1
|
Frank BS, Runciman M, Manning WA, Ivy DD, Abman SH, Howley L. Pulmonary Hypertension Secondary to Scurvy in a Developmentally Typical Child. J Pediatr 2019; 208:291-291.e2. [PMID: 30738657 DOI: 10.1016/j.jpeds.2018.12.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Benjamin S Frank
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Martin Runciman
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - William A Manning
- Section of Internal Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - D Dunbar Ivy
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center, Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Lisa Howley
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado
| |
Collapse
|
2
|
Crosstalk between Vitamins A, B12, D, K, C, and E Status and Arterial Stiffness. DISEASE MARKERS 2017; 2017:8784971. [PMID: 28167849 PMCID: PMC5266829 DOI: 10.1155/2017/8784971] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
Arterial stiffness is associated with cardiovascular risk, morbidity, and mortality. The present paper reviews the main vitamins related to arterial stiffness and enabling destiffening, their mechanisms of action, providing a brief description of the latest studies in the area, and their implications for primary cardiovascular prevention, clinical practice, and therapy. Despite inconsistent evidence for destiffening induced by vitamin supplementation in several randomized clinical trials, positive results were obtained in specific populations. The main mechanisms are related to antiatherogenic effects, improvement of endothelial function (vitamins A, C, D, and E) and metabolic profile (vitamins A, B12, C, D, and K), inhibition of the renin-angiotensin-aldosterone system (vitamin D), anti-inflammatory (vitamins A, D, E, and K) and antioxidant effects (vitamins A, C, and E), decrease of homocysteine level (vitamin B12), and reversing calcification of arteries (vitamin K). Vitamins A, B12, C, D, E, and K status is important in evaluating cardiovascular risk, and vitamin supplementation may be an effective, individualized, and inexpensive destiffening therapy.
Collapse
|
3
|
Wu JR, Hsu JH, Dai ZK, Wu BN, Chen IJ, Liou SF, Yeh JL. Activation of endothelial NO synthase by a xanthine derivative ameliorates hypoxia-induced apoptosis in endothelial progenitor cells. ACTA ACUST UNITED AC 2016; 68:810-8. [PMID: 27109251 DOI: 10.1111/jphp.12555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/13/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Endothelial damage is strongly associated with cardiovascular diseases such as atherosclerosis, thrombosis and hypertension. Endothelial progenitor cells (EPCs) are primitive bone marrow (BM) cells that possess the capacity to mature into endothelial cells and play a role in neovascularization and vascular remodelling. This study aimed to investigate whether KMUP-1, a synthetic xanthine-based derivative, atorvastatin and simvastatin, can prevent endothelial dysfunction and apoptosis induced by hypoxia and to elucidate the underlying mechanisms. METHODS Mononuclear cells were separated and were induced to differentiate into EPCs. KMUP-1, atorvastatin or simvastatin were administered prior to hypoxia. KEY FINDINGS We found that EPCs exposed to hypoxia increased apoptosis as well as diminished proliferation. Pretreatment with KMUP-1, atorvastatin and simvastatin significantly prevented hypoxia-induced EPCs death and apoptosis, with associated increased of the Bcl-2/Bax ratio, and reduced caspase-3 and caspase-9 expression. We also assessed the nitrite production and Ser(1177)-phospho-eNOS expression and found that KMUP-1, atorvastatin and simvastatin not only increased the secretion of NO compared with the hypoxia group but also upregulated the eNOS activation. CONCLUSIONS KMUP-1 inhibited hypoxia-induced dysfunction and apoptosis in EPCs, which may be mediated through suppressing oxidative stress, upregulating eNOS and downregulating the caspase-3 signalling pathway.
Collapse
Affiliation(s)
- Jiunn-Ren Wu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|