1
|
Fernandez HE, Lipton M, Balderes O, Lin F, Marasa M, Milo Rasouly H, Sabatello M. Pediatric nephrologists' perspectives and clinical practices related to genetic testing and education. Pediatr Nephrol 2025; 40:755-763. [PMID: 39382664 PMCID: PMC11745921 DOI: 10.1007/s00467-024-06539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND While genetic testing is now more accessible in pediatric nephrology, little is known about the views of pediatric nephrologists regarding genetic testing in clinical settings. METHODS An online 41-item survey was developed and distributed via professional listservs to self-identified U.S. licensed pediatric nephrologists from January 22 to May 4, 2021. RESULTS Pediatric nephrologists had a high referral rate to genetic counseling and agreed on the significant impact of genetic testing on diagnosis, treatment, prognosis, counseling, and kidney transplant planning. Challenges for the utilization of genetic testing among pediatric nephrologists include the need to (1) learn how to counsel patients on the risks and benefits of genetic testing, (2) choose appropriate testing, (3) interpret genetic results, and (4) return those results to patients and families. CONCLUSION There exists an opportunity to expand genetic testing education for pediatric nephrologists to assist incorporation of genetic testing into clinical practice.
Collapse
Affiliation(s)
- Hilda E Fernandez
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Marissa Lipton
- Division of Pediatric Nephrology, Department of Pediatrics, New York University, New York, NY, USA
| | - Olivia Balderes
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
- Center of Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Maya Sabatello
- Center of Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, NY, USA.
- Division of Ethics, Department of Medical Humanities and Ethics, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Abu Al Rub F, Elsurer Afsar R, Fleetwood VA, Bastani B, Randall H, Nazzal M, Varma C, Afsar B, Jackson H, Yount S, Wooley C, Light J, Davis V, Caliskan Y, Lentine KL. The Diagnostic Yield of Genomic Sequencing-Based Genetic Kidney Disease Testing in Kidney Transplant Candidates: Experience at an Urban US Transplant Center. Transplantation 2025:00007890-990000000-00982. [PMID: 39819994 DOI: 10.1097/tp.0000000000005288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
BACKGROUND Recent studies suggest that approximately 10% of patients with chronic kidney disease (CKD) have disease-causing genetic variants, an observation relevant to evaluation of kidney transplant candidates. METHODS We retrospectively investigated the diagnostic yield of genetic testing in kidney transplant candidates evaluated at our program (January 1, 2021-December 8, 2022). Inclusion criteria were as follows: first-degree relative(s) with CKD/end-stage kidney disease (ESKD), early-onset CKD, focal segmental glomerulosclerosis, cystic kidney disease, alternative complement pathway-associated diseases, or ESKD of unknown cause. RESULTS One hundred eleven patients underwent genetic kidney disease testing. The most common indication for testing was early-onset CKD (34.2%), followed by a family history of CKD (23.4%), focal segmental glomerulosclerosis (18.0%), cystic kidney disease (9.0%), alternative complement pathway diseases (3.6%), and ESKD of unknown cause (11.7%). Overall diagnostic yield was 46.9% (52/111), and yield was highest among candidates with a family history of CKD (61.5%; 16/26). Among cases with positive testing, the most common diagnostic variant was APOL1, with 2 renal risk variants identified in 57.7% (30/52), while monogenic causes of CKD were identified in 42.3% (22/52). Genetic testing led to further evaluation or to a different diagnosis than the initial clinical diagnosis in 8.1% (9/111) of the cohort. For 24 transplant candidates, their identified diagnostic variants indicated the need for genetic testing of related living donor candidates; of these, 6 living donor candidates were evaluated and underwent testing, of whom donation was excluded in 1 candidate. CONCLUSIONS Pretransplant genetic testing increases understanding of CKD cause, and provides information for living donor evaluation and risk assessment of posttransplant disease recurrence.
Collapse
Affiliation(s)
- Fadee Abu Al Rub
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, MO
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kayal D, Vedrine E, Goursaud C, Sellier-Leclerc AL, Acquaviva-Bourdain C, Bertholet-Thomas A, Bacchetta J. Unveiling atypical diagnoses: when whole-genome analysis performed for refractory infantile hypomagnesemia reveals primary hyperoxaluria. Pediatr Nephrol 2025; 40:85-87. [PMID: 39088056 DOI: 10.1007/s00467-024-06467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Genetic testing is increasingly recognized as crucial in inherited nephropathies. Here, we report on an atypical presentation of a complex tubulopathy that led to an unexpected diagnosis of primary hyperoxaluria type 1 (PH1). CASE DIAGNOSIS At 2 weeks of age, a premature boy with stunted growth was diagnosed with complex tubulopathy associating hyponatremia, hypokalemia, hypomagnesemia, hypophosphatemia, metabolic acidosis, and acute kidney injury. Despite electrolyte replacement, severe hypomagnesemia persisted while massive parallel sequencing of genes involved in hypomagnesemia yielded negative results, including HNF1β. At 3 years of age, despite satisfactory growth, hypomagnesemia persisted and nephrocalcinosis appeared and progressed rapidly thereafter. Whole-genome analysis then revealed compound heterozygous mutations in the AGXT gene, thus leading to the diagnosis of PH1. CONCLUSION Given the emergence of new targeted therapies, thorough genetic analysis including whole-genome analysis should be pursued, especially in case of atypical clinical presentation.
Collapse
Affiliation(s)
- Dima Kayal
- Pediatric Nephrology Rheumatology Dermatology Unit, Reference Center for Rare Renal Diseases, ORKID and ERK-Net Networks, Lyon University Hospital, Bron, France.
- Hospital for Women Mothers Children: Hopital Femme Mere Enfant, Bron, France.
| | - Enzo Vedrine
- Pediatric Nephrology Rheumatology Dermatology Unit, Reference Center for Rare Renal Diseases, ORKID and ERK-Net Networks, Lyon University Hospital, Bron, France
- Unit of Molecular Biology and Biochemistry, Lyon University Hospital, Bron, France
| | - Claire Goursaud
- Unit of Molecular Biology and Biochemistry, Lyon University Hospital, Bron, France
- Consortium Auragen, LBMMS Auragen, Lyon, France
| | - Anne-Laure Sellier-Leclerc
- Pediatric Nephrology Rheumatology Dermatology Unit, Reference Center for Rare Renal Diseases, ORKID and ERK-Net Networks, Lyon University Hospital, Bron, France
| | | | - Aurelia Bertholet-Thomas
- Pediatric Nephrology Rheumatology Dermatology Unit, Reference Center for Rare Renal Diseases, ORKID and ERK-Net Networks, Lyon University Hospital, Bron, France
| | - Justine Bacchetta
- Pediatric Nephrology Rheumatology Dermatology Unit, Reference Center for Rare Renal Diseases, ORKID and ERK-Net Networks, Lyon University Hospital, Bron, France
- Unit of Molecular Biology and Biochemistry, Lyon University Hospital, Bron, France
- Lyon Est Medical School, INSERM1033 Research Unit, Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
4
|
Schott C, Lebedeva V, Taylor C, Abumelha S, Roshanov PS, Connaughton DM. Utility of Genetic Testing in Adults with CKD: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 2025; 20:101-115. [PMID: 39792540 PMCID: PMC11737453 DOI: 10.2215/cjn.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Key Points Diagnostic yield of genetic testing in adults with CKD is 40%. Risk factors including positive family history and extra-kidney features associate with higher diagnostic yield, although young age at testing did not. Seventeen percent of patients who received a genetic diagnosis were reclassified into a different phenotype after testing. Background Clinical and pathological confirmation of the diagnosis for CKD has limitations, with up to one third of individuals remaining without a formal diagnosis. Increasingly, data suggest that these limitations can be overcome by genetic testing. The objective of this study was to estimate the diagnostic yield of genetic testing in adults with CKD. Methods Cohort studies that report diagnostic yield of genetic testing in adults with CKD published in PubMed or Embase between January 1, 2005, and December 31, 2023, were included. The Joanna Briggs Institute critical appraisal tool for prevalence studies was used to assess bias. Duplicate independent data extraction and a meta-analysis of proportions using generalized linear mixed models were completed. Results We included 60 studies with 10,107 adults with CKD who underwent genetic testing. We found a diagnostic yield of 40% (95% confidence interval, 33 to 46); yield varied by CKD subtype with the highest yield of 62% (95% confidence interval, 57 to 68) in cystic kidney disease. Positive family history and presence of extra-kidney features were associated with higher diagnostic yield. Reclassification of the before testing diagnosis after a positive genetic testing result occurred in 17% of the solved cohort. Six studies showed the clinical benefits of genetic testing including cascade testing for family members and treatment changes. Conclusions Overall, we show that genetic testing is informative in a high proportion of clinically selected adults with CKD. The study was limited by heterogeneity in reporting, testing technologies, and cohort characteristics. Clinical Trial registry name and registration number: International prospective register of systematic reviews (CRD42023386880).
Collapse
Affiliation(s)
- Clara Schott
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Victoria Lebedeva
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Cambrie Taylor
- Department of Biology, Western University, London, Ontario, Canada
| | - Saeed Abumelha
- Department of Medicine, Division of Nephrology, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Pavel S. Roshanov
- Department of Medicine, Division of Nephrology, University Hospital, London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Dervla M. Connaughton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Division of Nephrology, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
5
|
Zagorec N, Calamel A, Delaporte M, Olinger E, Orr S, Sayer JA, Pillay VG, Denommé-Pichon AS, Mau-Them FT, Nambot S, Faivre L, Ars E, Torra R, Ong AC, Devuyst O, Perico N, Després AM, Lemoine H, de Fallois J, Brousse R, Hummel A, Knebelmann B, Maisonneuve N, Halbritter J, Le Meur Y, Audrézet MP, Cornec-Le Gall E. Clinical Spectrum and Prognosis of Atypical Autosomal Dominant Polycystic Kidney Disease Caused by Monoallelic Pathogenic Variants of IFT140. Am J Kidney Dis 2024:S0272-6386(24)01126-0. [PMID: 39732359 DOI: 10.1053/j.ajkd.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 12/30/2024]
Abstract
RATIONALE & OBJECTIVE Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype. STUDY DESIGN Case series. SETTING & PARTICIPANTS Seventy-five among 2797 European individuals with ADPKD-like phenotypes who underwent genetic testing that revealed pLoF IFT140-variants. FINDINGS The 75 individuals (median age 56 years, 53.3% females) were from 61 families and were found to have 41 different monoallelic pLoF IFT140-variants. The majority of individuals presented with large, exophytic kidney cysts (median [range] total kidney volume 688 ml [201-4139]), and 90.2% were classified using the Mayo Imaging Classification as Mayo Class 2A. Arterial hypertension was present in 50.7% of the individuals (median [range] age at diagnosis 59 years [29-73]). Only one patient developed kidney failure (at age 69 years). A significant difference in age-adjusted eGFR between male and female patients was observed (P<0.001). 56.3% of the individuals over the age of 60 years had an eGFR less than 60ml/min/1.73m2. The estimated genetic prevalence of monoallelic pLoF IFT140 variants was 19.76 (95%CI=18.8-20.7) and 27.89 (95%CI=23.8-31.9) per 10,000 in the Genome Aggregation Database and the 100,000 Genomes Project (100kG), respectively. CyKD (ICD-10 Q61) was associated with pLoF IFT140 variants (P=2.9x10-9, OR=5.6 (3.3-9.2)) only in 100kG. STUDY LIMITATIONS Retrospective study; younger patients and patients with milder forms of IFT140-related CyKD may not be diagnosed. CONCLUSIONS Individuals with monoallelic IFT140 pLoF variants are likely to develop kidney cysts atypical of classical ADPKD and generally have a favorable kidney prognosis.
Collapse
Affiliation(s)
- Nikola Zagorec
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France
| | - Alizée Calamel
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France
| | - Margaux Delaporte
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France
| | - Eric Olinger
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sarah Orr
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, United Kingdom
| | - John A Sayer
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Renal Services, Freeman Road, Newcastle Upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Vignesh-Guru Pillay
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Anne Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- INSERM UMR1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Laurence Faivre
- INSERM UMR1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche-Comté, Dijon, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), CHU Dijon, Dijon, France
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Recerca Sant Pau (R Sant Pau), RICORS2040, Barcelona, Spain
| | - Roser Torra
- Department of Nephrology, Fundació Puigvert, Instituto de Recerca Sant Pau (R Sant Pau), Universitat Autónoma de Barcelona, Medicine Department, RICORS2040, Barcelona, Spain
| | - Albert Cm Ong
- Kidney Genetics Group, Academic Nephrology, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Noberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Aurore Michel Després
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France
| | - Hugo Lemoine
- Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | | | - Romain Brousse
- University of Brest, Inserm, UMR 1078, Génétique, Génomique fonctionelle et Biotechnologies, Brest, France
| | - Aurélie Hummel
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Bertrand Knebelmann
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Nathalie Maisonneuve
- Sorbonne Université, INSERM UMRS 1155, Nephrology Department, Assistance Publique Hopitaux De Paris, Hopital Tenon, Paris, France
| | - Jan Halbritter
- Department of Nephrology, Necker Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Yannick Le Meur
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Service de Néphrologie-Dialyse, Centre Hospitalier de Valenciennes, Valenciennes, France
| | - Marie-Pierre Audrézet
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Emilie Cornec-Le Gall
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium.
| |
Collapse
|
6
|
Zanoni F, Obayemi JE, Gandla D, Castellano G, Keating B. Emerging role of genetics in kidney transplantation. Kidney Int 2024:S0085-2538(24)00913-X. [PMID: 39710162 DOI: 10.1016/j.kint.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/24/2024]
Abstract
The advent of more affordable genomic analytical pipelines has facilitated the expansion of genetic studies in kidney transplantation. Advances in genetic sequencing have allowed for a greater understanding of the genetic basis of chronic kidney disease, which has helped to guide transplant management and address issues related to living donation in specific disease settings. Recent efforts have shown significant effects of genetic ancestry and donor APOL1 risk genotypes in determining worse allograft outcomes and increased donation risks. Genetic studies in kidney transplantation outcomes have started to assess the effects of donor and recipient genetics in primary disease recurrence and transplant-related comorbidities, while genome-wide donor-recipient genetic incompatibilities have been shown to represent an important determinant of alloimmunity. Future large-scale comprehensive studies will shed light on the clinical utility of integrative genomics in the kidney transplantation setting.
Collapse
Affiliation(s)
- Francesca Zanoni
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Division of Transplantation, Department of Surgery, New York University Langone Health, Grossman School of Medicine, New York, New York, USA
| | - Joy E Obayemi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA; Comprehensive Transplant Center, Department of Surgery, Northwestern University, Chicago Illinois, USA
| | - Divya Gandla
- Division of Transplantation, Department of Surgery, New York University Langone Health, Grossman School of Medicine, New York, New York, USA
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Brendan Keating
- Institute of Systems Genetics, New York University Langone Health, Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
7
|
Delrue C, Speeckaert MM. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. J Pers Med 2024; 14:1157. [PMID: 39728069 DOI: 10.3390/jpm14121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide health concern because of its progressive nature and complex biology. Traditional diagnostic and therapeutic approaches usually fail to account for disease heterogeneity, resulting in low efficacy. Precision medicine offers a novel approach to studying kidney disease by combining omics technologies such as genomics, transcriptomics, proteomics, metabolomics, and epigenomics. By identifying discrete disease subtypes, molecular biomarkers, and therapeutic targets, these technologies pave the way for personalized treatment approaches. Multi-omics integration has enhanced our understanding of CKD by revealing intricate molecular linkages and pathways that contribute to treatment resistance and disease progression. While pharmacogenomics offers insights into expected responses to personalized treatments, single-cell and spatial transcriptomics can be utilized to investigate biological heterogeneity. Despite significant development, challenges persist, including data integration concerns, high costs, and ethical quandaries. Standardized data protocols, collaborative data-sharing frameworks, and advanced computational tools such as machine learning and causal inference models are required to address these challenges. With the advancement of omics technology, nephrology may benefit from improved diagnostic accuracy, risk assessment, and personalized care. By overcoming these barriers, precision medicine has the potential to develop novel techniques for improving patient outcomes in kidney disease treatment.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
8
|
Ben Khadda Z, Lahmamsi H, El Karmoudi Y, Ezrari S, El Hanafi L, Sqalli Houssaini T. Chronic Kidney Disease of Unknown Etiology: A Global Health Threat in Rural Agricultural Communities-Prevalence, Suspected Causes, Mechanisms, and Prevention Strategies. PATHOPHYSIOLOGY 2024; 31:761-786. [PMID: 39728687 DOI: 10.3390/pathophysiology31040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic Kidney Disease of Unknown Etiology (CKDu) is a worldwide hidden health threat that is associated with progressive loss of kidney functions without showing any initial symptoms until reaching end-stage renal failure, eventually leading to death. It is a growing health problem in Asia, Central America, Africa, and the Middle East, with identified hotspots. CKDu disease mainly affects young men in rural farming communities, while its etiology is not related to hypertension, kidney stones, diabetes, or other known causes. The main suspected causal factors are heat-stress, dehydration, exposure to agrochemicals, heavy metals and use of hard water, infections, mycotoxins, nephrotoxic agents, altitude, and genetic factors. This review gives an overview of CKDu and sheds light on its medical history, geographic distribution, and worldwide prevalence. It also summarizes the suspected causal factors, their proposed mechanisms of action, as well as the main methods used in the CKDu prior detection and surveillance. In addition, mitigation measures to reduce the burden of CKDu are also discussed. Further investigation utilizing more robust study designs would provide a better understanding of the risk factors linked to CKDu and their comparison between affected regions.
Collapse
Affiliation(s)
- Zineb Ben Khadda
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, PO 1893, Km 2200, Route Sidi Harazem, Fez 30000, Morocco
| | - Haitam Lahmamsi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Route Immouzer BP 2202, Fez 30000, Morocco
| | - Yahya El Karmoudi
- Laboratory of Ecology, Systematics, Conservation of Biodiversity, LESCB URL-CNRST N° 18, Faculty of Sciences, Abdelmalek Essaadi University, PO 2121 M'Hannech II, Tetouan 93002, Morocco
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, Mohammed First University, PO 4867 Oujda University, Oujda 60049, Morocco
| | - Laila El Hanafi
- Department of Biology, Laboratory of Functional Ecology and Engineering Environment, Sidi Mohamed Ben Abdellah University, Route Immouzer BP 2202, Fez 30000, Morocco
| | - Tarik Sqalli Houssaini
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, PO 1893, Km 2200, Route Sidi Harazem, Fez 30000, Morocco
- Department of Nephrology, Hassan II University Hospital, BP 1835, Atlas, Road of Sidi Harazem, Fez 30000, Morocco
| |
Collapse
|
9
|
Blasco M, Quiroga B, García-Aznar JM, Castro-Alonso C, Fernández-Granados SJ, Luna E, Fernández Fresnedo G, Ossorio M, Izquierdo MJ, Sanchez-Ospina D, Castañeda-Infante L, Mouzo R, Cao M, Besada-Cerecedo ML, Pan-Lizcano R, Torra R, Ortiz A, de Sequera P. Genetic Characterization of Kidney Failure of Unknown Etiology in Spain: Findings From the GENSEN Study. Am J Kidney Dis 2024; 84:719-730.e1. [PMID: 38972501 DOI: 10.1053/j.ajkd.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 07/09/2024]
Abstract
RATIONALE & OBJECTIVE Chronic kidney disease of unknown etiology (CKDUE) is one of the main global causes of kidney failure. Genetic studies may identify an etiology in these patients, but few studies have implemented genetic testing of CKDUE in a population-based series of patients, which was the focus of the GENSEN Study. STUDY DESIGN Case series. SETTINGS & PARTICIPANTS 818 patients aged≤45 years at 51 Spanish centers with CKDUE, and either an estimated glomerular filtration rate of<15mL/min/1.73m2 or treatment with maintenance dialysis or transplantation. OBSERVATIONS Genetic testing for 529 genes associated with inherited nephropathies using high-throughput sequencing (HTS). Pathogenic and/or likely pathogenic (P/LP) gene variants concordant with the inheritance pattern were detected in 203 patients (24.8%). Variants in type IV collagen genes were the most frequent (COL4A5, COL4A4, COL4A3; 35% of total gene variants), followed by NPHP1, PAX2, UMOD, MUC1, and INF2 (7.3%, 5.9%, 2.5%, 2.5%, and 2.5%, respectively). Overall, 87 novel variants classified as P/LP were identified. The top 5 most common previously undiagnosed diseases were Alport syndrome spectrum (35% of total positive reports), genetic podocytopathies (19%), nephronophthisis (11%), autosomal dominant tubulointerstitial kidney disease (7%), and congenital anomalies of the kidney and urinary tract (CAKUT, 5%). A family history of kidney disease was reported by 191 participants (23.3%) and by 65 of 203 patients (32.0%) with P/LP variants. LIMITATIONS Missing data, and selection bias resulting from voluntary enrollment. CONCLUSIONS Genomic testing with HTS identified a genetic cause of kidney disease in approximately one quarter of young patients with CKDUE and advanced kidney disease. These findings suggest that genetic studies are a potentially useful tool for the evaluation of people with CKDUE. PLAIN-LANGUAGE SUMMARY The cause of kidney disease is unknown for 1 in 5 patients requiring kidney replacement therapy, reflecting possible prior missed treatment opportunities. We assessed the diagnostic utility of genetic testing in children and adults aged≤45 years with either an estimated glomerular filtration rate of<15mL/min/1.73m2 or treatment with maintenance dialysis or transplantation. Genetic testing identified the cause of kidney disease in approximately 1 in 4 patients without a previously known cause of kidney disease, suggesting that genetic studies are a potentially useful tool for the evaluation of these patients.
Collapse
Affiliation(s)
- Miquel Blasco
- Nephrology and Kidney Transplant Department, National Reference Center for Complex Glomerular Diseases, Hospital Clínic, Barcelona University, Barcelona; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona; RICORS2040, Universidad Autónoma de Madrid, Madrid
| | - Borja Quiroga
- IIS-La Princesa, Servicio de Nefrología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid; RICORS2040, Universidad Autónoma de Madrid, Madrid
| | - José M García-Aznar
- Clinical Area of Genetic Diagnostic in Nephrology and Immunology, Health in Code, A Coruña
| | - Cristina Castro-Alonso
- Department of Nephrology, Doctor Peset University Hospital, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia
| | - Saulo J Fernández-Granados
- Hospital Universitario Insular de Gran Canaria, Nephrology Service, Las Palmas de Gran Canaria, Las Palmas
| | - Enrique Luna
- Complejo Hospitalario Universitario de Badajoz, Unidad Enfermedades Genéticas Renales, Servicio de Nefrologia, Badajoz
| | - Gema Fernández Fresnedo
- Nephrology Department, Hospital Marqués de Valdecilla-Grupo de Inmunopatología IDIVAL, Santander
| | - Marta Ossorio
- Nephrology Department, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid
| | | | | | | | - Ricardo Mouzo
- Nephrology Department, Hospital El Bierzo, Ponferrada, Spain
| | - Mercedes Cao
- Nephrology Department, Complexo Hospitalario Universitario A Coruña, A Coruña
| | | | | | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau, Medicine Department, Universitat Autònoma de Barcelona, Barcelona; RICORS2040, Universidad Autónoma de Madrid, Madrid
| | - Alberto Ortiz
- RICORS2040, Universidad Autónoma de Madrid, Madrid; Nephrology and Hypertension Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid; Medicine Department, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid.
| | - Patricia de Sequera
- Nephrology Department, Hospital Universitario Infanta Leonor, Universidad Autónoma de Madrid, Madrid; RICORS2040, Universidad Autónoma de Madrid, Madrid; Universidad Complutense de Madrid, Universidad Autónoma de Madrid, Madrid.
| |
Collapse
|
10
|
Wang G, Liao M, Tan DJ, Chen X, Chao R, Zhu Y, Li P, Guan Y, Mao J, Hu L. Advances in Diagnosis and Treatment of Inherited Kidney Diseases in Children. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:558-572. [PMID: 39664340 PMCID: PMC11631113 DOI: 10.1159/000541564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/18/2024] [Indexed: 12/13/2024]
Abstract
Background Inherited kidney diseases (IKDs) in children pose unique diagnostic and therapeutic challenges. IKD significantly impact patient quality of life, morbidity, mortality, and cost to the healthcare system. With over 150 genetic abnormalities, they account for approximately 30% of cases requiring renal replacement therapy. There is an urgent need to advance both diagnosis and treatment strategies. In this review, we present recent advances in diagnosis and treatment for facilitating personalized treatment approaches. Summary The diagnostic landscape for IKDs have evolved significantly, emphasizing precise genetic identification and classification of these disorders. Recent advancements include the refinement of genetic testing techniques, such as whole exome sequencing, which has improved the accuracy of diagnosing specific diseases and facilitated early intervention strategies. Additionally, this review categorizes IKDs based on genetic abnormalities and clinical manifestations, enhancing understanding and management approaches. Finally, it summarizes the corresponding treatment, and lists the application of emerging therapeutic options such as gene therapy and organoids, which show promise in transforming treatment outcomes. Key Messages This review summarizes the common types of IKDs in children, including their diagnosis and treatment advances, and provides an update on the status of gene therapy development for these disorders.
Collapse
Affiliation(s)
- Guozhen Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqiu Liao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danny Junyi Tan
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Chao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zhu
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuelin Guan
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Navaneethan SD, Bansal N, Cavanaugh KL, Chang A, Crowley S, Delgado C, Estrella MM, Ghossein C, Ikizler TA, Koncicki H, St Peter W, Tuttle KR, William J. KDOQI US Commentary on the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of CKD. Am J Kidney Dis 2024:S0272-6386(24)00977-6. [PMID: 39556063 DOI: 10.1053/j.ajkd.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 11/19/2024]
Abstract
The Kidney Disease Outcomes Quality Initiative (KDOQI) convened a work group to review the 2024 KDIGO (Kidney Disease: Improving Global Outcomes) guideline for the management of chronic kidney disease (CKD). The KDOQI Work Group reviewed the KDIGO guideline statements and practice points and provided perspective for implementation within the context of clinical practice in the United States. In general, the KDOQI Work Group concurs with several recommendations and practice points proposed by the KDIGO guidelines regarding CKD evaluation, risk assessment, and management options (both lifestyle and medications) for slowing CKD progression, addressing CKD-related complications, and improving cardiovascular outcomes. The KDOQI Work Group acknowledges the growing evidence base to support the use of several novel agents such as sodium/glucose cotransporter 2 inhibitors for several CKD etiologies, and glucagon-like peptide 1 receptor agonists and nonsteroidal mineralocorticoid receptor antagonists for type 2 CKD in setting of diabetes. Further, KDIGO guidelines emphasize the importance of team-based care which was also recognized by the work group as a key factor to address the growing CKD burden. In this commentary, the Work Group has also assessed and discussed various barriers and potential opportunities for implementing the recommendations put forth in the 2024 KDIGO guidelines while the scientific community continues to focus on enhancing early identification of CKD and discovering newer therapies for managing kidney disease.
Collapse
Affiliation(s)
- Sankar D Navaneethan
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health and Institute of Clinical and Translational Research, Baylor College of Medicine, Houston, Texas; Section of Nephrology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas.
| | - Nisha Bansal
- Cardiovascular Health Research Unit, Department of Medicine, Washington
| | - Kerri L Cavanaugh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander Chang
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - Susan Crowley
- Section of Nephrology, Department of Medicine, School of Medicine, Yale University, New Haven, Connecticut; Kidney Medicine Section, Medical Services, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Cynthia Delgado
- Nephrology Section, San Francisco Veterans Affairs Health Care System, San Francisco, California; Division of Nephrology, University of California-San Francisco, San Francisco, California
| | - Michelle M Estrella
- Nephrology Section, San Francisco Veterans Affairs Health Care System, San Francisco, California; Division of Nephrology, University of California-San Francisco, San Francisco, California
| | - Cybele Ghossein
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Holly Koncicki
- Division of Nephrology, Mount Sinai Health System, New York, New York
| | - Wendy St Peter
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Katherine R Tuttle
- Institute of Translational Health Sciences, Kidney Research Institute, and Nephrology Division, Washington; School of Medicine, University of Washington, Seattle, and Providence Medical Research Center, Providence Inland Northwest Health, Spokane, Washington
| | - Jeffrey William
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Bartram MP, Beck BB, Müller RU. [Genetics in nephrology - any news?]. Dtsch Med Wochenschr 2024; 149:1361-1366. [PMID: 39437829 DOI: 10.1055/a-2198-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
While genetic kidney diseases were long regarded as a rare cause of kidney failure, it has been shown in recent years that they account for a relevant proportion of cases. In cohorts of kidney transplant recipients, a monogenic cause is found in up to 30% of cases. Identifying the genetic cause of kidney disease has become much easier thanks to technological advances in DNA sequencing. The focus has now shifted to understanding the significance of the findings and identifying diagnostic gaps. It is still not possible to clarify all CKD cases of unclear aetiology. Besides very effective generic treatments for monogenic kidney disease (e.g., ACE-inhibitor use in Alport Syndrome), increasing knowledge of the pathophysiology of genetic kidney diseases has led to a growing number of targeted therapies. These include the treatment of ADPKD with Tolvaptan, which has now been in use for 10 years. Recently, exciting, and completely new approaches have been added, such as the first siRNA therapies in nephrology for primary hyperoxaluria type 1, the targeted treatment of hyperphagia in Bardet-Biedl syndrome, the therapy of APOL1-associated kidney disease or the use of the HIF-2 antagonist Belzutifan for renal cell carcinoma associated with Von-Hippel-Lindau syndrome. The new possibilities in the treatment of patients with genetic kidney diseases have also clearly revealed deficits in current patient care. Centers of excellence with extensive experience in this area therefore play an important role in improving care. This also applies to the further training of colleagues in the field. In Germany, the National Action Alliance for People with Rare Diseases (NAMSE) and the nationwide establishment of - to date - 36 centers for rare diseases play an important role in this regard.
Collapse
Affiliation(s)
- Malte P Bartram
- Klinik II für Innere Medizin - Nephrologie, Rheumatologie, Diabetologie und Allgemeine Innere Medizin, Uniklinik Köln, Köln, Deutschland
| | - Bodo B Beck
- Institut für Humangenetik, Uniklinik Köln, Köln, Deutschland
| | - Roman-Ulrich Müller
- Klinik II für Innere Medizin - Nephrologie, Rheumatologie, Diabetologie und Allgemeine Innere Medizin, Uniklinik Köln, Köln, Deutschland
| |
Collapse
|
13
|
Ames EG, Anand PM, Bekheirnia MR, Doshi MD, El Ters M, Freese ME, Gbadegesin RA, Guay-Woodford LM, Java A, Ranch D, Rodig NM, Wang X, Thomas CP. Evaluation for genetic disease in kidney transplant candidates: A practice resource. Am J Transplant 2024:S1600-6135(24)00679-8. [PMID: 39488252 DOI: 10.1016/j.ajt.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The increasing availability of clinically approved genetic tests for kidney disease has spurred the growth in the use of these tests in kidney transplant practice. Neither the testing options nor the patient population where this should be deployed has been defined, and its value in kidney transplant evaluation has not been demonstrated. Transplant providers may not always be aware of the limitations of genetic testing and may need guidance on comprehending test results and providing counsel, as many centers do not have easy access to a renal genetic counselor or a clinical geneticist. In this practice resource, a working group of nephrologists, geneticists, and a genetic counselor provide a pragmatic, tailored approach to genetic testing, advocating for its use only where the genetic diagnosis or its exclusion can impact the choices available for transplantation or posttransplant management or the workup of living donor candidates at increased risk for heritable disease.
Collapse
Affiliation(s)
- Elizabeth G Ames
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Prince M Anand
- Department of Internal Medicine, Medical University of South Carolina, Lancaster, South Carolina, USA
| | - Mir Reza Bekheirnia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Michael E. Debakey VA Medical Center, Houston, Texas, USA
| | - Mona D Doshi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mireille El Ters
- Division of Nephrology, Department of Medicine, William von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret E Freese
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rasheed A Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lisa M Guay-Woodford
- Divisions of Nephrology and Genetics, Research Institute and Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anuja Java
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Ranch
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Nancy M Rodig
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Xiangling Wang
- Center for Personalized Genetic Healthcare, Department of Kidney Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Christie P Thomas
- Division of Nephrology, Department of Medicine, William von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA; Department of Internal Medicine, VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
14
|
Chen HL, Chiang HY, Chang DR, Cheng CF, Wang CCN, Lu TP, Lee CY, Chattopadhyay A, Lin YT, Lin CC, Yu PT, Huang CF, Lin CH, Yeh HC, Ting IW, Tsai HK, Chuang EY, Tin A, Tsai FJ, Kuo CC. Discovery and prioritization of genetic determinants of kidney function in 297,355 individuals from Taiwan and Japan. Nat Commun 2024; 15:9317. [PMID: 39472450 PMCID: PMC11522641 DOI: 10.1038/s41467-024-53516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
Current genome-wide association studies (GWAS) for kidney function lack ancestral diversity, limiting the applicability to broader populations. The East-Asian population is especially under-represented, despite having the highest global burden of end-stage kidney disease. We conducted a meta-analysis of multiple GWASs (n = 244,952) on estimated glomerular filtration rate and a replication dataset (n = 27,058) from Taiwan and Japan. This study identified 111 lead SNPs in 97 genomic risk loci. Functional enrichment analyses revealed that variants associated with F12 gene and a missense mutation in ABCG2 may contribute to chronic kidney disease (CKD) through influencing inflammation, coagulation, and urate metabolism pathways. In independent cohorts from Taiwan (n = 25,345) and the United Kingdom (n = 260,245), polygenic risk scores (PRSs) for CKD significantly stratified the risk of CKD (p < 0.0001). Further research is required to evaluate the clinical effectiveness of PRSCKD in the early prevention of kidney disease.
Collapse
Affiliation(s)
- Hung-Lin Chen
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiu-Yin Chiang
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan
| | - David Ray Chang
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chi-Fung Cheng
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Tzu-Pin Lu
- Institute of Health Data Analytics and Statistics, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chien-Yueh Lee
- Master Program in Artificial Intelligence, Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei, Taiwan
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Amrita Chattopadhyay
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan
| | - Che-Chen Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Tzu Yu
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chien-Fong Huang
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chieh-Hua Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hung-Chieh Yeh
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - I-Wen Ting
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Eric Y Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
| | - Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan.
- Department of Medical Laboratory Science & Biotechnology, Asia University, Taichung, Taiwan.
| | - Chin-Chi Kuo
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan.
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Knoers NVAM. Prenatal and preimplantation testing for monogenic kidney disorders. Kidney Int 2024:S0085-2538(24)00733-6. [PMID: 39477068 DOI: 10.1016/j.kint.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 11/17/2024]
Abstract
In recent years, advances in genetic sequencing techniques and the analysis of sequencing data have significantly improved our ability to diagnose genetic kidney diseases. Identification of the disease-causing genetic variant(s) is crucial not only for prognostication and personalized management, but also for providing genetic counseling and guiding family planning decisions. It is particularly important that patients desiring children receive advice on their reproductive choices early, ideally before conception. This concise review focuses on the options available for prenatal and preimplantation genetic testing in the context of monogenic kidney diseases, including the latest progress and the legal and ethical issues associated with these reproductive technologies. Although these tests could be performed for all monogenic disorders where the disease-causing variant(s) has (have) been identified in the index patient, invasive prenatal testing is currently primarily performed for severe childhood-onset monogenic kidney disorders. Noninvasive prenatal diagnosis for monogenic disorders is a rapidly developing field that promises to provide an accurate and acceptable alternative to invasive procedures once several technical challenges have been addressed. Preimplantation genetic testing allows for the selection and implantation of embryos free from the disease-causing genetic variants, significantly lowering the risk of affected pregnancies. This option is becoming more popular among individuals with monogenic kidney diseases, particularly those with disorders that manifest later in life, such as autosomal dominant polycystic kidney disease. This review covers the procedure, its outcomes, and the technical, ethical and legal challenges of preimplantation genetic testing for monogenic kidney diseases.
Collapse
Affiliation(s)
- Nine V A M Knoers
- Department of Genetics, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
16
|
Stark Z, Byrne AB, Sampson MG, Lennon R, Mallett AJ. A guide to gene-disease relationships in nephrology. Nat Rev Nephrol 2024:10.1038/s41581-024-00900-7. [PMID: 39443743 DOI: 10.1038/s41581-024-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The use of next-generation sequencing technologies such as exome and genome sequencing in research and clinical care has transformed our understanding of the molecular architecture of genetic kidney diseases. Although the capability to identify and rigorously assess genetic variants and their relationship to disease has advanced considerably in the past decade, the curation of clinically relevant relationships between genes and specific phenotypes has received less attention, despite it underpinning accurate interpretation of genomic tests. Here, we discuss the need to accurately define gene-disease relationships in nephrology and provide a framework for appraising genetic and experimental evidence critically. We describe existing international programmes that provide expert curation of gene-disease relationships and discuss sources of discrepancy as well as efforts at harmonization. Further, we highlight the need for alignment of disease and phenotype terminology to ensure robust and reproducible curation of knowledge. These collective efforts to support evidence-based translation of genomic sequencing into practice across clinical, diagnostic and research settings are crucial for delivering the promise of precision medicine in nephrology, providing more patients with timely diagnoses, accurate prognostic information and access to targeted treatments.
Collapse
Affiliation(s)
- Zornitza Stark
- ClinGen, Boston, MA, USA.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| | - Alicia B Byrne
- ClinGen, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Matthew G Sampson
- ClinGen, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel Lennon
- ClinGen, Boston, MA, USA
- Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew J Mallett
- ClinGen, Boston, MA, USA.
- Townsville Hospital and Health Service, Townsville, Queensland, Australia.
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Lu K, Chiu KY, Chen IC, Lin GC. Identification of GTF2I Polymorphisms as Potential Biomarkers for CKD in the Han Chinese Population : Multicentric Collaborative Cross-Sectional Cohort Study. KIDNEY360 2024; 5:1466-1476. [PMID: 39024039 PMCID: PMC11556913 DOI: 10.34067/kid.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Key Points Genetic factors are key players in CKD, with two linked single-nucleotide polymorphisms in the GTF2I gene, associated with CKD susceptibility in the Taiwanese population. Individuals with specific GTF2I genotypes (CT/TT for rs117026326 and CT/CC for rs73366469) show higher CKD prevalence and earlier onset. Men with the specific genotypes of rs117026326 and rs73366469 face a heightened CKD risk compared with women, particularly at lower eGFR. Background CKD poses a global health challenge, but its molecular mechanisms are poorly understood. Genetic factors play a critical role, and phenome-wide association studies and genome-wide association studies shed light on CKD's genetic architecture, shared variants, and biological pathways. Methods Using data from the multicenter collaborative precision medicine cohort, we conducted a retrospective prospectively maintained cross-sectional study. Participants with comprehensive information and genotyping data were selected, and genome-wide association study and phenome-wide association study analyses were performed using the curated Taiwan Biobank version 2 array to identify CKD-associated genetic variants and explore their phenotypic associations. Results Among 58,091 volunteers, 8420 participants were enrolled. Individuals with CKD exhibited higher prevalence of metabolic, cardiovascular, autoimmune, and nephritic disorders. Genetic analysis unveiled two closely linked single-nucleotide polymorphisms, rs117026326 and rs73366469, both associated with GTF2I and CKD (r 2 = 0.64). Further examination revealed significant associations between these single-nucleotide polymorphisms and various kidney-related diseases. The CKD group showed a higher proportion of individuals with specific genotypes (CT/TT for rs117026326 and CT/CC for rs73366469), suggesting potential associations with CKD susceptibility (P < 0.001). Furthermore, individuals with these genotypes developed CKD at an earlier age. Multiple logistic regression confirmed the independent association of these genetic variants with CKD. Subgroup analysis based on eGFR demonstrated an increased risk of CKD among carriers of the rs117026326 CT/TT genotypes (odds ratio [OR], 1.15; 95% confidence interval [CI], 1.07 to 1.24; P < 0.001; OR, 1.32, 95% CI, 1.04 to 1.66; P = 0.02, respectively) and carriers of the rs73366469 CT/CC genotypes (OR, 1.13; 95% CI, 1.05 to 1.21; P < 0.001; OR, 1.31; 95% CI, 1.08 to 1.58; P = 0.0049, respectively). In addition, men had a higher CKD risk than women at lower eGFR levels (OR, 1.35; 95% CI, 1.13 to 1.61; P < 0.001). Conclusions Our study reveals important links between genetic variants GTF2I and susceptibility to CKD, advancing our understanding of CKD development in the Taiwanese population and suggesting potential for personalized prevention and management strategies. More research is needed to validate and explore these variants in diverse populations.
Collapse
Affiliation(s)
- Kevin Lu
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Kun-Yuan Chiu
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Iatridi F, Carrero JJ, Cornec-Le Gall E, Kanbay M, Luyckx V, Shroff R, Ferro CJ. A commentary from the European Renal Best Practice (ERBP) on the Kidney Disease Improving Global Outcomes (KDIGO) 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease in children and adults. Nephrol Dial Transplant 2024:gfae209. [PMID: 39299913 DOI: 10.1093/ndt/gfae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
The Kidney Disease: Improving Global Outcomes (KDIGO) 2024 Guidelines for identification and management of chronic kidney disease (CKD) are a welcome development coming 12 years after the paradigm changing 2012 guidelines. We are living in an unprecedented era in nephrology with novel therapies, including sodium-glucose cotransporter-2 inhibitors, glucagon-like peptide-1 receptor agonists and non-steroidal mineralocorticoid receptor antagonists now being proven in multiple randomised controlled clinical trials to reduce both the progression of CKD and cardiovascular morbidity and mortality. The KDIGO 2024 CKD guideline is aimed at a broad audience looking after children and adults with CKD and provide practical and actionable steps to improve care. This commentary reviews the guideline sections pertaining to the evaluation and risk assessment of individuals with CKD from a European perspective. We feel that despite the last guideline being published 12 years ago, and that the assessment of CKD has been emphasized by many other national/international nephrology, cardiology and diabetology guidelines and societies, the diagnosis and treatment of CKD remains poor across Europe. As such the KDIGO 2024 CKD Guidelines should be seen as an urgent call to action to improve diagnosis and care of children and adults with CKD across Europe. We know what we need to do. We now need to get on and do it.
Collapse
Affiliation(s)
- Fotini Iatridi
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Division of Nephrology, Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Emilie Cornec-Le Gall
- University Brest, Inserm, UMR 1078, GGB, CHU Brest, Centre de Références Maladies Rénales Héréditaires de L'enfant et de L'adulte MARHEA, Brest, France
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Valerie Luyckx
- University Children's Hospital, Zurich; Department of Public Health and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Paediatrics and Child Health, University of Cape Town
| | - Rukshana Shroff
- Pediatric Nephrology Unit, University College London Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Charles J Ferro
- Department of Renal Medicine University Hospitals Birmingham and Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Claus LR, Ernst RF, Elferink MG, van Deutekom HW, van der Zwaag B, van Eerde AM. The Importance of Copy Number Variant Analysis in Patients with Monogenic Kidney Disease. Kidney Int Rep 2024; 9:2695-2704. [PMID: 39291214 PMCID: PMC11403095 DOI: 10.1016/j.ekir.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Genetic testing can reveal monogenic causes of kidney diseases, offering diagnostic, therapeutic, and prognostic benefits. Although single nucleotide variants (SNVs) and copy number variants (CNVs) can result in kidney disease, CNV analysis is not always included in genetic testing. Methods We investigated the diagnostic value of CNV analysis in 2432 patients with kidney disease genetically tested at the University Medical Centre Utrecht between 2014 and May 2022. We combined previous diagnostic testing results, encompassing SNVs and CNVs, with newly acquired results based on retrospective CNV analysis. The reported yield considers both the American College of Medical Genetics and Genomics (ACMG) classification and whether the genotype actually results in disease. Results We report a diagnostic yield of at least 23% for our complete diagnostic cohort. The total diagnostic yield based solely on CNVs was 2.4%. The overall contribution of CNV analysis, defined as the proportion of positive genetic tests requiring CNV analysis, was 10.5% and varied among different disease subcategories, with the highest impact seen in congenital anomalies of the kidney and urinary tract (CAKUT) and chronic kidney disease at a young age. We highlight the efficiency of exome-based CNV calling, which reduces the need for additional diagnostic tests. Furthermore, a complex structural variant, likely a COL4A4 founder variant, was identified. Additional findings unrelated to kidney diseases were reported in a small percentage of cases. Conclusion In summary, this study demonstrates the substantial diagnostic value of CNV analysis, providing insights into its contribution to the diagnostic yield and advocating for its routine inclusion in genetic testing of patients with kidney disease.
Collapse
Affiliation(s)
- Laura R. Claus
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Robert F. Ernst
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Martin G. Elferink
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Bert van der Zwaag
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
20
|
Caliment A, Van Reeth O, Hougardy C, Dahan K, Niel O. A step-by-step, multidisciplinary strategy to maximize the yield of genetic testing in pediatric patients with chronic kidney diseases. Pediatr Nephrol 2024; 39:2733-2740. [PMID: 38316682 DOI: 10.1007/s00467-024-06299-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The use of genetic testing in pediatric patients with chronic kidney diseases (CKD) has increased exponentially in the past few years, particularly with the emergence of novel sequencing techniques. However, the genetic yield remains unexpectedly low in nephrology, with an impact on diagnosis, prognosis and treatment. Moreover, the increasing diversity of genetic testing possibilities can be seen as an obstacle by clinicians, in the absence of a strong background in genetics. Here, we propose a step-by-step, multidisciplinary strategy for the diagnostic evaluation of pediatric patients with CKD, and appropriate genetic test selection to maximize the yield of genetic testing. METHODS A total of 126 pediatric patients were enrolled in a retrospective file analysis. Genetic testing techniques used included phenotype-associated next-generation panel sequencing (N = 41), Sanger and SNaPshot sequencing (N = 3) and/or whole exome sequencing (N = 2). RESULTS Overall genetic yield reached 63% and genetic testing significantly impacted patient management in 70%. The distribution of kidney diseases among patients was balanced and matched previously described pediatric cohorts in terms of glomerulopathies, tubulopathies and ciliopathies. Genetic analyses led to significant treatment modifications, kidney biopsy sparing and personalized nephroprotection, as well as tailored genetic counseling. Of note, the evaluation of Human Phenotype Ontology term accuracy in the cohort showed that causal mutations were precisely identified in 85% of the patients at most. CONCLUSION Here we suggest a step-by-step, multidisciplinary strategy to maximize the yield of genetic testing in pediatric patients with CKD. This approach optimizes patient care while avoiding unnecessary treatments or procedures.
Collapse
Affiliation(s)
- Ancuta Caliment
- Pediatric Nephrology, Centre Hospitalier de Luxembourg, 4 Rue Barblé, L1210, Luxembourg, Luxembourg.
| | - Olil Van Reeth
- Pediatric Nephrology, Centre Hospitalier de Luxembourg, 4 Rue Barblé, L1210, Luxembourg, Luxembourg
| | - Charlotte Hougardy
- Center of Human Genetics, Institut de Pathologie Et de Génétique, Gosselies, Belgium
| | - Karin Dahan
- Center of Human Genetics, Institut de Pathologie Et de Génétique, Gosselies, Belgium
- Laboratoire National de Santé, 1 Rue Louis Rech, L3555, Dudelange, Luxembourg
| | - Olivier Niel
- Pediatric Nephrology, Centre Hospitalier de Luxembourg, 4 Rue Barblé, L1210, Luxembourg, Luxembourg
| |
Collapse
|
21
|
Dai R, Wang C, Shen Q, Xu H. The emerging role of clinical genetics in pediatric patients with chronic kidney disease. Pediatr Nephrol 2024; 39:2549-2553. [PMID: 38502225 DOI: 10.1007/s00467-024-06329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Affiliation(s)
- Rufeng Dai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Chunyan Wang
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Vivante A. Genetics of Chronic Kidney Disease. N Engl J Med 2024; 391:627-639. [PMID: 39141855 DOI: 10.1056/nejmra2308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Asaf Vivante
- From the Department of Pediatrics and the Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, and the Nephro-Genetics Clinic and Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel Hashomer, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - all in Israel
| |
Collapse
|
23
|
Knoers NV, van Eerde AM. The Role of Genetic Testing in Adult CKD. J Am Soc Nephrol 2024; 35:1107-1118. [PMID: 39288914 PMCID: PMC11377809 DOI: 10.1681/asn.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Mounting evidence indicates that monogenic disorders are the underlying cause in a significant proportion of patients with CKD. In recent years, the diagnostic yield of genetic testing in these patients has increased significantly as a result of revolutionary developments in genetic sequencing techniques and sequencing data analysis. Identification of disease-causing genetic variant(s) in patients with CKD may facilitate prognostication and personalized management, including nephroprotection and decisions around kidney transplantation, and is crucial for genetic counseling and reproductive family planning. A genetic diagnosis in a patient with CKD allows for screening of at-risk family members, which is also important for determining their eligibility as kidney transplant donors. Despite evidence for clinical utility, increased availability, and data supporting the cost-effectiveness of genetic testing in CKD, especially when applied early in the diagnostic process, many nephrologists do not use genetic testing to its full potential because of multiple perceived barriers. Our aim in this article was to empower nephrologists to (further) implement genetic testing as a diagnostic means in their clinical practice, on the basis of the most recent insights and exemplified by patient vignettes. We stress why genetic testing is of significant clinical benefit to many patients with CKD, provide recommendations for which patients to test and which test(s) to order, give guidance about interpretation of genetic testing results, and highlight the necessity for and essential components of pretest and post-test genetic counseling.
Collapse
Affiliation(s)
- Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
24
|
Jayasinghe K, Biros E, Harris T, Wood A, O’Shea R, Hill L, Fowles L, Wardrop L, Shalhoub C, Hahn D, Rangan G, Kevin L, Tchan M, Snelling P, Sandow R, Sundaram M, Chaturvedi S, Trnka P, Faull R, Poplawski NK, Huntley V, Garza D, Wallis M, Jose M, Leaver A, Trainer AH, Wilkins EJ, White S, Elbaum Y, Prawer Y, Krzesinski E, Valente G, Winship I, Ryan J, Whitlam J, Nicholls K, West K, Donaldson L, Johnstone L, Lewit-Mendes M, Kerr PG, Bodek S, Chakera A, MacShane M, Mincham C, Stackpoole E, Willis F, Soraru J, Pachter N, Bennetts B, Forbes TA, Mallawaarachchi A, Quinlan C, Patel C, McCarthy H, Goranitis I, Best S, Alexander S, Stark Z, Mallett AJ. Implementation and Evaluation of a National Multidisciplinary Kidney Genetics Clinic Network Over 10 Years. Kidney Int Rep 2024; 9:2372-2385. [PMID: 39156154 PMCID: PMC11328548 DOI: 10.1016/j.ekir.2024.04.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Diagnostic genomic sequencing is the emerging standard of care in nephrology. There is a growing need to scale up the implementation of genomic diagnostics nationally to improve patient outcomes. Methods This pragmatic study provided genomic or genetic testing to patients with suspected monogenic kidney disease through a national network of kidney genetics clinics (KGCs). We sought to evaluate the experiences of implementing genomic diagnostics across Australia and associated diagnostic outcomes between 2013 and 2022. Results We successfully established and expanded a nationwide network of 20 clinics as of 2022; concurrently developing laboratory, research, and education programs to scale the clinical application of genomics in nephrology. We report on an Australian cohort of 1506 kidney patients, of whom 1322 received their test results. We assessed barriers to implementation in the nephrology context, and where possible, applied real-time solutions to improve clinical processes over 10 years. Conclusion Developing a multidisciplinary kidney genetics model across multiple health services nationally was highly successful. This model supported optimal care of individuals with monogenic kidney disease in an economically responsible way. It has continued to evolve with technological and service developments and is now set to scale further as genomic testing for kidney patients transitions to health care system funding.
Collapse
Affiliation(s)
- Kushani Jayasinghe
- Department of Nephrology, Monash Medical Centre, Melbourne, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Erik Biros
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
| | - Trudie Harris
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
| | - Alasdair Wood
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Rosie O’Shea
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lauren Hill
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lindsay Fowles
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Louise Wardrop
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Carolyn Shalhoub
- Sydney Children's Hospital, Randwick, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, Randwick Clinical Campus, Sydney, New South Wales, Australia
| | - Deirdre Hahn
- The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Gopala Rangan
- Westmead Hospital, Sydney, New South Wales, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucy Kevin
- The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Michel Tchan
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Paul Snelling
- The Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rhiannon Sandow
- The Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | - Peter Trnka
- Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Randall Faull
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Nicola K. Poplawski
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Vanessa Huntley
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | - Matthew Jose
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Anna Leaver
- Austin Hospital, Melbourne, Victoria, Australia
| | - Alison H. Trainer
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Oncology, Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Victoria, Australia
| | - Ella J. Wilkins
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Sue White
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Yoni Elbaum
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Yael Prawer
- Monash Health, Melbourne, Victoria, Australia
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Emma Krzesinski
- Monash Health, Melbourne, Victoria, Australia
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | | | - Ingrid Winship
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | | | - Kathy Nicholls
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Kirsty West
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Liz Donaldson
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Lilian Johnstone
- Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | | | | | - Simon Bodek
- Austin Hospital, Melbourne, Victoria, Australia
| | - Aron Chakera
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Mandi MacShane
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | | | - Elaine Stackpoole
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Perth Children's Hospital, Perth, Western Australia, Australia
- Fiona Stanley Hospital Perth, Western Australia, Australia
| | - Francis Willis
- Perth Children's Hospital, Perth, Western Australia, Australia
| | | | - Nick Pachter
- Fiona Stanley Hospital Perth, Western Australia, Australia
| | - Bruce Bennetts
- Department of Molecular Genetics, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas A. Forbes
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia
- Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amali Mallawaarachchi
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Catherine Quinlan
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia
- Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Chirag Patel
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Hugh McCarthy
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Department of Nephrology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Department of Nephrology, Sydney Children's Hospital, Randwick, Sydney, New South Wales, Australia
| | - Illias Goranitis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
| | - Stephanie Best
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Oncology, Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Victorian Comprehensive Cancer Centre Alliance, Melbourne, Victoria, Australia
| | - Stephen Alexander
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Department of Nephrology, Sydney Children's Hospital, Randwick, Sydney, New South Wales, Australia
| | - Zornitza Stark
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| | - Andrew J. Mallett
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Na DH, Cui S, Fang X, Lee H, Eum SH, Shin YJ, Lim SW, Yang CW, Chung BH. Advancements in Research on Genetic Kidney Diseases Using Human-Induced Pluripotent Stem Cell-Derived Kidney Organoids. Cells 2024; 13:1190. [PMID: 39056771 PMCID: PMC11274677 DOI: 10.3390/cells13141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Genetic or hereditary kidney disease stands as a pivotal cause of chronic kidney disease (CKD). The proliferation and widespread utilization of DNA testing in clinical settings have notably eased the diagnosis of genetic kidney diseases, which were once elusive but are now increasingly identified in cases previously deemed CKD of unknown etiology. However, despite these diagnostic strides, research into disease pathogenesis and novel drug development faces significant hurdles, chiefly due to the dearth of appropriate animal models and the challenges posed by limited patient cohorts in clinical studies. Conversely, the advent and utilization of human-induced pluripotent stem cells (hiPSCs) offer a promising avenue for genetic kidney disease research. Particularly, the development of hiPSC-derived kidney organoid systems presents a novel platform for investigating various forms of genetic kidney diseases. Moreover, the integration of the CRISPR/Cas9 technique into this system holds immense potential for efficient research on genetic kidney diseases. This review aims to explore the applications of in vitro kidney organoids generated from hiPSCs in the study of diverse genetic kidney diseases. Additionally, it will delve into the limitations of this research platform and outline future perspectives for advancing research in this crucial area.
Collapse
Affiliation(s)
- Do Hyun Na
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
| | - Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang Hun Eum
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.N.); (S.C.); (X.F.); (H.L.); (S.H.E.); (Y.J.S.); (S.W.L.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
26
|
Ji L, Gao X, Xiao W, Yu S. Assessment of left atrial function provides incremental value: the left atrial volumetric/mechanical coupling index in patients with chronic kidney disease. Front Cardiovasc Med 2024; 11:1407531. [PMID: 39045007 PMCID: PMC11265283 DOI: 10.3389/fcvm.2024.1407531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Background Heart failure is a common cause of adverse cardiovascular outcomes in patients with chronic kidney disease (CKD). Left atrial (LA) characteristics are thought to be involved in the development of heart failure. However, LA assessment is complex. Though a variety of parameters have been defined, there is no single parameter that best defines LA function. Pilot data indicate that left atrial volumetric/mechanical coupling index (LACI) may be useful, but data with CKD are lacking. Aim The objective of this study was to define LACI in a cohort of patients with CKD and to assess its value in evaluating LA function and predicting heart failure. Methods A cohort of patients with CKD was enrolled at our hospital between 2021 and 2023. Follow-up was performed for heart failure. LACI is a volumetric to mechanical coupling index, calculated as the ratio of the LA volume index to the tissue-Doppler myocardial velocity at atrial contraction. Spearman's rank correlation or Pearson's correlation was used to calculate the correlation between LACI and echocardiographic/hemodynamic variables. Receiver operating characteristic curve (ROC) analysis was utilised to derive the area under the curve (AUC) for LACI, LVGLS, LASr, LASct and LASI for the detection of heart failure. Kaplan-Meier survival curves were employed to compare clinical outcomes based on LACI thresholds. A multivariable logistic regression analysis was employed to assess the relationship between risk factors and elevated LACI. Cox proportional hazards regression was used to identify risk factors for heart failure. Results LACI showed a positive correlation with NT-proBNP, CK-MB, LAVI, E/e' and LASI (r = 0.504, 0.536, 0.856, 0.541 and 0.509, p < 0.001); and a negative correlation with LASr (r = -0.509, p < 0.001). On the ROC analysis for the determination of heart failure, the AUC of LACI was comparable to those of LVGLS (0.588 vs. 509, p = 0.464), LASr (0.588 vs. 0.448, p = 0.132), LASct (0.588 vs. 0.566, p = 0.971) and LASI (0.588 vs. 0.570, p = 0.874). The cardiovascular risk factors increased by LACI were age, BMI, diabetes, triglycerides, LA size, LASr, LASI, E/A, E/e' and EF (p < 0.05). During a median follow-up of 16 months (range, 6-28 months), the event-free survival curves demonstrated a higher risk of heart failure in the group with LACI > 5.0 (log-rank test: P < 0.001). LACI > 5.0 was an independent predictor of heart failure [OR: 0.121, 95% CI (0.020-0.740), p = 0.022]. Conclusion LACI may prove to be a valuable tool for assessing LA function in patients with CKD, and could be integrated into the routine assessment of LA for the purpose of prognostic assessment and clinical decision-making in patients with CKD.
Collapse
Affiliation(s)
- Liqin Ji
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Xue Gao
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Xiao
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shaomei Yu
- Department of Ultrasound, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
27
|
Blasco M, Quiroga B, García-Aznar JM, Torra R, Ortiz A, de Sequera P. Genetic study in young patients with chronic kidney disease stage G5 from unknown etiology. The GENSEN study design. Nefrologia 2024; 44:568-575. [PMID: 39054238 DOI: 10.1016/j.nefroe.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) of non-inherited etiology is one of the main causes of renal replacement therapy in our setting. Previous studies in other territories suggest that hereditary diseases could be one of the potential causes of this pathology, especially in younger patients. The GENSEN study will evaluate the presence of pathogenic genetic variants in subjects who have developed CKD category G5 before the age of 46 years, of non-inherited etiology. METHODS Observational, prospective, multicenter study, which evaluates the diagnostic utility of massive high-throughput sequencing (HTS) directed to a set of genes, in the identification of the cause of CKD. Patients from all over Spain will be included, from whom a blood or saliva sample will be taken and a panel of 529 genes associated with hereditary kidney disease will be analyzed. This publication communicates the study protocol. CONCLUSION The GENSEN study will make it possible to evaluate the diagnostic performance of the gene panel study in young subjects in our setting with the development of CKD category G5 without a clear cause. An etiological diagnosis would offer potential benefits for patients and relatives (targeted therapies, clinical trials, detection of extrarenal manifestations, evaluation of relatives for live donation, estimation of the risk of recurrence in the renal graft, genetic counseling, among others) and would allow to apply this genetic study to the nephrology of our country.
Collapse
Affiliation(s)
- Miquel Blasco
- Servicio de Nefrología y Trasplante Renal, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), IDIBAPS, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; RICORS2040, Madrid, Spain
| | - Borja Quiroga
- RICORS2040, Madrid, Spain; IIS-La Princesa, Servicio de Nefrología, Hospital Universitario de la Princesa, Madrid, Spain
| | - José M García-Aznar
- Healthincode, Área Clínica de Diagnóstico Genético - Nefrología, A Coruña, Spain
| | - Roser Torra
- RICORS2040, Madrid, Spain; Enfermedades renales hereditarias, Servicio de Nefrología, Fundació Puigvert, Institut d'Investigacions Biomèdiques (IIB-Sant Pau), Departamento de Medicina, Universitat Autònoma de Barcelona (UAB). Spain
| | - Alberto Ortiz
- RICORS2040, Madrid, Spain; Servicio de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia de Sequera
- RICORS2040, Madrid, Spain; Servicio de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain; Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Cornec-Le Gall E, Mallett AJ. Genomics in the kidney transplant clinic: the future standard of care? Kidney Int 2024; 106:18-20. [PMID: 38906652 DOI: 10.1016/j.kint.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024]
Abstract
New evidence indicates potential benefit of genomics to illuminate nonkidney monogenic morbidity and mortality risk among kidney transplant recipients. This might be of direct relevance to an equivalent proportion of patients to those who harbor a monogenic kidney disease. Further evidence and replication are indicated, including a broadening potential range of monogenic and polygenic opportunities to improve clinical outcomes. Implementation will require such information, although it holds great promise.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- University of Brest, Inserm, Unité Mixte de Recherche (UMR) 1078, Génétique, Génomique fonctionnelle et Biotechnologies (GGB), Brest, France; Centre Hospitalier Universitaire (CHU) Brest, Service de Néphrologie, Centre de Référence Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Brest, France.
| | - Andrew J Mallett
- Department of Renal Medicine, Townsville University Hospital, Douglas, Queensland, Australia; College of Medicine and Dentistry, James Cook University, Douglas, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
29
|
Zoccali C, Mallamaci F, Lightstone L, Jha V, Pollock C, Tuttle K, Kotanko P, Wiecek A, Anders HJ, Remuzzi G, Kalantar-Zadeh K, Levin A, Vanholder R. A new era in the science and care of kidney diseases. Nat Rev Nephrol 2024; 20:460-472. [PMID: 38575770 DOI: 10.1038/s41581-024-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Notable progress in basic, translational and clinical nephrology research has been made over the past five decades. Nonetheless, many challenges remain, including obstacles to the early detection of kidney disease, disparities in access to care and variability in responses to existing and emerging therapies. Innovations in drug development, research technologies, tissue engineering and regenerative medicine have the potential to improve patient outcomes. Exciting prospects include the availability of new drugs to slow or halt the progression of chronic kidney disease, the development of bioartificial kidneys that mimic healthy kidney functions, and tissue engineering techniques that could enable transplantable kidneys to be created from the cells of the recipient, removing the risk of rejection. Cell and gene therapies have the potential to be applied for kidney tissue regeneration and repair. In addition, about 30% of kidney disease cases are monogenic and could potentially be treated using these genetic medicine approaches. Systemic diseases that involve the kidney, such as diabetes mellitus and hypertension, might also be amenable to these treatments. Continued investment, communication, collaboration and translation of innovations are crucial to realize their full potential. In addition, increasing sophistication in exploring large datasets, implementation science, and qualitative methodologies will improve the ability to deliver transformational kidney health strategies.
Collapse
Affiliation(s)
- Carmine Zoccali
- Kidney Research Institute, New York City, NY, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Kidney (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Kidney Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Liz Lightstone
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Vivek Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, UK
- Prasanna School of Public Health, Manipal Academy of Medical Education, Manipal, India
| | - Carol Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, NSW, Australia
| | - Katherine Tuttle
- Providence Medical Research Center, Providence Inland Northwest, Spokane, Washington, USA
- Department of Medicine, University of Washington, Seattle, Spokane, Washington, USA
- Kidney Research Institute, Institute of Translational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Peter Kotanko
- Kidney Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027, Katowice, Poland
| | - Hans Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Bergamo, Italy
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, California, USA
- Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, Irvine, USA
- Veterans Affairs Healthcare System, Division of Nephrology, Long Beach, California, USA
| | - Adeera Levin
- University of British Columbia, Vancouver General Hospital, Division of Nephrology, Vancouver, British Columbia, Canada
- British Columbia, Provincial Kidney Agency, Vancouver, British Columbia, Canada
| | - Raymond Vanholder
- European Kidney Health Alliance, Brussels, Belgium
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
30
|
Coimbra S, Rocha S, Catarino C, Valente MJ, Rocha-Pereira P, Sameiro-Faria M, Oliveira JG, Madureira J, Fernandes JC, Miranda V, Belo L, Bronze-da-Rocha E, Santos-Silva A. Impact of TNFRSF1B (rs3397, rs1061624 and rs1061622) and IL6 (rs1800796, rs1800797 and rs1554606) Gene Polymorphisms on Inflammatory Response in Patients with End-Stage Kidney Disease Undergoing Dialysis. Biomedicines 2024; 12:1228. [PMID: 38927435 PMCID: PMC11200861 DOI: 10.3390/biomedicines12061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
We aimed to study the impact of polymorphisms in the genes encoding interleukin-6 (IL6) and tumor necrosis factor receptor-2 (TNFR2), reported to be mortality risk predictors, in patients with end-stage kidney disease (ESKD) undergoing dialysis. TNFRSF1B (rs3397, rs1061624, and rs1061622) and IL6 (rs1800796, rs1800797, and rs1554606) polymorphisms were studied in patients with ESKD and controls; the genotype and allele frequencies and the associations with inflammatory and erythropoiesis markers were determined; deaths were recorded throughout the following two years. The genotype and allele frequencies for the TNFRSF1B rs3397 polymorphism were different in these patients compared to those in the controls and the global and European populations, and patients with the C allele were less common. Patients with the CC genotype for TNFRSF1B rs3397 presented higher hemoglobin and erythrocyte counts and lower TNF-α levels, suggesting a more favorable inflammatory response that seems to be associated with erythropoiesis improvement. Patients with the GG genotype for TNFRSF1B rs1061622 showed lower serum ferritin levels. None of the TNFRSF1B (rs3397, rs1061624, and rs1061622) or IL6 (rs1800796, rs1800797, and rs1554606) polymorphisms had a significant impact on the all-cause mortality rate of Portuguese patients with ESKD.
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU (Advanced Polytechnic and University Cooperative, CRL), 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Cristina Catarino
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Petronila Rocha-Pereira
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- Health Science Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Sameiro-Faria
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- Hemodialysis Clinic Hospital Agostinho Ribeiro, 4610-106 Felgueiras, Portugal
| | - José Gerardo Oliveira
- Hemodialysis Clinic of Porto (CHP), 4200-227 Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - José Madureira
- Hemodialysis Unit of Barcelos | Nefroserve, 4750-110 Barcelos, Portugal
| | - João Carlos Fernandes
- Hemodialysis Unit of Viana do Castelo | Nefroserve, 4900-281 Viana do Castelo, Portugal
| | - Vasco Miranda
- Hemodialysis Clinic of Gondomar, 4420-086 Gondomar, Portugal
| | - Luís Belo
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (S.R.); (C.C.); (L.B.); (E.B.-d.-R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
31
|
Lu YQ, Wang Y. Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function. Int J Mol Sci 2024; 25:6033. [PMID: 38892221 PMCID: PMC11172763 DOI: 10.3390/ijms25116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.
Collapse
Affiliation(s)
| | - Yirong Wang
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| |
Collapse
|
32
|
Romagnoli KM, Salvati ZM, Johnson DK, Ramey HM, Chang AR, Williams MS. Genomics in nephrology: identifying informatics opportunities to improve diagnosis of genetic kidney disorders using a human-centered design approach. J Am Med Inform Assoc 2024; 31:1247-1257. [PMID: 38497946 PMCID: PMC11105128 DOI: 10.1093/jamia/ocae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Genomic kidney conditions often have a long lag between onset of symptoms and diagnosis. To design a real time genetic diagnosis process that meets the needs of nephrologists, we need to understand the current state, barriers, and facilitators nephrologists and other clinicians who treat kidney conditions experience, and identify areas of opportunity for improvement and innovation. METHODS Qualitative in-depth interviews were conducted with nephrologists and internists from 7 health systems. Rapid analysis identified themes in the interviews. These were used to develop service blueprints and process maps depicting the current state of genetic diagnosis of kidney disease. RESULTS Themes from the interviews included the importance of trustworthy resources, guidance on how to order tests, and clarity on what to do with results. Barriers included lack of knowledge, lack of access, and complexity surrounding the case and disease. Facilitators included good user experience, straightforward diagnoses, and support from colleagues. DISCUSSION The current state of diagnosis of kidney diseases with genetic etiology is suboptimal, with information gaps, complexity of genetic testing processes, and heterogeneity of disease impeding efficiency and leading to poor outcomes. This study highlights opportunities for improvement and innovation to address these barriers and empower nephrologists and other clinicians who treat kidney conditions to access and use real time genetic information.
Collapse
Affiliation(s)
- Katrina M Romagnoli
- Department of Population Health Sciences, Geisinger Clinic, Danville, PA 17822, United States
| | - Zachary M Salvati
- Department of Genomic Health, Geisinger, Danville, PA 17822, United States
| | - Darren K Johnson
- Department of Genomic Health, Geisinger, Danville, PA 17822, United States
| | - Heather M Ramey
- Department of Genomic Health, Geisinger, Danville, PA 17822, United States
| | - Alexander R Chang
- Department of Population Health Sciences, Geisinger Clinic, Danville, PA 17822, United States
- Department of Nephrology, Geisinger, Danville, PA 17822, United States
| | - Marc S Williams
- Department of Genomic Health, Geisinger, Danville, PA 17822, United States
| |
Collapse
|
33
|
Tavakolidakhrabadi N, Aulicino F, May CJ, Saleem MA, Berger I, Welsh GI. Genome editing and kidney health. Clin Kidney J 2024; 17:sfae119. [PMID: 38766272 PMCID: PMC11099665 DOI: 10.1093/ckj/sfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/22/2024] Open
Abstract
Genome editing technologies, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas in particular, have revolutionized the field of genetic engineering, providing promising avenues for treating various genetic diseases. Chronic kidney disease (CKD), a significant health concern affecting millions of individuals worldwide, can arise from either monogenic or polygenic mutations. With recent advancements in genomic sequencing, valuable insights into disease-causing mutations can be obtained, allowing for the development of new treatments for these genetic disorders. CRISPR-based treatments have emerged as potential therapies, especially for monogenic diseases, offering the ability to correct mutations and eliminate disease phenotypes. Innovations in genome editing have led to enhanced efficiency, specificity and ease of use, surpassing earlier editing tools such as zinc-finger nucleases and transcription activator-like effector nucleases (TALENs). Two prominent advancements in CRISPR-based gene editing are prime editing and base editing. Prime editing allows precise and efficient genome modifications without inducing double-stranded DNA breaks (DSBs), while base editing enables targeted changes to individual nucleotides in both RNA and DNA, promising disease correction in the absence of DSBs. These technologies have the potential to treat genetic kidney diseases through specific correction of disease-causing mutations, such as somatic mutations in PKD1 and PKD2 for polycystic kidney disease; NPHS1, NPHS2 and TRPC6 for focal segmental glomerulosclerosis; COL4A3, COL4A4 and COL4A5 for Alport syndrome; SLC3A1 and SLC7A9 for cystinuria and even VHL for renal cell carcinoma. Apart from editing the DNA sequence, CRISPR-mediated epigenome editing offers a cost-effective method for targeted treatment providing new avenues for therapeutic development, given that epigenetic modifications are associated with the development of various kidney disorders. However, there are challenges to overcome, including developing efficient delivery methods, improving safety and reducing off-target effects. Efforts to improve CRISPR-Cas technologies involve optimizing delivery vectors, employing viral and non-viral approaches and minimizing immunogenicity. With research in animal models providing promising results in rescuing the expression of wild-type podocin in mouse models of nephrotic syndrome and successful clinical trials in the early stages of various disorders, including cancer immunotherapy, there is hope for successful translation of genome editing to kidney diseases.
Collapse
Affiliation(s)
| | - Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, Bristol Royal Hospital for Children
| | - Carl J May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| |
Collapse
|
34
|
Jia Y, Li JH, Hu BC, Huang X, Yang X, Liu YY, Cai JJ, Yang X, Lai JM, Shen Y, Liu JQ, Zhu HP, Ye XM, Mo SJ. Targeting SLC22A5 fosters mitophagy inhibition-mediated macrophage immunity against septic acute kidney injury upon CD47-SIRPα axis blockade. Heliyon 2024; 10:e26791. [PMID: 38586373 PMCID: PMC10998134 DOI: 10.1016/j.heliyon.2024.e26791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of SIRPA in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages. Ablation of SIRPA transcriptionally downregulates solute carrier family 22 member 5 (SLC22A5) in the lipopolysaccharide (LPS)-stimulated macrophages that efferocytose apoptotic neutrophils (PMNs). Targeting SLC22A5 renders mitophagy inhibition of macrophages in response to LPS stimuli, improves survival and deters development of septic AKI. Our study supports further clinical investigation of CD47-SIRPα signalling in sepsis and proposes that SLC22A5 might be a promising immunotherapeutic target for septic AKI.
Collapse
Affiliation(s)
- Yu Jia
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Jun-Hua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Bang-Chuan Hu
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Xi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Yan-Yan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Juan-Juan Cai
- Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Jun-Mei Lai
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Ye Shen
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Jing-Quan Liu
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Hai-Ping Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Xiang-Ming Ye
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Shi-Jing Mo
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| |
Collapse
|
35
|
Stevens PE, Ahmed SB, Carrero JJ, Foster B, Francis A, Hall RK, Herrington WG, Hill G, Inker LA, Kazancıoğlu R, Lamb E, Lin P, Madero M, McIntyre N, Morrow K, Roberts G, Sabanayagam D, Schaeffner E, Shlipak M, Shroff R, Tangri N, Thanachayanont T, Ulasi I, Wong G, Yang CW, Zhang L, Levin A. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int 2024; 105:S117-S314. [PMID: 38490803 DOI: 10.1016/j.kint.2023.10.018] [Citation(s) in RCA: 390] [Impact Index Per Article: 390.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 03/17/2024]
|
36
|
Jefferis J, Mallett AJ. Exploring the impact and utility of genomic sequencing in established CKD. Clin Kidney J 2024; 17:sfae043. [PMID: 38464959 PMCID: PMC10921391 DOI: 10.1093/ckj/sfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/12/2024] Open
Abstract
Clinical genetics is increasingly recognized as an important area within nephrology care. Clinicians require awareness of genetic kidney disease to recognize clinical phenotypes, consider use of genomics to aid diagnosis, and inform treatment decisions. Understanding the broad spectrum of clinical phenotypes and principles of genomic sequencing is becoming increasingly required in clinical nephrology, with nephrologists requiring education and support to achieve meaningful patient outcomes. Establishment of effective clinical resources, multi-disciplinary teams and education is important to increase application of genomics in clinical care, for the benefit of patients and their families. Novel applications of genomics in chronic kidney disease include pharmacogenomics and clinical translation of polygenic risk scores. This review explores established and emerging impacts and utility of genomics in kidney disease.
Collapse
Affiliation(s)
- Julia Jefferis
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew J Mallett
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Department of Renal Medicine, Townsville University Hospital, Douglas, Australia
- College of Medicine and Dentistry, James Cook University, Douglas, Australia
| |
Collapse
|
37
|
Robert T, Raymond L, Dancer M, Torrents J, Jourde-Chiche N, Burtey S, Béroud C, Mesnard L. Beyond the kidney biopsy: genomic approach to undetermined kidney diseases. Clin Kidney J 2024; 17:sfad099. [PMID: 38186885 PMCID: PMC10765093 DOI: 10.1093/ckj/sfad099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 01/09/2024] Open
Abstract
Background According to data from large national registries, almost 20%-25% of patients with end-stage kidney disease have an undetermined kidney disease (UKD). Recent data have shown that monogenic disease-causing variants are under-diagnosed. We performed exome sequencing (ES) on UKD patients in our center to improve the diagnosis rate. Methods ES was proposed in routine practice for patients with UKD including kidney biopsy from January 2019 to December 2021. Mutations were detected using a targeted bioinformatic customized kidney gene panel (675 genes). The pathogenicity was assessed using American College of Medical Genetics guidelines. Results We included 230 adult patients, median age 47.5 years. Consanguinity was reported by 25 patients. A family history of kidney disease was documented in 115 patients (50%). Kidney biopsies were either inconclusive in 69 patients (30.1%) or impossible in 71 (30.9%). We detected 28 monogenic renal disorders in 75 (32.6%) patients. Collagenopathies was the most common genetic kidney diagnosis (46.7%), with COL4A3 and COL4A4 accounting for 80% of these diagnoses. Tubulopathies (16%) and ciliopathies (14.7%) yielded, respectively, the second and third genetic kidney diagnosis category and UMOD-associated nephropathy as the main genetic findings for tubulopathies (7/11). Ten of the 22 patients having ES "first" eventually received a positive diagnosis, thereby avoiding 11 biopsies. Among the 44 patients with glomerular, tubulo-interstitial or vascular nephropathy, 13 (29.5%) were phenocopies. The diagnostic yield of ES was higher in female patients (P = .02) and in patients with a family history of kidney disease (P < .0001), reaching 56.8% when the patient had both first- and second-degree family history of renal disease. Conclusion Genetic diagnosis has provided new clinical insights by clarifying or reclassifying kidney disease etiology in over a third of UKD patients. Exome "first" may have a significant positive diagnostic yield, thus avoiding invasive kidney biopsy; moreover, the diagnostic yield remains elevated even when biopsy is impossible or inconclusive. ES provides a clinical benefit for routine nephrological healthcare in patients with UKD.
Collapse
Affiliation(s)
- Thomas Robert
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Marseille Medical Genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Marine Dancer
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Julia Torrents
- Department of Renal Pathology, CHU Timone, AP-HM, Marseille, France
| | - Noémie Jourde-Chiche
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Stéphane Burtey
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Christophe Béroud
- Marseille Medical Genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Laurent Mesnard
- Urgences Néphrologiques et Transplantation Rénale, Sorbonne Université, APHP, Hôpital Tenon, Paris, France
| |
Collapse
|
38
|
Tiwari A, Mukherjee S. Role of Complement-dependent Cytotoxicity Crossmatch and HLA Typing in Solid Organ Transplant. Rev Recent Clin Trials 2024; 19:34-52. [PMID: 38155466 DOI: 10.2174/0115748871266738231218145616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Solid organ transplantation is a life-saving medical operation that has progressed greatly because of developments in diagnostic tools and histocompatibility tests. Crossmatching for complement-dependent cytotoxicity (CDC) and human leukocyte antigen (HLA) typing are two important methods for checking graft compatibility and reducing the risk of graft rejection. HLA typing and CDC crossmatching are critical in kidney, heart, lung, liver, pancreas, intestine, and multi-organ transplantation. METHODS A systematic literature search was conducted on the internet, using PubMed, Scopus, and Google Scholar databases, to identify peer-reviewed publications about solid organ transplants, HLA typing, and CDC crossmatching. CONCLUSION Recent advances in HLA typing have allowed for high-resolution evaluation, epitope matching, and personalized therapy methods. Genomic profiling, next-generation sequencing, and artificial intelligence have improved HLA typing precision, resulting in better patient outcomes. Artificial intelligence (AI) driven virtual crossmatching and predictive algorithms have eliminated the requirement for physical crossmatching in the context of CDC crossmatching, boosting organ allocation and transplant efficiency. This review elaborates on the importance of HLA typing and CDC crossmatching in solid organ transplantation.
Collapse
Affiliation(s)
- Arpit Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
39
|
Dahl NK, Bloom MS, Chebib FT, Clark D, Westemeyer M, Jandeska S, Zhang Z, Milo-Rasouly H, Kolupaeva V, Marasa M, Broumand V, Fatica RA, Raj DS, Demko ZP, Marshall K, Punj S, Tabriziani H, Bhorade S, Gharavi AG. The Clinical Utility of Genetic Testing in the Diagnosis and Management of Adults with Chronic Kidney Disease. J Am Soc Nephrol 2023; 34:2039-2050. [PMID: 37794564 PMCID: PMC10703084 DOI: 10.1681/asn.0000000000000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
SIGNIFICANCE STATEMENT Accurate diagnosis of a patient's underlying cause of CKD can influence management and ultimately overall health. The single-arm, interventional, prospective Renasight Clinical Application, Review, and Evaluation study assessed the utility of genetic testing with a 385 gene kidney disease panel on the diagnosis and management of 1623 patients with CKD. Among 20.8% of patients who had positive genetic findings, half resulted in a new or reclassified diagnosis. In addition, a change in management because of genetic testing was reported for 90.7% of patients with positive findings, including treatment changes in 32.9%. These findings demonstrate that genetic testing has a significant effect on both CKD diagnosis and management. BACKGROUND Genetic testing in CKD has recently been shown to have diagnostic utility with many predicted implications for clinical management, but its effect on management has not been prospectively evaluated. METHODS Renasight Clinical Application, Review, and Evaluation RenaCARE (ClinicalTrials.gov NCT05846113 ) is a single-arm, interventional, prospective, multicenter study that evaluated the utility of genetic testing with a broad, 385 gene panel (the Renasight TM test) on the diagnosis and management of adult patients with CKD recruited from 31 US-based community and academic medical centers. Patient medical history and clinical CKD diagnosis were collected at enrollment. Physician responses to questionnaires regarding patient disease categorization and management were collected before genetic testing and 1 month after the return of test results. Changes in CKD diagnosis and management after genetic testing were assessed. RESULTS Of 1623 patients with CKD in 13 predefined clinical disease categories (ages, 18-96; median, 55 years), 20.8% ( n =338) had positive genetic findings spanning 54 genes. Positive genetic findings provided a new diagnosis or reclassified a prior diagnosis in 48.8% of those patients. Physicians reported that genetic results altered the management of 90.7% of patients with a positive genetic finding, including changes in treatment plan, which were reported in 32.9% of these patients. CONCLUSIONS Genetic testing with a CKD-focused 385 gene panel substantially refined clinical diagnoses and had widespread implications for clinical management, including appropriate treatment strategies. These data support the utility of broader integration of panels of genetic tests into the clinical care paradigm for patients with CKD. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER ClinicalTrials.gov, NCT05846113 .
Collapse
Affiliation(s)
- Neera K. Dahl
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | | | | | | | | | - Hila Milo-Rasouly
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Victoria Kolupaeva
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | | | | | - Dominic S. Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | | | | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
40
|
Jankowska M, Soler MJ, Stevens KI, Torra R. Why do we keep ignoring sex in kidney disease? Clin Kidney J 2023; 16:2327-2335. [PMID: 38046033 PMCID: PMC10689162 DOI: 10.1093/ckj/sfad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 12/05/2023] Open
Abstract
Throughout the history of nephrology, little attention has been paid to the sex and gender differences in kidney disease. This lack of awareness prevents optimal diagnosis and management of kidney disease. In today's world of precision medicine, it is imperative to appreciate the differential factors regarding gender and kidney disease. This editorial summarizes the up-to-date literature regarding sex and gender differences in kidney disease and considers areas where knowledge is incomplete and where further research is needed. We address sex-specific effects on chronic kidney disease epidemiology; risks of dialysis underdosing and medication overdosing in women; unexplained loss of female sex advantage in life expectancy during dialysis, and impact of sex on diagnosis and management of genetic kidney disease. We also aim to highlight the impact of gender on kidney health and raise awareness of disparities that may be faced by women, and transgender and gender-diverse persons when a male-model approach is used by healthcare systems. By understanding the link between sex and kidney disease, kidney specialists can improve the care and outcomes of their patients. In addition, research on this topic can inform the development of targeted prevention and intervention strategies that address the specific needs and risk factors of different populations.
Collapse
Affiliation(s)
- Magdalena Jankowska
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - María José Soler
- Department of Nephrology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Nephrology and Transplantation Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Kate I Stevens
- The Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Eckardt KU, Delgado C, Heerspink HJL, Pecoits-Filho R, Ricardo AC, Stengel B, Tonelli M, Cheung M, Jadoul M, Winkelmayer WC, Kramer H. Trends and perspectives for improving quality of chronic kidney disease care: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2023; 104:888-903. [PMID: 37245565 DOI: 10.1016/j.kint.2023.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Chronic kidney disease (CKD) affects over 850 million people globally, and the need to prevent its development and progression is urgent. During the past decade, new perspectives have arisen related to the quality and precision of care for CKD, owing to the development of new tools and interventions for CKD diagnosis and management. New biomarkers, imaging methods, artificial intelligence techniques, and approaches to organizing and delivering healthcare may help clinicians recognize CKD, determine its etiology, assess the dominant mechanisms at given time points, and identify patients at high risk for progression or related events. As opportunities to apply the concepts of precision medicine for CKD identification and management continue to be developed, an ongoing discussion of the potential implications for care delivery is required. The 2022 KDIGO Controversies Conference on Improving CKD Quality of Care: Trends and Perspectives examined and discussed best practices for improving the precision of CKD diagnosis and prognosis, managing the complications of CKD, enhancing the safety of care, and maximizing patient quality of life. Existing tools and interventions currently available for the diagnosis and treatment of CKD were identified, with discussion of current barriers to their implementation and strategies for improving the quality of care delivered for CKD. Key knowledge gaps and areas for research were also identified.
Collapse
Affiliation(s)
- Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Cynthia Delgado
- Division of Nephrology, University of California, San Francisco, San Francisco, California, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; The George Institute for Global Health, Sydney, Australia
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA; School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Brazil
| | - Ana C Ricardo
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Bénédicte Stengel
- CESP, Centre de Recherche en Epidémiologie et Santé des Populations, Clinical Epidemiology Team, INSERM UMRS 1018, University Paris-Saclay, Villejuif, France
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael Cheung
- Kidney Disease: Improving Global Outcomes (KDIGO), Brussels, Belgium
| | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Holly Kramer
- Departments of Public Health Sciences and Medicine, Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, Illinois, USA.
| |
Collapse
|
42
|
Rheault MN, McLaughlin HM, Mitchell A, Blake LE, Devarajan P, Warady BA, Gibson KL, Lieberman KV. COL4A gene variants are common in children with hematuria and a family history of kidney disease. Pediatr Nephrol 2023; 38:3625-3633. [PMID: 37204491 DOI: 10.1007/s00467-023-05993-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inherited kidney diseases are a common cause of chronic kidney disease (CKD) in children. Identification of a monogenic cause of CKD is more common in children than in adults. This study evaluated the diagnostic yield and phenotypic spectrum of children who received genetic testing through the KIDNEYCODE sponsored genetic testing program. METHODS Unrelated children < 18 years of age who received panel testing through the KIDNEYCODE sponsored genetic testing program from September 2019 through August 2021 were included (N = 832). Eligible children met at least one of the following clinician-reported criteria: estimated GFR ≤ 90 ml/min/1.73 m2, hematuria, a family history of kidney disease, or suspected or biopsy confirmed Alport syndrome or focal segmental glomerulosclerosis (FSGS) in the tested individual or family member. RESULTS A positive genetic diagnosis was observed in 234 children (28.1%, 95% CI [25.2-31.4%]) in genes associated with Alport syndrome (N = 213), FSGS (N = 9), or other disorders (N = 12). Among children with a family history of kidney disease, 30.8% had a positive genetic diagnosis. Among those with hematuria and a family history of CKD, the genetic diagnostic rate increased to 40.4%. CONCLUSIONS Children with hematuria and a family history of CKD have a high likelihood of being diagnosed with a monogenic cause of kidney disease, identified through KIDNEYCODE panel testing, particularly COL4A variants. Early genetic diagnosis can be valuable in targeting appropriate therapy and identification of other at-risk family members. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Michelle N Rheault
- Masonic Children's Hospital, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | - Prasad Devarajan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Bradley A Warady
- Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | - Kenneth V Lieberman
- Joseph M. Sanzari Children's Hospital, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| |
Collapse
|
43
|
Cirillo L, De Chiara L, Innocenti S, Errichiello C, Romagnani P, Becherucci F. Chronic kidney disease in children: an update. Clin Kidney J 2023; 16:1600-1611. [PMID: 37779846 PMCID: PMC10539214 DOI: 10.1093/ckj/sfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a major healthcare issue worldwide. However, the prevalence of pediatric CKD has never been systematically assessed and consistent information is lacking in this population. The current definition of CKD is based on glomerular filtration rate (GFR) and the extent of albuminuria. Given the physiological age-related modification of GFR in the first years of life, the definition of CKD is challenging per se in the pediatric population, resulting in high risk of underdiagnosis in this population, treatment delays and untailored clinical management. The advent and spreading of massive-parallel sequencing technology has prompted a profound revision of the epidemiology and the causes of CKD in children, supporting the hypothesis that CKD is much more frequent than currently reported in children and adolescents. This acquired knowledge will eventually converge in the identification of the molecular pathways and cellular response to damage, with new specific therapeutic targets to control disease progression and clinical features of children with CKD. In this review, we will focus on recent innovations in the field of pediatric CKD and in particular those where advances in knowledge have become available in the last years, with the aim of providing a new perspective on CKD in children and adolescents.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Samantha Innocenti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmela Errichiello
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
44
|
Robert T, greillier S, Torrents J, Raymond L, Dancer M, Jourde-Chiche N, Halimi JM, Burtey S, Béroud C, Mesnard L. Diagnosis of Kidney Diseases of Unknown Etiology Through Biopsy-Genetic Analysis. Kidney Int Rep 2023; 8:2077-2087. [PMID: 37850010 PMCID: PMC10577324 DOI: 10.1016/j.ekir.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Previous studies have suggested that genetic kidney diseases in adults are often overlooked, representing up to 10% of all cases of chronic kidney disease (CKD). We present data obtained from exome sequencing (ES) analysis of patients with biopsy-proven undetermined kidney disease (UKD). Methods ES was proposed during routine clinical care in patients with UKD from January 2020 to December 2021. We used in silico custom kidney genes panel analysis to detect pathological variations using American College of Medical Genetics guidelines in 52 patients with biopsy-proven UKD with histological finding reassessment. Results We detected 12 monogenic renal disorders in 21 (40.4%) patients. The most common diagnoses were collagenopathies (8/21,38.1%), COL4A3 and COL4A4 accounting for 80% of these diagnoses, and ciliopathies (5/21, 23.8%). The diagnostic yield of ES was higher in female patients and patients with a family history of kidney disease (57.1% and 71%, respectively). Clinical nephropathy categories matched with the final genetic diagnoses in 72.7% of cases, whereas histological renal lesions matched with the final diagnoses in 92.3% of cases. The genetics diagnoses and histopathological findings were in complete agreement for both glomerular and tubulointerstitial cases. Interstitial inflammation without tubulitis was only observed in tubulopathies or ciliopathies. Isolated CKD, CKD with proteinuria or hematuria, and isolated proteinuria or hematuria yielded the highest diagnostic yields (54.6%, 52.6%, and 42.9%, respectively). Conclusion ES done in patients with biopsy-proven UKD should be considered as a first-line tool for CKD patients with a family history of kidney disease. Combination of ES and kidney biopsy may have major impacts on kidney disease ontology.
Collapse
Affiliation(s)
- Thomas Robert
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Marseille medical genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Sophie greillier
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
| | - Julia Torrents
- Department of Renal Pathology, CHU Timone, AP-HM, Marseille, France
| | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Marine Dancer
- Department of Renal Pathology, CHU Timone, AP-HM, Marseille, France
| | - Noémie Jourde-Chiche
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Jean-Michel Halimi
- Néphrologie-Immunologie Clinique, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Stéphane Burtey
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Christophe Béroud
- Marseille medical genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Laurent Mesnard
- Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Sorbonne Université, APHP, Hôpital Tenon, Paris, France
| |
Collapse
|
45
|
De la Cruz-Ahumada CJ, Topete-Reyes JF, Mena-Ramírez JP, Guzmán-Flores JM, Guzmán-González JI, Ramírez-De los Santos S. Inflammatory Determinants and Associated Morbidity in Hemodialysis Patients. J Pers Med 2023; 13:1311. [PMID: 37763079 PMCID: PMC10532888 DOI: 10.3390/jpm13091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Hemodialysis deteriorates patients' physical, metabolic, and mental status. Clinical outcomes derived from inflammation determine a worse status but are less frequently identified. The objective of the study was to identify inflammatory determinants and the effect of SNP-related serum IL-6 and IL-10 levels on associated morbidity in hemodialysis. A sample of hemodialysis patients at IMSS Regional Hospital No.46 in Guadalajara (n = 85) were tested using the Malnutrition Inflammation Score (MIS) and Patient Health Questionnaire-9 (PHQ-9) to assess the associated morbidity. Serum cytokine levels were quantified by enzyme-linked immunosorbent assay (ELISA). The restriction fragment length polymorphism (RFLP) technique was used for analysis of IL-6-572C/G and IL-10-1082A/G. Using data visualization methods, we identified relevant determinants of inflammation. A simple regression model was constructed between predictors and targets with genotypes as covariates. Results showed malnutrition in 85.9% of patients and depressive symptoms in 50.6%. IL-10 was the most relevant inflammatory determinant, with regression coefficients (R2) between 0.05 and 0.11. The GG genotype of IL-10-1082 A/G evinced small effect on both clinical outcomes (δ of 0.35 and 0.37, respectively). Hemodialysis increases the associated morbidity, cytokines act as inflammatory determinants, and genetic variability contributes to the severity of clinical outcomes. Further studies need to refine the causal relationship between inflammation and CKD.
Collapse
Affiliation(s)
- Claudia Jackelin De la Cruz-Ahumada
- Laboratorio de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico; (C.J.D.l.C.-A.)
| | | | | | - Juan Manuel Guzmán-Flores
- Laboratorio de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico; (C.J.D.l.C.-A.)
| | - Jesúa Ivan Guzmán-González
- Laboratorio de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico; (C.J.D.l.C.-A.)
| | - Saúl Ramírez-De los Santos
- Departamento de Psicología Básica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
46
|
Alharbi SA, Alshenqiti AM, Asiri AH, Alqarni MA, Alqahtani SA. The Role of Genetic Testing in Pediatric Renal Diseases: Diagnostic, Prognostic, and Social Implications. Cureus 2023; 15:e44490. [PMID: 37664254 PMCID: PMC10471834 DOI: 10.7759/cureus.44490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/05/2023] Open
Abstract
Pediatric renal diseases vary widely and are linked to high morbidity and mortality; hence, early diagnosis is vital. Presently, genetic testing is being incorporated into the standard of care for children and their families with kidney disease, primarily as a diagnostic tool. In the present review, we aim to collect all potential evidence from relevant studies that reported the role of genetic testing in pediatric renal disease diagnostic, prognostic, and social implications. We have conducted both electronic and manual searches within PubMed, the Cochrane Library, Web of Science, and Scopus to find relevant studies. Studies from the years 2013-2023 were included. Case reports with limited sample sizes and no descriptive statistics, along with review papers and meta-analyses, were excluded from this review. Quality assessment for all included studies was performed. The pooled diagnostic yields were calculated using the common effect and random effect models utilizing the R program (R Foundation for Statistical Computing, Vienna, Austria). The pooled result for the diagnostic yield as per the common effect model is a pooled proportion of 0.42 (42%) 95% confidence interval (CI): [0.39,0.44], while with the random effects model the pooled proportion is 0.43 (43%) 95% CI: [0.31,0.57]. The diagnostic yield for the included studies ranged from 78.10% to 16.8%. The spectrum of kidney diseases included nephrolithiasis/nephrocalcinosis, glomerular diseases, cystic kidney disease, ciliopathies, tubulopathies, chronic kidney disease, and congenital anomalies of the kidneys and urinary tracts (CAKUT), while hematuria and proteinuria were reported by two studies and autosomal recessive and autosomal dominant idiopathic kidney disease was reported by only one study. Genetic testing validates clinical diagnosis and aids in tailoring management strategies; hence, a more precise treatment plan is developed and unnecessary investigations are avoided, which is crucial in the case of children during routine nephrology clinic visits. Genetic counselling is of the utmost importance, so all ethical and social concerns related to genetic testing are addressed in addition to patient satisfaction.
Collapse
Affiliation(s)
- Sultan A Alharbi
- Department of Pediatrics, Prince Mohammed Bin Abdulaziz Hospital, Madinah, SAU
| | | | - Ali H Asiri
- Department of Pediatrics, Khamis Mushait Maternity and Children Hospital, Khamis Mushait, SAU
| | - Musaed A Alqarni
- Department of Pediatrics, Khamis Mushait Maternity and Children Hospital, Khamis Mushait, SAU
| | | |
Collapse
|
47
|
Stein Q, Westemeyer M, Darwish T, Pitman T, Hager M, Tabriziani H, Curry K, Collett K, Raible D, Hendricks E. Genetic Counseling in Kidney Disease: A Perspective. Kidney Med 2023; 5:100668. [PMID: 37334143 PMCID: PMC10276256 DOI: 10.1016/j.xkme.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
As genetic testing is increasingly integrated into nephrology practice there is a growing need for partnership with genetic experts. Genetic counselors are ideally suited to fill this role. The value of genetic counseling is born out of the clinical value of genetic test results against the backdrop of the complexity of genetic testing. Genetic counselors who specialize in nephrology are trained to understand and explain the potential effects of genes on kidney disease, which can enable patients to make informed decisions about proceeding with genetic testing, navigating variants of uncertain significance, educating on extrarenal features of hereditary kidney disease, facilitating cascade testing, providing post-test education about testing results, and assisting with family planning. Genetic counselors can partner with the nephrologist and provide the knowledge needed to maximize the use of genetic testing for patients for nephrology consultation. Genetic counseling is more than an element or extension of genetic testing; it is a dynamic, shared conversation between the patient and the genetic counselor where concerns, sentiments, information, and education are exchanged, and value-based decision making is facilitated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Darbey Raible
- St. Elizabeth Healthcare Precision Medicine, Edgewood, KY
| | | |
Collapse
|
48
|
Aklilu AM. Diagnosis of Chronic Kidney Disease and Assessing Glomerular Filtration Rate. Med Clin North Am 2023; 107:641-658. [PMID: 37258004 DOI: 10.1016/j.mcna.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chronic kidney disease (CKD) is a silent progressive disease. It is diagnosed by assessing filtration and markers of kidney damage such as albuminuria. The diagnosis of CKD should include not only assessing the glomerular filtration rate (GFR) and albuminuria but also the cause. The CKD care plan should include documentation of the trajectory and prognosis. The use of a combination of serum cystatin C and creatinine concentration offers a more accurate estimation of GFR. Social determinants of health are important to address as part of the diagnosis because they contribute to CKD disparities.
Collapse
Affiliation(s)
- Abinet M Aklilu
- Section of Nephrology, Department of Medicine, Yale school of Medicine, 60 Temple Street, Suite 6C, New Haven, CT 06510, USA.
| |
Collapse
|
49
|
Tuot DS, Powe NR. Care of the Patient With Abnormal Kidney Test Results. Ann Intern Med 2023; 176:ITC65-ITC80. [PMID: 37155988 DOI: 10.7326/aitc202305160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Blood and urine tests are commonly performed by clinicians in both ambulatory and hospital settings that detect chronic and acute kidney disease. Thresholds for these tests have been established that signal the presence and severity of kidney injury or dysfunction. In the appropriate clinical context of a patient's history and physical examination, an abnormal test result should trigger specific actions for clinicians, including reviewing patient medication use, follow-up testing, prescribing lifestyle modifications, and specialist referral. Tests for kidney disease can also be used to determine the future risk for kidney failure as well as cardiovascular death.
Collapse
Affiliation(s)
- Delphine S Tuot
- Division of Nephrology and Department of Medicine, Priscilla Chan and Mark Zuckerberg San Francisco General Hospital, and Department of Medicine, University of California San Francisco, San Francisco, California (D.S.T.)
| | - Neil R Powe
- Department of Medicine, Priscilla Chan and Mark Zuckerberg San Francisco General Hospital, and Department of Medicine, University of California San Francisco, San Francisco, California (N.R.P.)
| |
Collapse
|
50
|
Ghasemi S, Wuttke M. Genetic Association Analysis of Chronic Kidney Disease Progression in a Small Korean Cohort Study. J Am Soc Nephrol 2023; 34:729-731. [PMID: 37126668 PMCID: PMC10371272 DOI: 10.1681/asn.0000000000000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Sahar Ghasemi
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|