Krishnan
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Joshua Gomes
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Brandon To
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Shiyu Li
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - I-Chia Liu
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Rajesh Mohandas
- Division of Nephrology and Hypertension, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
10
|
Ginsberg C, Miller LM, Ofsthun N, Dalrymple LS, Ix JH. Differences in Phosphate and Parathyroid Hormone Concentrations over the Day among Patients on Hemodialysis. J Am Soc Nephrol 2022; 33:2087-2093. [PMID: 36316091 PMCID: PMC9678027 DOI: 10.1681/asn.2021111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Elevated serum phosphate and parathyroid hormone (PTH) concentrations are associated with cardiovascular events, bone disease, and mortality in patients on maintenance hemodialysis. Although circadian changes are known in people with CKD, it is unknown whether differences occur in these parameters over the course of a day in people receiving hemodialysis. METHODS We used clinical data from Fresenius Medical Care US dialysis clinics to determine how the time of day when measurements were collected (hemodialysis treatment start time) may be associated with serum phosphate and PTH concentrations. We used harmonic regression to assess these associations while accounting for demographic data and treatment parameters. RESULTS A total of 96,319 patients receiving maintenance hemodialysis were included in this analysis. Patients had a mean age of 64±14 years, 43% were women, and dialysis start times ranged from 3:00 am to 7:59 pm. The mean serum phosphate concentration was 5.2±1.5 mg/dl, and the median PTH was 351 pg/ml (interquartile range [IQR], 214-547). In fully adjusted models, serum phosphate had a nadir at 11:00 am of 4.97 (IQR, 4.94-5.01) mg/dl and a peak at 7:00 pm of 5.56 (IQR, 5.50-5.62) mg/dl. Serum PTH had a nadir at 9:00 am of 385 (IQR, 375-395) pg/ml and a peak at 7:00 pm of 530 (IQR, 516-547) pg/ml. CONCLUSIONS Among patients receiving maintenance hemodialysis, concentrations of PTH and phosphate before a dialysis session vary with the time of day that these values are measured. Consideration of whether these values were obtained at peak or nadir times of the day may be important in treatment decisions.
Collapse
Affiliation(s)
- Charles Ginsberg
- Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California
| | - Lindsay M. Miller
- Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California
| | - Norma Ofsthun
- Global Medical Office, Fresenius Medical Care, Waltham, Massachusetts
| | | | - Joachim H. Ix
- Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
11
|
Xiang Z, Wang M, Miao C, Jin D, Wang H. Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front Pharmacol 2022; 13:1020858. [PMID: 36267284 PMCID: PMC9577402 DOI: 10.3389/fphar.2022.1020858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
A common consequence of chronic renal disease is secondary hyperparathyroidism (SHPT) and is closely related to the mortality and morbidity of uremia patients. Secondary hyperparathyroidism (SHPT) is caused by excessive PTH production and release, as well as parathyroid enlargement. At present, the mechanism of cell proliferation in secondary hyperparathyroidism (SHPT) is not completely clear. Decreased expression of the vitamin D receptor (VDR) and calcium-sensing receptor (CaSR), and 1,25(OH)2D3 insufficiency all lead to a decrease in cell proliferation suppression, and activation of multiple pathways is also involved in cell proliferation in renal hyperparathyroidism. The interaction between the parathormone (PTH) and parathyroid hyperplasia and 1,25(OH)2D3 has received considerable attention. 1,25(OH)2D3 is commonly applied in the therapy of renal hyperparathyroidism. It regulates the production of parathormone (PTH) and parathyroid cell proliferation through transcription and post-transcription mechanisms. This article reviews the role of 1,25(OH)2D3 in parathyroid cells in secondary hyperparathyroidism and its current understanding and potential molecular mechanism.
Collapse
|
12
|
Magnitude of parathyroid hormone elevation in primary hyperparathyroidism: Does time of day matter? Surgery 2022. [PMID: 37534706 DOI: 10.1016/j.surg.2022.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Parathyroid hormone demonstrates a circadian rhythm in nondiseased patients, but it is unclear if this diurnal variation persists in the context of primary hyperparathyroidism. We anecdotally noticed that parathyroid hormone levels drawn early on the morning of parathyroid surgery (preincision parathyroid hormone), were of lower magnitude than values obtained at later times in the day. If present, a time-of-day based variation in parathyroid hormone could have important clinical implications on intraoperative surgical decision making. METHODS We performed an Institutional Review Board-approved, retrospective chart review of patients undergoing parathyroidectomy for primary hyperparathyroidism between October 2019 and February 2022 at a quaternary care referral center. Demographic, laboratory, imaging, and operative parameters were extracted. Analysis was performed using mixed models for repeated measures with a first order autoregression correlation structure. Parathyroid hormone values were compared before and after hourly intervals between 6:00 A.M. and 12:00 P.M. RESULTS Of 418 patients, the mean age was 61 years old, 80% of patients were female, and two-thirds had single-gland disease. A total of 933 parathyroid hormone levels were included in the analysis and median parathyroid hormone was 97.3 pg/mL. Parathyroid hormone levels were noted to be significantly lower if they were drawn before 7:00 A.M. This diurnal variation persisted in patients with single-gland and advanced hyperparathyroidism but was abrogated in multi-gland and low-baseline-parathyroid hormone disease. CONCLUSION In patients with primary hyperparathyroidism, parathyroid hormone levels were significantly lower in the early morning hours, especially in patients with single-gland and high-baseline-parathyroid hormone hyperparathyroidism. This may have implications for intraoperative decision making when utilizing an early morning, preincision parathyroid hormone value.
Collapse
|
13
|
The Mediation Effect of Peripheral Biomarkers of Calcium Metabolism and Chronotypes in Bipolar Disorder Psychopathology. Metabolites 2022; 12:metabo12090827. [PMID: 36144231 PMCID: PMC9505716 DOI: 10.3390/metabo12090827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium (Ca++) metabolism may be impaired in several psychiatric diseases. We hypothesize that calcium imbalance might also correlate with a specific chronotype and could be recognized as a marker of illness severity in bipolar disorder (BD). We aimed to (1) identify the association between calcium imbalance and a specific chronotype in a cohort of BD patients, and (2) test the mediation role of high parathyroid hormone (PTH) levels towards a specific chronotype and illness severity in BD patients. Patients’ socio-demographic and clinical characteristics were collected with an ad-hoc schedule. We administered the Hamilton Depression Rating Scale (HAM-D), the Hamilton Rating Scale for Anxiety (HAM-A), the Young Mania Rating Scale (YMRS), and the Morningness Eveningness Questionnaire (MEQ). 100 patients affected by BD were recruited. The Kruskal-Wallis test showed a significant difference between the three MEQ groups in PTH levels (p < 0.001) and vitamin D levels (p = 0.048) but not in Ca++ levels (p = 0.426). Dwass-Steel-Critchlow-Fligner Pairwise analyses performed concerning three MEQ groups revealed significantly higher scores on PTH levels in MEQ-E subjects compared to MEQ-M and MEQ-I (in both cases, p < 0.001). No differences emerged between calcium levels among the three chronotypes. The mediation analysis has shown that elevated PTH levels are directly influenced by more severe HAM-A, HAM-D, and YMRS scores. MEQ-E could be a marker related to BD and predispose to various factors influencing mood symptoms. The combination of vitamin D therapy in MEQ-E may help to improve prognosis in this subtype of patients affected by BD.
Collapse
|
14
|
Hassan A, Pollak YE, Kilav-Levin R, Silver J, London N, Nechama M, Ben-Dov IZ, Naveh-Many T. Kidney Failure Alters Parathyroid Pin1 Phosphorylation and Parathyroid Hormone mRNA-Binding Proteins, Leading to Secondary Hyperparathyroidism. J Am Soc Nephrol 2022; 33:1677-1693. [PMID: 35961788 PMCID: PMC9529182 DOI: 10.1681/asn.2022020197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Secondary hyperparathyroidism (SHP) is a common complication of CKD that increases morbidity and mortality. In experimental SHP, increased parathyroid hormone (PTH) expression is due to enhanced PTH mRNA stability, mediated by changes in its interaction with stabilizing AUF1 and destabilizing KSRP. The isomerase Pin1 leads to KSRP dephosphorylation, but in SHP parathyroid Pin1 activity is decreased and hence phosphorylated KSRP fails to bind PTH mRNA, resulting in high PTH mRNA stability and levels. The up- and downstream mechanisms by which CKD stimulates the parathyroid glands remain elusive. METHODS Adenine-rich high-phosphate diets induced CKD in rats and mice. Parathyroid organ cultures and transfected cells were incubated with Pin1 inhibitors for their effect on PTH expression. Mass spectrometry was performed on both parathyroid and PTH mRNA pulled-down proteins. RESULTS CKD led to changes in rat parathyroid proteome and phosphoproteome profiles, including KSRP phosphorylation at Pin1 target sites. Furthermore, both acute and chronic kidney failure led to parathyroid-specific Pin1 Ser16 and Ser71 phosphorylation, which disrupts Pin1 activity. Pharmacologic Pin1 inhibition, which mimics the decreased Pin1 activity in SHP, increased PTH expression ex vivo in parathyroid glands in culture and in transfected cells through the PTH mRNA-protein interaction element and KSRP phosphorylation. CONCLUSIONS Kidney failure leads to loss of parathyroid Pin1 activity by inducing Pin1 phosphorylation. This predisposes parathyroids to increase PTH production through impaired PTH mRNA decay that is dependent on KSRP phosphorylation at Pin1-target motifs. Pin1 and KSRP phosphorylation and the Pin1-KSRP-PTH mRNA axis thus drive SHP.
Collapse
Affiliation(s)
- Alia Hassan
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
| | - Yael E. Pollak
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
| | - Rachel Kilav-Levin
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
- School of Nursing, Jerusalem College of Technology, Faculty of Life and Health Sciences, Jerusalem, Israel
| | - Justin Silver
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Morris Nechama
- Department of Pediatric Nephrology, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
- Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
| | - Tally Naveh-Many
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah Hebrew University Medical Center and Faculty of Medicine, Jerusalem, Israel
- Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Hou YC, Zheng CM, Chiu HW, Liu WC, Lu KC, Lu CL. Role of Calcimimetics in Treating Bone and Mineral Disorders Related to Chronic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:952. [PMID: 36015101 PMCID: PMC9415417 DOI: 10.3390/ph15080952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
Renal osteodystrophy is common in patients with chronic kidney disease and end-stage renal disease and leads to the risks of fracture and extraosseous vascular calcification. Secondary hyperparathyroidism (SHPT) is characterized by a compensatory increase in parathyroid hormone (PTH) secretion in response to decreased renal phosphate excretion, resulting in potentiating bone resorption and decreased bone quantity and quality. Calcium-sensing receptors (CaSRs) are group C G-proteins and negatively regulate the parathyroid glands through (1) increasing CaSR insertion within the plasma membrane, (2) increasing 1,25-dihydroxy vitamin D3 within the kidney and parathyroid glands, (3) inhibiting fibroblast growth factor 23 (FGF23) in osteocytes, and (4) attenuating intestinal calcium absorption through Transient Receptor Potential Vanilloid subfamily member 6 (TRPV6). Calcimimetics (CaMs) decrease PTH concentrations without elevating the serum calcium levels or extraosseous calcification through direct interaction with cell membrane CaSRs. CaMs reduce osteoclast activity by reducing stress-induced oxidative autophagy and improving Wnt-10b release, which promotes the growth of osteoblasts and subsequent mineralization. CaMs also directly promote osteoblast proliferation and survival. Consequently, bone quality may improve due to decreased bone resorption and improved bone formation. CaMs modulate cardiovascular fibrosis, calcification, and renal fibrosis through different mechanisms. Therefore, CaMs assist in treating SHPT. This narrative review focuses on the role of CaMs in renal osteodystrophy, including their mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan;
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
| | - Hui-Wen Chiu
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan;
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation, Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| |
Collapse
|
16
|
Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 2022; 237:3239-3256. [PMID: 35696609 DOI: 10.1002/jcp.30815] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Ana R Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Unidade de Investigação para o Desenvolvimento do Interior (UDI-IPG), Instituto Politécnico da Guarda, Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
17
|
Egstrand S, Mace ML, Morevati M, Nordholm A, Engelholm LH, Thomsen JS, Brüel A, Naveh-Many T, Guo Y, Olgaard K, Lewin E. Hypomorphic expression of parathyroid Bmal1 disrupts the internal parathyroid circadian clock and increases parathyroid cell proliferation in response to uremia. Kidney Int 2022; 101:1232-1250. [PMID: 35276205 DOI: 10.1016/j.kint.2022.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 01/22/2023]
Abstract
The molecular circadian clock is an evolutionary adaptation to anticipate recurring changes in the environment and to coordinate variations in activity, metabolism and hormone secretion. Parathyroid hyperplasia in uremia is a significant clinical challenge. Here, we examined changes in the transcriptome of the murine parathyroid gland over 24 hours and found a rhythmic expression of parathyroid signature genes, such as Casr, Vdr, Fgfr1 and Gcm2. Overall, 1455 genes corresponding to 6.9% of all expressed genes had significant circadian rhythmicity. Biological pathway analysis indicated that the circadian clock system is essential for the regulation of parathyroid cell function. To study this, a novel mouse strain with parathyroid gland-specific knockdown of the core clock gene Bmal1 (PTHcre;Bmal1flox/flox) was created. Dampening of the parathyroid circadian clock rhythmicity was found in these knockdown mice, resulting in abrogated rhythmicity of regulators of parathyroid cell proliferation such as Sp1, Mafb, Gcm2 and Gata3, indicating circadian clock regulation of these genes. Furthermore, the knockdown resulted in downregulation of genes involved in mitochondrial function and synthesis of ATP. When superimposed by uremia, these PTHcre;Bmal1flox/flox mice had an increased parathyroid cell proliferative response, compared to wild type mice. Thus, our findings indicate a role of the internal parathyroid circadian clock in the development of parathyroid gland hyperplasia in uremia.
Collapse
Affiliation(s)
- Søren Egstrand
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Denmark; Nephrological Department P, Rigshospitalet, University of Copenhagen, Denmark
| | - Maria Lerche Mace
- Nephrological Department P, Rigshospitalet, University of Copenhagen, Denmark
| | - Marya Morevati
- Nephrological Department P, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Nordholm
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Denmark; Nephrological Department P, Rigshospitalet, University of Copenhagen, Denmark
| | - Lars Henning Engelholm
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark; Finsen Laboratory, University of Copenhagen, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tally Naveh-Many
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yuliu Guo
- Department of Genomic Medicine, Rigshospitalet, Centre of Diagnostics, Copenhagen, Denmark
| | - Klaus Olgaard
- Nephrological Department P, Rigshospitalet, University of Copenhagen, Denmark
| | - Ewa Lewin
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Denmark; Nephrological Department P, Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Mace ML, Gravesen E, Nordholm A, Egstrand S, Morevati M, Olgaard K, Lewin E. The calcified vasculature in chronic kidney disease secretes factors that inhibit bone mineralization. JBMR Plus 2022; 6:e10610. [PMID: 35434452 PMCID: PMC9009125 DOI: 10.1002/jbm4.10610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
| | | | - Anders Nordholm
- Department of Nephrology Rigshospitalet
- Department of Nephrology Herlev Hospital University of Copenhagen Denmark
| | - Soeren Egstrand
- Department of Nephrology Rigshospitalet
- Department of Nephrology Herlev Hospital University of Copenhagen Denmark
| | | | | | - Ewa Lewin
- Department of Nephrology Rigshospitalet
- Department of Nephrology Herlev Hospital University of Copenhagen Denmark
| |
Collapse
|
19
|
Hassan A, Khalaily N, Kilav-Levin R, Nechama M, Volovelsky O, Silver J, Naveh-Many T. Molecular Mechanisms of Parathyroid Disorders in Chronic Kidney Disease. Metabolites 2022; 12:metabo12020111. [PMID: 35208186 PMCID: PMC8878033 DOI: 10.3390/metabo12020111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that induces morbidity and mortality in patients. How CKD stimulates the parathyroid to increase parathyroid hormone (PTH) secretion, gene expression and cell proliferation remains an open question. In experimental SHP, the increased PTH gene expression is post-transcriptional and mediated by PTH mRNA–protein interactions that promote PTH mRNA stability. These interactions are orchestrated by the isomerase Pin1. Pin1 participates in conformational change-based regulation of target proteins, including mRNA-binding proteins. In SHP, Pin1 isomerase activity is decreased, and thus, the Pin1 target and PTH mRNA destabilizing protein KSRP fails to bind PTH mRNA, increasing PTH mRNA stability and levels. An additional level of post-transcriptional regulation is mediated by microRNA (miRNA). Mice with parathyroid-specific knockout of Dicer, which facilitates the final step in miRNA maturation, lack parathyroid miRNAs but have normal PTH and calcium levels. Surprisingly, these mice fail to increase serum PTH in response to hypocalcemia or uremia, indicating a role for miRNAs in parathyroid stimulation. SHP often leads to parathyroid hyperplasia. Reduced expressions of parathyroid regulating receptors, activation of transforming growth factor α-epidermal growth factor receptor, cyclooxygenase 2-prostaglandin E2 and mTOR signaling all contribute to the enhanced parathyroid cell proliferation. Inhibition of mTOR by rapamycin prevents and corrects the increased parathyroid cell proliferation of SHP. This review summarizes the current knowledge on the mechanisms that stimulate the parathyroid cell at multiple levels in SHP.
Collapse
Affiliation(s)
- Alia Hassan
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Nareman Khalaily
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Rachel Kilav-Levin
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
- Nursing, Jerusalem College of Technology, Jerusalem 91160, Israel
| | - Morris Nechama
- Pediatric Nephrology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (M.N.); (O.V.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Oded Volovelsky
- Pediatric Nephrology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (M.N.); (O.V.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Justin Silver
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Tally Naveh-Many
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence:
| |
Collapse
|
20
|
New Insights to the Crosstalk between Vascular and Bone Tissue in Chronic Kidney Disease-Mineral and Bone Disorder. Metabolites 2021; 11:metabo11120849. [PMID: 34940607 PMCID: PMC8708186 DOI: 10.3390/metabo11120849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Vasculature plays a key role in bone development and the maintenance of bone tissue throughout life. The two organ systems are not only linked in normal physiology, but also in pathophysiological conditions. The chronic kidney disease–mineral and bone disorder (CKD-MBD) is still the most serious complication to CKD, resulting in increased morbidity and mortality. Current treatment therapies aimed at the phosphate retention and parathyroid hormone disturbances fail to reduce the high cardiovascular mortality in CKD patients, underlining the importance of other factors in the complex syndrome. This review will focus on vascular disease and its interplay with bone disorders in CKD. It will present the very late data showing a direct effect of vascular calcification on bone metabolism, indicating a vascular-bone tissue crosstalk in CKD. The calcified vasculature not only suffers from the systemic effects of CKD but seems to be an active player in the CKD-MBD syndrome impairing bone metabolism and might be a novel target for treatment and prevention.
Collapse
|
21
|
Møller AS, Bressendorff I, Nordholm A, Egstrand S, Jørgensen NR, Klausen TW, Olgaard K, Hansen D. Diurnal variation of magnesium and the mineral metabolism in patients with chronic kidney disease. Bone Rep 2021; 15:101130. [PMID: 34584906 PMCID: PMC8453182 DOI: 10.1016/j.bonr.2021.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023] Open
Abstract
Increasing levels of magnesium in blood are associated with reduced risk of cardiovascular disease in chronic kidney disease (CKD). Magnesium supplementation may reduce the progression of vascular calcification in CKD. The diurnal pattern and effect of fasting on magnesium in blood and urine in CKD is unknown, and knowledge of this may influence management of magnesium supplementation. We included ten patients with CKD stage four without diabetes mellitus and ten healthy controls. Participants were admitted to our hospital ward for a 24-h study period. Blood and urine samples were collected in a non-fasting state at 8 o'clock in the morning and every third hour hereafter until the final samples in a fasting state at 8 o'clock the following morning. We found no diurnal variation in plasma magnesium (p = 0.097) in either group, but a significant diurnal variation in urinary excretion of magnesium (p = 0.044) in both CKD and healthy controls with no significant interaction between the two groups, and thus no suggestion that CKD affects diurnal variation of plasma magnesium or urinary magnesium excretion. The levels of plasma magnesium were not significantly different in fasting and non-fasting conditions. Magnesium in plasma does not display a significant diurnal variation and can be measured at any time of day and in both fasting and non-fasting conditions. Urinary magnesium excretion displays diurnal variation, which is likely related to increased uptake of magnesium during meals and helps maintain a stable concentration of magnesium in blood.
Collapse
Affiliation(s)
- Astrid Sand Møller
- Department of Nephrology, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
| | - Iain Bressendorff
- Department of Nephrology, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
| | - Anders Nordholm
- Department of Nephrology, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
- Department of Nephrology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Søren Egstrand
- Department of Nephrology, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
- Department of Nephrology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Niklas R. Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, DK-2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tobias W. Klausen
- Department of Hematology, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
| | - Klaus Olgaard
- Department of Nephrology, Rigshospitalet, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
22
|
The Vascular Circadian Clock in Chronic Kidney Disease. Cells 2021; 10:cells10071769. [PMID: 34359937 PMCID: PMC8306728 DOI: 10.3390/cells10071769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease is associated with extremely high cardiovascular mortality. The circadian rhythms (CR) have an impact on vascular function. The disruption of CR causes serious health problems and contributes to the development of cardiovascular diseases. Uremia may affect the master pacemaker of CR in the hypothalamus. A molecular circadian clock is also expressed in peripheral tissues, including the vasculature, where it regulates the different aspects of both vascular physiology and pathophysiology. Here, we address the impact of CKD on the intrinsic circadian clock in the vasculature. The expression of the core circadian clock genes in the aorta is disrupted in CKD. We propose a novel concept of the disruption of the circadian clock system in the vasculature of importance for the pathology of the uremic vasculopathy.
Collapse
|
23
|
Mace ML, Olgaard K, Lewin E. New Aspects of the Kidney in the Regulation of Fibroblast Growth Factor 23 (FGF23) and Mineral Homeostasis. Int J Mol Sci 2020; 21:E8810. [PMID: 33233840 PMCID: PMC7699902 DOI: 10.3390/ijms21228810] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
The bone-derived hormone fibroblast growth factor 23 (FGF23) acts in concert with parathyroid hormone (PTH) and the active vitamin D metabolite calcitriol in the regulation of calcium (Ca) and phosphate (P) homeostasis. More factors are being identified to regulate FGF23 levels and the endocrine loops between the three hormones. The present review summarizes the complex regulation of FGF23 and the disturbed FGF23/Klotho system in chronic kidney disease (CKD). In addition to the reduced ability of the injured kidney to regulate plasma levels of FGF23, several CKD-related factors have been shown to stimulate FGF23 production. The high circulating FGF23 levels have detrimental effects on erythropoiesis, the cardio-vascular system and the immune system, all contributing to the disturbed system biology in CKD. Moreover, new factors secreted by the injured kidney and the uremic calcified vasculature play a role in the mineral and bone disorder in CKD and create a vicious pathological crosstalk.
Collapse
Affiliation(s)
- Maria L. Mace
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (K.O.); (E.L.)
| | - Klaus Olgaard
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (K.O.); (E.L.)
| | - Ewa Lewin
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (K.O.); (E.L.)
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|