1
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
2
|
Sangiorgio A, Andriolo L, Gersoff W, Kon E, Nakamura N, Nehrer S, Vannini F, Filardo G. Subchondral bone: An emerging target for the treatment of articular surface lesions of the knee. J Exp Orthop 2024; 11:e12098. [PMID: 39040436 PMCID: PMC11260998 DOI: 10.1002/jeo2.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose When dealing with the health status of the knee articular surface, the entire osteochondral unit has gained increasing attention, and in particular the subchondral bone, which plays a key role in the integrity of the osteochondral unit. The aim of this article was to discuss the current evidence on the role of the subchondral bone. Methods Experts from different geographical regions were involved in performing a review on highly discussed topics about the subchondral bone, ranging from its etiopathogenetic role in joint degeneration processes to its prognostic role in chondral and osteochondral defects, up to treatment strategies to address both the subchondral bone and the articular surface. Discussion Subchondral bone has a central role both from an aetiologic point of view and as a diagnostic tool, and its status was found to be relevant also as a prognostic factor in the follow-up of chondral treatment. Finally, the recognition of its importance in the natural history of these lesions led to consider subchondral bone as a treatment target, with the development of osteochondral scaffolds and procedures to specifically address osteochondral lesions. Conclusion Subchondral bone plays a central role in articular surface lesions from different points of view. Several aspects still need to be understood, but a growing interest in subchondral bone is to be expected in the upcoming future towards the optimization of joint preservation strategies. Level of Evidence Level V, expert opinion.
Collapse
Affiliation(s)
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Wayne Gersoff
- Orthopedic Centers of Colorado Joint Preservation Institute, Clinical InstructorUniversity of Colorado Health Sciences CenterAuroraColoradoUSA
| | - Elizaveta Kon
- IRCCS Humanitas Research HospitalRozzanoItaly
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Department of Traumatology, Orthopaedics and Disaster SurgerySechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Norimasa Nakamura
- Institute for Medical Science in SportsOsaka Health Science UniversityOsakaJapan
- Center for Advanced Medical Engineering and InformaticsOsaka UniversitySuitaJapan
| | - Stefan Nehrer
- Faculty Health & MedicineUniversity for Continuing EducationKremsAustria
- Department of Orthopaedics and TraumatologyUniversity Hospital Krems, Karl Landsteiner University of Health SciencesKremsAustria
| | - Francesca Vannini
- Clinica Ortopedica e Traumatologica1 IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
- Applied and Translational Research (ATR) CenterIRCCS Istituto Ortopedico RizzoliBolognaItaly
| |
Collapse
|
3
|
Koh JL, Jacob KC, Kulkarni R, Vasilion Z, Amirouche FM. Consequences of Progressive Full-Thickness Focal Chondral Defects Involving the Medial and Lateral Femoral Condyles After Meniscectomy: A Biomechanical Study Using a Goat Model. Orthop J Sports Med 2022; 10:23259671221078598. [PMID: 35356308 PMCID: PMC8958688 DOI: 10.1177/23259671221078598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Full-thickness chondral defects alter tibiofemoral joint homeostasis and, if left untreated, have the potential to progress to osteoarthritis. Purpose: To assess the effects of isolated and dual full-thickness chondral defect size and location on the biomechanical properties of the lateral femoral condyle (LFC) and medial femoral condyle (MFC) during dynamic knee flexion in goat knees without menisci. Methods: In 12 goat knees, we created progressively increasing full-thickness circular chondral defects (3-, 5-, and 7.5-mm diameter) in the weightbearing contact area of flexion and extension in the MFC, the LFC, or both. Each knee was fixed into a custom steel frame and attached to a motor with sensors inserted intra-articularly. For each testing condition, the knee was loaded to 100 N and underwent a dynamic range of motion between 90° of flexion and 30° of extension. The following parameters were collected: contact area, contact pressure, contact force, peak area, and peak pressure. Study Design: Controlled laboratory study. Results: The peak pressure at the defect rim of the MFC at full extension increased by 51.51% from no defect (1.887 MPa) to a 7.5-mm defect (2.859 MPa) (P < .001), and the peak pressure at the defect rim of the LFC at full extension increased by 139.14% from no defect (1.704 MPa) to a 7.5-mm defect (4.075 MPa) (P < .001). The peak pressures for LFC defects at all 3 diameters were significantly greater when compared with dual defects consisting of increasing LFC defect diameter and constant MFC defect diameter (P < .001 for all). Conclusion: Extremely large increases in peak pressure were seen at the rim of articular cartilage defects when evaluated under dynamic loading conditions. Isolated LFC defects experienced a greater increase in defect rim stress concentrations when compared with isolated MFC defects for equivalent increases in defect size. Defect size played a significant role independent of location for peak pressures on the MFC and LFC. Clinical Relevance: Significant rim-loading effects increase with defect size under dynamic loading and may result in increasingly rapid progression of articular cartilage lesions. Within the context of this goat model, findings suggest that lateral compartment chondral lesions are more likely to progress than medial compartment lesions of equivalent size.
Collapse
Affiliation(s)
- Jason L. Koh
- Department of Orthopaedic Surgery, Orthopaedic and Spine Institute, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Kevin C. Jacob
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois, USA
| | - Rohan Kulkarni
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois, USA
| | - Zachary Vasilion
- Department of Orthopaedic Surgery, Orthopaedic and Spine Institute, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Farid M.L. Amirouche
- Department of Orthopaedic Surgery, Orthopaedic and Spine Institute, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
4
|
Levingstone TJ, Moran C, Almeida HV, Kelly DJ, O'Brien FJ. Layer-specific stem cell differentiation in tri-layered tissue engineering biomaterials: Towards development of a single-stage cell-based approach for osteochondral defect repair. Mater Today Bio 2021; 12:100173. [PMID: 34901823 PMCID: PMC8640516 DOI: 10.1016/j.mtbio.2021.100173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Successful repair of osteochondral defects is challenging, due in part to their complex gradient nature. Tissue engineering approaches have shown promise with the development of layered scaffolds that aim to promote cartilage and bone regeneration within the defect. The clinical potential of implanting these scaffolds cell-free has been demonstrated, whereby cells from the host bone marrow MSCs infiltrate the scaffolds and promote cartilage and bone regeneration within the required regions of the defect. However, seeding the cartilage layer of the scaffold with a chondrogenic cell population prior to implantation may enhance cartilage tissue regeneration, thus enabling the treatment of larger defects. Here the development of a cell seeding approach capable of enhancing articular cartilage repair without the requirement for in vitro expansion of the cell population is explored. The intrinsic ability of a tri-layered scaffold previously developed in our group to direct stem cell differentiation in each layer of the scaffold was first demonstrated. Following this, the optimal chondrogenic cell seeding approach capable of enhancing the regenerative capacity of the tri-layered scaffold was demonstrated with the highest levels of chondrogenesis achieved with a co-culture of rapidly isolated infrapatellar fat pad MSCs (FPMSCs) and chondrocytes (CCs). The addition of FPMSCs to a relatively small number of CCs led to a 7.8-fold increase in the sGAG production over chondrocytes in mono-culture. This cell seeding approach has the potential to be delivered within a single-stage approach, without the requirement for costly in vitro expansion of harvested cells, to achieve rapid repair of osteochondral defects. Tri-layered scaffold capable of directing layer specific stem cell differentiation. Potential of cell seeding regimes to enhance chondrogenic repair explored. Optimal cell seeding regime was an infrapatellar fat pad MSC:chondrocyte coculture. Adding infrapatellar fat pad MSCs to chondrocytes led to >7-fold increase in sGAG. This cell-seeded scaffold has potential for rapid repair of osteochondral defects.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, 9, Ireland
- Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, 9, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, 9, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Conor Moran
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Henrique V. Almeida
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
| | - Daniel J. Kelly
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, 9, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
- Corresponding author. Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland.
| |
Collapse
|
5
|
Griffith JF. How to Report: Knee MRI. Semin Musculoskelet Radiol 2021; 25:690-699. [PMID: 34861714 DOI: 10.1055/s-0041-1736585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The knee is the most commonly examined joint with magnetic resonance imaging (MRI) and, as such, it is the joint that most trainee radiologists start reporting. This article addresses the main pathologies encountered on MRI examination of the knee, outlining the key features to note and report, as well as providing examples of terminology used to describe these findings.
Collapse
Affiliation(s)
- James Francis Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
No effect of platelet-rich plasma as adjuvant to bone marrow stimulation for the treatment of chondral defects in a large animal model. Arch Orthop Trauma Surg 2020; 140:77-84. [PMID: 31664573 DOI: 10.1007/s00402-019-03292-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Bone marrow stimulation (BMS) remains a dominant treatment strategy for symptomatic full thickness articular cartilage defects. Autologous platelet-rich plasma (PRP), may improve biological cartilage repair as an adjunct to BMS. OBJECTIVES To assess the histological quality of cartilage repair after BMS with and without repeated local injections of PRP for the treatment of full-thickness focal chondral defects of the knee. METHODS Two full-thickness chondral defects (Ø = 6 mm) were surgically performed in the medial and lateral trochlea of each knee in skeletally mature Göttingen minipigs. The two treatment groups with 12 defect for each groups were (1) BMS with one weekly PRP injection for 4 weeks, and (2) BMS alone. The animals were euthanized after 6 months. Samples of both whole blood and PRP were analysed with an automated hematology analyzer to determine the concentrations of platelets and nucleated cells. The composition of cartilage repair tissue was assessed using gross appearance assessment, histomorphometry and semi-quantitative scoring (ICRS II). RESULTS The average fold increase in platelets was 10.2 ± 2.2. Leukocyte concentration increased in PRP samples by an average fold change of 7.2 ± 1.3. Our macroscopic findings showed that the defects in the BMS + PRP-treated group, were filled with an irregular, partially rough tissue similar to the BMS-treated group. No significant difference in amount of hyalin cartilage, fibrocartilage or fibrous tissue content and ICRS II scores was found between the groups. CONCLUSIONS Four repeated local injections of leukocyte-rich PRP after BMS in the treatment of full-thickness cartilage injuries demonstrated no beneficial effects in terms of macroscopic and histological cartilage repair tissue quality.
Collapse
|
7
|
Lepage SIM, Robson N, Gilmore H, Davis O, Hooper A, St John S, Kamesan V, Gelis P, Carvajal D, Hurtig M, Koch TG. Beyond Cartilage Repair: The Role of the Osteochondral Unit in Joint Health and Disease. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:114-125. [PMID: 30638141 PMCID: PMC6486663 DOI: 10.1089/ten.teb.2018.0122] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Once believed to be limited to articular cartilage, osteoarthritis is now considered to be an organ disease of the “whole joint.” Damage to the articular surface can lead to, be caused by, or occur in parallel with, damage to other tissues in the joint. The relationship between cartilage and the underlying subchondral bone has particular importance when assessing joint health and determining treatment strategies. The articular cartilage is anchored to the subchondral bone through an interface of calcified cartilage, which as a whole makes up the osteochondral unit. This unit functions primarily by transferring load-bearing weight over the joint to allow for normal joint articulation and movement. Unfortunately, irreversible damage and degeneration of the osteochondral unit can severely limit joint function. Our understanding of joint pain, the primary complaint of patients, is poorly understood and past efforts toward structural cartilage restoration have often not been associated with a reduction in pain. Continued research focusing on the contribution of subchondral bone and restoration of the entire osteochondral unit are therefore needed, with the hope that this will lead to curative, and not merely palliative, treatment options. The purpose of this narrative review is to investigate the role of the osteochondral unit in joint health and disease. Topics of discussion include the crosstalk between cartilage and bone, the efficacy of diagnostic procedures, the origins of joint pain, current and emerging treatment paradigms, and suitable preclinical animal models for safety and efficacy assessment of novel osteochondral therapies. The goal of the review is to facilitate an appreciation of the important role played by the subchondral bone in joint pain and why the osteochondral unit as a whole should be considered in many cases of joint restoration strategies.
Collapse
Affiliation(s)
- Sarah I M Lepage
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Naomi Robson
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Hillary Gilmore
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Ola Davis
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Allyssa Hooper
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Stephanie St John
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Vashine Kamesan
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Paul Gelis
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Diana Carvajal
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| | - Mark Hurtig
- 2 Department of Clinical Studies, University of Guelph, Guelph, Canada
| | - Thomas G Koch
- 1 Department of Biomedical Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
8
|
Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20020259. [PMID: 30634691 PMCID: PMC6358980 DOI: 10.3390/ijms20020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Continuous passive motion (CPM) is widely used after total knee replacement. In this study, we investigated the effect of CPM combined with cell-based construct-transplantation in osteochondral tissue engineering. We created osteochondral defects (3 mm in diameter and 3 mm in depth) in the medial femoral condyle of 36 knees and randomized them into three groups: ED (empty defect), EPC/PLGA (endothelial progenitor cells (EPCs) seeded in the poly lactic-co-glycolic acid (PLGA) scaffold), or EPC/PLGA/CPM (EPC/PLGA scaffold complemented with CPM starting one day after transplantation). We investigated the effects of CPM and the EPC/PLGA constructs on tissue restoration in weight-bearing sites by histological observation and micro-computed tomography (micro-CT) evaluation 4 and 12 weeks after implantation. After CPM, the EPC/PLGA construct exhibited early osteochondral regeneration and prevention of subchondral bone overgrowth and cartilage degeneration. CPM did not alter the microenvironment created by the construct; it up-regulated the expression of the extracellular matrix components (glycosaminoglycan and collagen), down-regulated bone formation, and induced the biosynthesis of lubricin, which appeared in the EPC/PLGA/CPM group after 12 weeks. CPM can provide promoting signals during osteochondral tissue engineering and achieve a synergistic effect when combined with EPC/PLGA transplantation, so it should be considered a non-invasive treatment to be adopted in clinical practices.
Collapse
|
9
|
Wang HC, Lin YT, Lin TH, Chang NJ, Lin CC, Hsu HC, Yeh ML. Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits. PLoS One 2018; 13:e0209747. [PMID: 30596714 PMCID: PMC6312252 DOI: 10.1371/journal.pone.0209747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Repairing damaged articular cartilage is particularly challenging because of the limited ability of cartilage to perform self-repair. Intra-articular injections of N-acetylglucosamine (GlcNAc) comprise a method of repairing full-thickness articular cartilage defects in the rabbit knee joint model. To date, the effects of administration of GlcNAc and hyaluronic acid (HA) have been investigated only in the context of osteoarthritis treatment. Therefore, we evaluated the therapeutic effects of using cell-free porous poly lactic-co-glycolic acid (PLGA) graft implants and intra-articular injections of GlcNAc or HA in a rabbit model of osteochondral regeneration to investigate whether they have the potential for inducing osteochondral regeneration when used alone or simultaneously. Twenty-four rabbits were randomized into one of four groups: the scaffold-only group (PLGA), the scaffold with intra-articular injections of GlcNAc (PLGA+G) group, twice per week for four weeks; the scaffold with intra-articular injections of HA group (PLGA+HA) group, once per week for three weeks; and the scaffold with intra-articular injections of GlcNAc and HA (PLGA+G+HA) group, once per week for three weeks. Knees were evaluated at 4 and 12 weeks after surgery. At the end of testing, only the PLGA+G+HA group exhibited significant bone reconstruction, chondrocyte clustering, and good interactions with adjacent surfaces at 4 weeks. Additionally, the PLGA+G+HA group demonstrated essentially original hyaline cartilage structures that appeared to have sound chondrocyte orientation, considerable glycosaminoglycan levels, and reconstruction of the bone structure at 12 weeks. Moreover, the PLGA+G+HA group showed organized osteochondral integration and significantly higher bone volume per tissue volume and trabecular thickness. However, there were no significant differences between the PLGA+G and PLGA+HA groups except for gap formation on subchondral bone in the PLGA+G group. This study demonstrated that PLGA implantation combined with intra-articular injections of GlcNAc and HA allowed for cartilage and bone regeneration and significantly promoted osteochondral regeneration in rabbits without supplementation of exogenous growth factors. And the combination of this two supplements with PLGA scaffold could also prolong injection interval and better performance than either of them alone for the reconstruction of osteochondral tissue in the knee joints of rabbits.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Zevenbergen L, Smith CR, Van Rossom S, Thelen DG, Famaey N, Vander Sloten J, Jonkers I. Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait. PLoS One 2018; 13:e0205842. [PMID: 30325946 PMCID: PMC6191138 DOI: 10.1371/journal.pone.0205842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The current study quantified the influence of cartilage defect location on the tibiofemoral load distribution during gait. Furthermore, changes in local mechanical stiffness representative for matrix damage or bone ingrowth were investigated. This may provide insights in the mechanical factors contributing to cartilage degeneration in the presence of an articular cartilage defect. METHODS The load distribution following cartilage defects was calculated using a musculoskeletal model that included tibiofemoral and patellofemoral joints with 6 degrees-of-freedom. Circular cartilage defects of 100 mm2 were created at different locations in the tibiofemoral contact geometry. By assigning different mechanical properties to these defect locations, softening and hardening of the tissue were evaluated. RESULTS Results indicate that cartilage defects located at the load-bearing area only affect the load distribution of the involved compartment. Cartilage defects in the central part of the tibia plateau and anterior-central part of the medial femoral condyle present the largest influence on load distribution. Softening at the defect location results in overloading, i.e., increased contact pressure and compressive strains, of the surrounding tissue. In contrast, inside the defect, the contact pressure decreases and the compressive strain increases. Hardening at the defect location presents the opposite results in load distribution compared to softening. Sensitivity analysis reveals that the surrounding contact pressure, contact force and compressive strain alter significantly when the elastic modulus is below 7 MPa or above 18 MPa. CONCLUSION Alterations in local mechanical behavior within the high load bearing area resulted in aberrant loading conditions, thereby potentially affecting the homeostatic balance not only at the defect but also at the tissue surrounding and opposing the defect. Especially, cartilage softening predisposes the tissue to loads that may contribute to accelerated risk of cartilage degeneration and the initiation or progression towards osteoarthritis of the whole compartment.
Collapse
Affiliation(s)
- Lianne Zevenbergen
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Colin R. Smith
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Sam Van Rossom
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Darryl G. Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nele Famaey
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Arthroscopic Cartilage Lesion Preparation in the Human Cadaveric Knee Using a Curette Technique Demonstrates Clinically Relevant Histologic Variation. Arthroscopy 2018; 34:2179-2188. [PMID: 29653795 DOI: 10.1016/j.arthro.2018.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To examine the quality of arthroscopic cartilage debridement using a curette technique by comparing regional and morphologic variations within cartilage lesions prepared in human cadaveric knee specimens for the purpose of cartilage repair procedures. A secondary aim was to compare the histologic properties of cartilage lesions prepared by surgeons of varying experience. METHODS Standardized cartilage lesions (8 mm × 15 mm), located to the medial/lateral condyle and medial/lateral trochlea were created within 12 human cadaver knees by 40 orthopaedic surgeons. Participants were instructed to create full-thickness cartilage defects within the marked area, shouldered by uninjured vertical walls of cartilage, and to remove the calcified cartilage layer, without violating the subchondral plate. Histologic specimens were prepared to examine the verticality of surrounding cartilage walls at the front and rear aspects of the lesions, and to characterize the properties of the surrounding cartilage, the cartilage wall profile, the debrided lesion depth, bone sinusoid access, and the bone surface profile. Comparative analysis of cartilage wall verticality measured as deviation from perpendicular was performed, and Spearman's rank correlation analysis was used to examine associations between debrided wall verticality and surgeon experience. RESULTS Mean cartilage wall verticality relative to the base of the lesion was superior at the rear aspect of the lesion compared to the front aspect (12.9° vs 29.2°, P < .001). Variability was identified in the morphology of the surrounding cartilage (P < .001), cartilage wall profile (P = .016), debrided lesion depth (P = .028), bone surface profile (P = .040), and bone sinusoid access (P = .009), with sinusoid access identified in 42% of cases. There was no significant association of cartilage lesion wall verticality and surgeon years in practice (rs = 0.161, P = .065) or arthroscopic caseload (rs = -0.071, P = .419). CONCLUSIONS Arthroscopic cartilage lesion preparation using standard curette technique in a human cadaveric knee model results in inferior perpendicularity of the surrounding cartilage walls at the front aspect of the defect, compared to the rear aspect. This technique has shown significant variability in the depth of debridement, with debridement depths identified as either too superficial or too deep to the calcified cartilage layer in more than 60% of cases in this study. Surgeon experience does not appear to impact the morphologic properties of cartilage lesions prepared arthroscopically using ring curettes. CLINICAL RELEVANCE: To optimize restoration of hyaline-like cartilage tissue, careful attention to prepared cartilage lesion morphology is advised when arthroscopically performing cartilage repair, given the tendency for standard curette technique to create inferior verticality of cartilage walls at the front of the lesion, and the variable depth of debridement achieved.
Collapse
|
12
|
Pfeifer CG, Fisher MB, Saxena V, Kim M, Henning EA, Steinberg DA, Dodge GR, Mauck RL. Age-Dependent Subchondral Bone Remodeling and Cartilage Repair in a Minipig Defect Model. Tissue Eng Part C Methods 2017; 23:745-753. [PMID: 28747146 DOI: 10.1089/ten.tec.2017.0109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
After cartilage injury and repair, the subchondral bone plate remodels. Skeletal maturity likely impacts both bone remodeling and inherent cartilage repair capacity. The objective of this study was to evaluate subchondral bone remodeling as a function of injury type, repair scenario, and skeletal maturity in a Yucatan minipig model. Cartilage defects (4 mm) were created bilaterally in the trochlear groove. Treatment conditions included a full thickness chondral defect (full chondral defect, n = 3 adult/3 juvenile), a partial thickness (∼50%) chondral defect (PCD, n = 3/3), and FCD treated with microfracture (MFX, n = 3/3). At 6 weeks postoperatively, osteochondral samples containing the lesion site were imaged by micro-computed tomography (CT) and analyzed by histology and immunohistochemistry. Via micro-CT, FCD and MFX groups showed increased bone loss in juveniles compared with adults. Quantification of histology using the ICRS II scoring system showed equal overall assessment for the FCD groups and better overall assessment in juvenile animals treated with MFX compared with adults. All FCD and MFX groups were inferior to control samples. For the PCD injury, both age groups had values close to the control values. For the FCD groups, there were greater alterations in the subchondral bone in juveniles compared with adults. Staining for collagen II showed more intense signals in juvenile FCD and MFX groups compared with adults. This large animal study of cartilage repair shows the significant impact of skeletal maturity on the propensity of subchondral bone to remodel as a result of chondral injury. This will improve selection criteria for animal models for studying cartilage injury, repair, and treatment.
Collapse
Affiliation(s)
- Christian G Pfeifer
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania.,3 Department of Trauma Surgery, Regensburg University Medical Center , Regensburg, Germany
| | - Matthew B Fisher
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania
| | - Vishal Saxena
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania
| | - Minwook Kim
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania.,4 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Elizabeth A Henning
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania.,4 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - David A Steinberg
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania
| | - George R Dodge
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania.,5 Collaborative Research Partner (CRP), Acute Cartilage Injury (ACI) Program of the AO Foundation , Davos, Switzerland
| | - Robert L Mauck
- 1 Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, Pennsylvania.,2 Translational Musculoskeletal Research Center, Philadelphia VA Medical Center , Philadelphia, Pennsylvania.,4 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania.,5 Collaborative Research Partner (CRP), Acute Cartilage Injury (ACI) Program of the AO Foundation , Davos, Switzerland
| |
Collapse
|
13
|
Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair. Sci Rep 2017; 7:45189. [PMID: 28345610 PMCID: PMC5366926 DOI: 10.1038/srep45189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/20/2017] [Indexed: 12/18/2022] Open
Abstract
Microfracture of cartilage defects may induce alterations of the subchondral bone in the mid- and long-term, yet very little is known about their onset. Possibly, these changes may be avoided by an enhanced microfracture technique with additional application of bone marrow aspirate. In this study, full-thickness chondral defects in the knee joints of minipigs were either treated with (1) debridement down to the subchondral bone plate alone, (2) debridement with microfracture, or (3) microfracture with additional application of bone marrow aspirate. At 4 weeks after microfracture, the loss of subchondral bone below the defects largely exceeded the original microfracture holes. Of note, a significant increase of osteoclast density was identified in defects treated with microfracture alone compared with debridement only. Both changes were significantly counteracted by the adjunct treatment with bone marrow. Debridement and microfracture without or with bone marrow were equivalent regarding the early cartilage repair. These data suggest that microfracture induced a substantial early resorption of the subchondral bone and also highlight the potential value of bone marrow aspirate as an adjunct to counteract these alterations. Clinical studies are warranted to further elucidate early events of osteochondral repair and the effect of enhanced microfracture techniques.
Collapse
|
14
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
15
|
Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, Chen F. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Res Ther 2016; 7:70. [PMID: 27150539 PMCID: PMC4858869 DOI: 10.1186/s13287-016-0328-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. METHODS We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. RESULTS A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. CONCLUSIONS Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jing Wei
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jun Zhu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Wei Liu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jihong Cui
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Hongmin Li
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Fulin Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.
| |
Collapse
|
16
|
Levingstone TJ, Ramesh A, Brady RT, Brama PA, Kearney C, Gleeson JP, O'Brien FJ. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 2016; 87:69-81. [DOI: 10.1016/j.biomaterials.2016.02.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/31/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
|
17
|
Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater 2016; 32:149-160. [PMID: 26724503 DOI: 10.1016/j.actbio.2015.12.034] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Identification of a suitable treatment for osteochondral repair presents a major challenge due to existing limitations and an urgent clinical need remains for an off-the-shelf, low cost, one-step approach. A biomimetic approach, where the biomaterial itself encourages cellular infiltration from the underlying bone marrow and provides physical and chemical cues to direct these cells to regenerate the damaged tissue, provides a potential solution. To meet this need, a multi-layer collagen-based osteochondral defect repair scaffold has been developed in our group. AIM The objective of this study was to assess the in vivo response to this scaffold and determine its ability to direct regenerative responses in each layer in order to repair osteochondral tissue in a critical-sized defect in a rabbit knee. METHODS Multi-layer scaffolds, consisting of a bone layer composed of type I collagen (bovine source) and hydroxyapatite (HA), an intermediate layer composed of type I and type II collagen and HA; and a superficial layer composed of type I and type II collagen (porcine source) and hyaluronic acid (HyA), were implanted into critical size (3 × 5 mm) osteochondral defects created in the medial femoral condyle of the knee joint of New Zealand white rabbits and compared to an empty control group. Repair was assessed macroscopically, histologically and using micro-CT analysis at 12 weeks post implantation. RESULTS Analysis of repair tissue demonstrated an enhanced macroscopic appearance in the multi-layer scaffold group compared to the empty group. In addition, diffuse host cellular infiltration in the scaffold group resulted in tissue regeneration with a zonal organisation, with repair of the subchondral bone, formation of an overlying cartilaginous layer and evidence of an intermediate tidemark. CONCLUSION These results demonstrate the potential of this biomimetic multi-layered scaffold to support and guide the host reparative response in the treatment of osteochondral defects. STATEMENT OF SIGNIFICANCE Osteochondral defects, involving cartilage and the underlying subchondral bone, frequently occur in young active patients due to disease or injury. While some treatment options are available, success is limited and patients often eventually require joint replacement. To address this clinical need, a multi-layer collagen-based osteochondral defect repair scaffold designed to direct host-stem cell mediated tissue formation within each region, has been developed in our group. The present study investigates the in vivo response to this scaffold in a critical-sized defect in a rabbit knee. Results shows the scaffolds ability to guide the host reparative response leading to tissue regeneration with a zonal organisation, repair of the subchondral bone, formation of an overlying cartilaginous layer and evidence of an intermediate tidemark.
Collapse
|
18
|
Scotti C, Gobbi A, Karnatzikos G, Martin I, Shimomura K, Lane JG, Peretti GM, Nakamura N. Cartilage Repair in the Inflamed Joint: Considerations for Biological Augmentation Toward Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:149-59. [PMID: 26467024 DOI: 10.1089/ten.teb.2015.0297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cartilage repair/regeneration procedures (e.g., microfracture, autologous chondrocyte implantation [ACI]) typically result in a satisfactory outcome in selected patients. However, the vast majority of patients with chronic symptoms and, in general, a more diseased joint, do not benefit from these surgical techniques. The aims of this work were to (1) review factors negatively influencing the joint environment; (2) review current adjuvant therapies that can be used to improve results of cartilage repair/regeneration procedures in patients with more diseased joints, (3) outline future lines of research and promising experimental approaches. Chronicity of symptoms and advancing patient age appear to be the most relevant factors negatively affecting clinical outcome of cartilage repair/regeneration. Preliminary experience with hyaluronic acid, platelet-rich plasma, and mesenchymal stem cell has been positive but there is no strong evidence supporting the use of these products and this requires further assessment with high-quality, prospective clinical trials. The use of a Tissue Therapy strategy, based on more mature engineered tissues, holds promise to tackle limitations of standard ACI procedures. Current research has highlighted the need for more targeted therapies, and (1) induction of tolerance with granulocyte colony-stimulating factor (G-CSF) or by preventing IL-6 downregulation; (2) combined IL-4 and IL-10 local release; and (3) selective activation of the prostaglandin E2 (PGE2) signaling appear to be the most promising innovative strategies. For older patients and for those with chronic symptoms, adjuvant therapies are needed in combination with microfracture and ACI.
Collapse
Affiliation(s)
| | - Alberto Gobbi
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Georgios Karnatzikos
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Ivan Martin
- 3 Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel , Basel, Switzerland
| | - Kazunori Shimomura
- 4 Department of Orthopedics, Osaka University Graduate School of Medicine , Osaka, Japan
| | - John G Lane
- 5 COAST Surgery Center, University of California , San Diego, California
| | - Giuseppe Michele Peretti
- 1 IRCCS Istituto Ortopedico Galeazzi , Milan, Italy .,6 Department of Biomedical Sciences for Health, University of Milan , Milan, Italy
| | - Norimasa Nakamura
- 7 Institute for Medical Science in Sports, Osaka Health Science University , Osaka, Japan .,8 Center for Advanced Medical Engineering and Informatics, Osaka University , Osaka, Japan
| |
Collapse
|
19
|
Madry H, Ochi M, Cucchiarini M, Pape D, Seil R. Large animal models in experimental knee sports surgery: focus on clinical translation. J Exp Orthop 2015; 2:9. [PMID: 26914877 PMCID: PMC4545948 DOI: 10.1186/s40634-015-0025-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 02/06/2023] Open
Abstract
Large animal models play a crucial role in sports surgery of the knee, as they are critical for the exploration of new experimental strategies and the clinical translation of novel techniques. The purpose of this contribution is to provide critical aspects of relevant animal models in this field, with a focus on paediatric anterior cruciate ligament (ACL) reconstruction, high tibial osteotomy, and articular cartilage repair. Although there is no single large animal model strictly replicating the human knee joint, the sheep stifle joint shares strong similarities. Studies in large animal models of paediatric ACL reconstruction identified specific risk factors associated with the different surgical techniques. The sheep model of high tibial osteotomy is a powerful new tool to advance the understanding of the effect of axial alignment on the lower extremity on specific issues of the knee joint. Large animal models of both focal chondral and osteochondral defects and of osteoarthritis have brought new findings about the mechanisms of cartilage repair and treatment options. The clinical application of a magnetic device for targeted cell delivery serves as a suitable example of how data from such animal models are directly translated into in clinical cartilage repair. As novel insights from studies in these translational models will advance the basic science, close cooperation in this important field of clinical translation will improve current reconstructive surgical options and open novel avenues for regenerative therapies of musculoskeletal disorders.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Bldg 37, Kirrbergerstr. 1, D-66421, Homburg, Germany.
- Cartilage Net of the Greater Region, Homburg, Germany.
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg/Saar, Germany.
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Bldg 37, Kirrbergerstr. 1, D-66421, Homburg, Germany.
- Cartilage Net of the Greater Region, Homburg, Germany.
| | - Dietrich Pape
- Cartilage Net of the Greater Region, Homburg, Germany.
- Department of Orthopaedic Surgery, Centre Hospitalier du Luxembourg, L-1460, Luxembourg, Luxembourg.
- Sports Medicine Research Laboratory, Public Research Centre for Health, Luxembourg, Centre Médical de la Fondation Norbert Metz, 76 rue d'Eich, L-1460, Luxembourg, Luxembourg.
| | - Romain Seil
- Cartilage Net of the Greater Region, Homburg, Germany.
- Department of Orthopaedic Surgery, Centre Hospitalier du Luxembourg, L-1460, Luxembourg, Luxembourg.
- Sports Medicine Research Laboratory, Public Research Centre for Health, Luxembourg, Centre Médical de la Fondation Norbert Metz, 76 rue d'Eich, L-1460, Luxembourg, Luxembourg.
| |
Collapse
|
20
|
Orth P, Madry H. Advancement of the Subchondral Bone Plate in Translational Models of Osteochondral Repair: Implications for Tissue Engineering Approaches. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:504-20. [PMID: 26066580 DOI: 10.1089/ten.teb.2015.0122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Subchondral bone plate advancement is of increasing relevance for translational models of osteochondral repair in tissue engineering (TE). Especially for therapeutic TE approaches, a basic scientific knowledge of its chronological sequence, possible etiopathogenesis, and clinical implications are indispensable. This review summarizes the knowledge on this topic gained from a total of 31 translational investigations, including 1009 small and large animals. Experimental data indicate that the advancement of the subchondral bone plate frequently occurs during the spontaneous repair of osteochondral defects and following established articular cartilage repair approaches for chondral lesions such as marrow stimulation and TE-based strategies such as autologous chondrocyte implantation. Importantly, this subchondral bone reaction proceeds in a defined chronological and spatial pattern, reflecting both endochondral ossification and intramembranous bone formation. Subchondral bone plate advancement arises earlier in small animals and defects, but is more pronounced at the long term in large animals. Possible etiopathologies comprise a disturbed subchondral bone/articular cartilage crosstalk and altered biomechanical conditions or neovascularization. Of note, no significant correlation was found so far between subchondral bone plate advancement and articular cartilage repair. This evidence from translational animal models adverts to an increasing awareness of this previously underestimated pathology. Future research will shed more light on the advancement of the subchondral bone plate in TE models of cartilage repair.
Collapse
Affiliation(s)
- Patrick Orth
- 1 Center of Experimental Orthopedics, Saarland University , Homburg, Germany .,2 Department of Orthopedic Surgery, Saarland University Medical Center , Homburg, Germany
| | - Henning Madry
- 1 Center of Experimental Orthopedics, Saarland University , Homburg, Germany .,2 Department of Orthopedic Surgery, Saarland University Medical Center , Homburg, Germany
| |
Collapse
|
21
|
Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, He J, Jin Z. Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea. BIOMED RESEARCH INTERNATIONAL 2014; 2014:746138. [PMID: 25177697 PMCID: PMC4142181 DOI: 10.1155/2014/746138] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a "flow like" manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a "flow like" manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.
Collapse
Affiliation(s)
- Weijie Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
- The First Department of Orthopaedics, The Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Joint Surgery, Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Qin Lian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| | - Kunzheng Wang
- The First Department of Orthopaedics, The Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710004, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Weiguo Bian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
- Department of Orthopaedics, The First Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
22
|
Shive MS, Restrepo A, Totterman S, Tamez-Peña J, Schreyer E, Steinwachs M, Stanish WD. Quantitative 3D MRI reveals limited intra-lesional bony overgrowth at 1 year after microfracture-based cartilage repair. Osteoarthritis Cartilage 2014; 22:800-4. [PMID: 24726378 DOI: 10.1016/j.joca.2014.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/17/2014] [Accepted: 03/31/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intra-lesional bony overgrowth (BO) identified during or following cartilage repair treatment is being frequently described through subjective reports focusing primarily on incidence. Our objective was to quantify the exact volume of intra-lesional BO at 12 months post-cartilage repair treatment, to determine if a correlation exists between the extent of BO and clinical outcomes, and to visualize and characterize the BO. DESIGN MRI scans were systematically obtained during a randomized clinical trial for cartilage repair (Stanish et al., 2013) that compared two microfracture-based treatments in 78 patients. Semi-automated morphological segmentation of pre-treatment, 1 and 12 months post-treatment scans utilizing a programmed anatomical atlas for all knee bone and cartilage structures permitted three-dimensional reconstruction, quantitative analysis, as well as qualitative characterization and artistic visualization of BO. RESULTS Limited intra-lesional BO representing only 5.8 ± 5.7% of the original debrided cartilage lesion volume was found in 78 patients with available MRIs at 12 months. The majority (80%) of patients had very little BO (<10%). Most occurrences of BO carried either spotty (56.4%) or planar (6.4%) morphological features, and the remaining balance (37.2%) was qualitatively unobservable by eye. Pre-existing BO recurred at 12 months in the same intra-lesional location in 36% of patients. No statistical correlations were found between BO and clinical outcomes. CONCLUSIONS Intra-lesional BO following microfracture-based treatments may not be as severe as previously believed, its incidence is partly explained by pre-existing conditions, and no relationship to clinical outcomes exists at 12 months. Morphologically, observable BO was categorized as comprising either spotty or planar bone.
Collapse
Affiliation(s)
- M S Shive
- Piramal Healthcare (Canada) Ltd, Canada.
| | | | | | - J Tamez-Peña
- Tecnológico de Monterrey, Escuela de Medicina, Monterrey, Mexico
| | - E Schreyer
- Qmetrics Technologies, Rochester, NY, USA
| | | | - W D Stanish
- Dalhousie University, Department of Surgery, Halifax, Nova Scotia, Canada.
| |
Collapse
|
23
|
Flanigan DC, Harris JD, Brockmeier PM, Lathrop RL, Siston RA. The effects of defect size, orientation, and location on subchondral bone contact in oval-shaped experimental articular cartilage defects in a bovine knee model. Knee Surg Sports Traumatol Arthrosc 2014; 22:174-80. [PMID: 23250200 DOI: 10.1007/s00167-012-2342-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/04/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE Chondral defects of the knee may lead to pain and disability, often requiring surgical intervention. The purpose of this study was to identify how size, location, and orientation influences subchondral bone contact within oval-shaped chondral defects. METHODS Full-thickness defects were created in twelve bovine knees. Defect orientation was randomized between coronal and sagittal planes on both the medial and lateral femoral condyles (MFC and LFC). In extension, knees were statically loaded to 1,000 N. Area measurements were recorded using Tekscan sensors and I-Scan software. A MATLAB program computed defect area and the area within the defect demonstrating subchondral bone contact. RESULTS Defect area, location, and orientation each had a significant effect on subchondral bone contact (p < 0.001), and significant interactions were found between defect area and both location and orientation. The size threshold (cm(2)) at which significant contact occurred on the subchondral bone within the defect was smallest for LFC/coronal defects (0.73 cm(2)), then LFC/sagittal (1.14 cm(2)), then MFC/coronal (1.61 cm(2)), and then MFC/sagittal (no threshold reached). CONCLUSIONS Intra-articular location and orientation of a femoral condyle chondral defect, in addition to area, significantly influence femoral subchondral bone contact within the defect and the threshold at which subchondral bone contact occurs within the defect. The parameters of defect location and shape orientation supplement current surgical algorithms to manage knee articular cartilage surgery. This may indicate different cartilage restorative procedures based on the effect on the subchondral bone from the defect geometry itself and the selected cartilage surgery.
Collapse
Affiliation(s)
- David C Flanigan
- Cartilage Restoration Program, Sports Health and Performance Institute, The Ohio State University Sports Medicine Center, 2050 Kenny Road, Suite 3100, Columbus, OH, 43221, USA,
| | | | | | | | | |
Collapse
|
24
|
Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, Xu G, Heng BC, Ouyang HW. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 2013; 34:6046-57. [PMID: 23702148 DOI: 10.1016/j.biomaterials.2013.04.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 04/27/2013] [Indexed: 01/01/2023]
Abstract
The repair of osteochondral defects can be enhanced with scaffolds but is often accompanied with undesirable terminal differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Parathyroid hormone-related protein (PTHrP) has been shown to inhibit aberrant differentiation, but administration at inappropriate time points would have adverse effects on chondrogenesis. This study aims to develop an effective tissue engineering strategy by combining PTHrP and collagen-silk scaffold for osteochondral defect repair. The underlying mechanisms of the synergistic effect of combining PTHrP administration with collagen-silk scaffold implantation for rabbit knee joint osteochondral defect repair were investigated. In vitro studies showed that PTHrP treatment significantly reduced Alizarin Red staining and expression of terminal differentiation-related markers. This is achieved in part through blocking activation of the canonical Wnt/β-catenin signaling pathway. For the in vivo repair study, intra-articular injection of PTHrP was carried out at three different time windows (4-6, 7-9 and 10-12 weeks) together with implantation of a bi-layer collagen-silk scaffold. Defects treated with PTHrP at the 4-6 weeks time window exhibited better regeneration (reconstitution of cartilage and subchondral bone) with minimal terminal differentiation (hypertrophy, ossification and matrix degradation), as well as enhanced chondrogenesis (cell shape, Col2 and GAG accumulation) compared with treatment at other time windows. Furthermore, the timing of PTHrP administration also influenced PTHrP receptor expression, thus affecting the treatment outcome. Our results demonstrated that intra-articular injection of PTHrP at 4-6 weeks post-injury together with collagen-silk scaffold implantation is an effective strategy for inhibiting terminal differentiation and enhancing chondrogenesis, thus improving cartilage repair and regeneration in a rabbit model.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Orth P, Cucchiarini M, Kaul G, Ong MF, Gräber S, Kohn DM, Madry H. Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model. Osteoarthritis Cartilage 2012; 20:1161-9. [PMID: 22771776 DOI: 10.1016/j.joca.2012.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 06/21/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Upward migration of the subchondral bone plate is associated with osteochondral repair. The aim of this study was to quantitatively monitor the sequence of subchondral bone plate advancement in a lapine model of spontaneous osteochondral repair over a 1-year period and to correlate these findings with articular cartilage repair. DESIGN Standardized cylindrical osteochondral defects were created in the rabbit trochlear groove. Subchondral bone reconstitution patterns were identified at five time points. Migration of the subchondral bone plate and areas occupied by osseous repair tissue were determined by histomorphometrical analysis. Tidemark formation and overall cartilage repair were correlated with the histomorphometrical parameters of the subchondral bone. RESULTS The subchondral bone reconstitution pattern was cylindrical at 3 weeks, infundibuliform at 6 weeks, plane at 4 and 6 months, and hypertrophic after 1 year. At this late time point, the osteochondral junction advanced 0.19 [95% confidence intervals (CI) 0.10-0.30] mm above its original level. Overall articular cartilage repair was significantly improved by 4 and 6 months but degraded after 1 year. Subchondral bone plate migration correlated with tidemark formation (r = 0.47; P < 0.0001), but not with the overall score of the repair cartilage (r = 0.11; P > 0.44). CONCLUSIONS The subchondral bone plate is reconstituted in a distinct chronological order. The lack of correlation suggests that articular cartilage repair and subchondral bone reconstitution proceed at a different pace and that the advancement of the subchondral bone plate is not responsible for the diminished articular cartilage repair in this model.
Collapse
Affiliation(s)
- P Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Molecular differentiation between osteophytic and articular cartilage--clues for a transient and permanent chondrocyte phenotype. Osteoarthritis Cartilage 2012; 20:162-71. [PMID: 22209871 DOI: 10.1016/j.joca.2011.12.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the molecular differences between the transient and permanent chondrocyte phenotype in osteophytic and articular cartilage. METHODS Total RNA was isolated from the cartilaginous layer of osteophytes and from intact articular cartilage from knee joints of 15 adult human donors and subjected to cDNA microarray analysis. The differential expression of relevant genes between these two cartilaginous tissues was additionally validated by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and by immunohistochemistry. RESULTS Among 47,000 screened transcripts, 600 transcripts were differentially expressed between osteophytic and articular chondrocytes. Osteophytic chondrocytes were characterized by increased expression of genes involved in the endochondral ossification process [bone gamma-carboxyglutamate protein/osteocalcin (BGLAP), bone morphogenetic protein-8B (BMP8B), collagen type I, alpha 2 (COL1A2), sclerostin (SOST), growth arrest and DNA damage-induced gene 45ß (GADD45ß), runt-related transcription factor 2 (RUNX2)], and genes encoding tissue remodeling enzymes [matrix metallopeptidase (MMP)9, 13, hyaluronan synthase 1 (HAS1)]. Articular chondrocytes expressed increased transcript levels of antagonists and inhibitors of the BMP- and Wnt-signaling pathways [Gremlin-1 (GREM1), frizzled-related protein (FRZB), WNT1 inducible signaling pathway protein-3 (WISP3)], as well as factors that inhibit terminal chondrocyte differentiation and endochondral bone formation [parathyroid hormone-like hormone (PTHLH), sex-determining region Y-box 9 (SOX9), stanniocalcin-2 (STC2), S100 calcium binding protein A1 (S100A1), S100 calcium binding protein B (S100B)]. Immunohistochemistry of tissue sections for GREM1 and BGLAP, the two most prominent differentially expressed genes, confirmed selective detection of GREM1 in articular chondrocytes and that of BGLAP in osteophytic chondrocytes and bone. CONCLUSIONS Osteophytic and articular chondrocytes significantly differ in their gene expression pattern. In articular cartilage, a prominent expression of antagonists inhibiting the BMP- and Wnt-pathway may serve to lock and stabilize the permanent chondrocyte phenotype and thus prevent their terminal differentiation. In contrast, osteophytic chondrocytes express genes with roles in the endochondral ossification process, which may account for their transient phenotype.
Collapse
|
27
|
Klinger P, Surmann-Schmitt C, Brem M, Swoboda B, Distler JH, Carl HD, von der Mark K, Hennig FF, Gelse K. Chondromodulin 1 stabilizes the chondrocyte phenotype and inhibits endochondral ossification of porcine cartilage repair tissue. ACTA ACUST UNITED AC 2011; 63:2721-31. [DOI: 10.1002/art.30335] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med 2011; 39:1731-40. [PMID: 21628638 DOI: 10.1177/0363546511403282] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture and drilling are bone marrow-stimulation techniques that initiate cartilage repair by providing access to cell populations in subchondral bone marrow. This study examined the effect of hole depth and of microfracture versus drilling on subchondral bone repair and cartilage repair in full-thickness chondral defects. HYPOTHESES Repaired subchondral bone does not reconstitute its native structure and exhibits atypical morphologic features. Drilling deeper induces greater bone remodeling and is related to improved cartilage repair. STUDY DESIGN Controlled laboratory study. METHODS Trochlear cartilage defects debrided of the calcified layer were prepared bilaterally in 16 skeletally mature rabbits. Drill holes were made to a depth of 2 mm or 6 mm and microfracture holes to 2 mm. Animals were sacrificed 3 months postoperatively, and joints were scanned by micro-computed tomography before histoprocessing. Bone repair was assessed with a novel scoring system and by 3-dimentional micro-computed tomography and compared with intact controls. Correlation of subchondral bone features to cartilage repair outcome was performed. RESULTS Although surgical holes were partly repaired with mineralized tissue, atypical features such as residual holes, cysts, and bony overgrowth were frequently observed. For all treatment groups, repair led to an average bone volume density similar to that of the controls but the repair bone was more porous and branched as shown by significantly higher bone surface area density and connectivity density. Deeper versus shallower drilling induced a larger region of repairing and remodeling subchondral bone that positively correlated with improved cartilage repair. CONCLUSION Incomplete reconstitution of normal bone structure and continued remodeling occurred in chondral defects 3 months after bone marrow stimulation. Deep drilling induced a larger volume of repairing and remodeling bone, which appeared beneficial for chondral repair. CLINICAL RELEVANCE Bone marrow stimulation does not reconstitute normal bone structure. Strategies that increase subchondral bone involvement in marrow stimulation could further benefit cartilage repair.
Collapse
Affiliation(s)
- Hongmei Chen
- Chemical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Gelse K, Klinger P, Koch M, Surmann-Schmitt C, von der Mark K, Swoboda B, Hennig FF, Gusinde J. Thrombospondin-1 prevents excessive ossification in cartilage repair tissue induced by osteogenic protein-1. Tissue Eng Part A 2011; 17:2101-12. [PMID: 21513464 DOI: 10.1089/ten.tea.2010.0691] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study investigated the effect of thrombospondin-1 (TSP-1) on the formation of cartilage repair tissue in combination with stimulation by osteogenic protein-1 (OP-1). In miniature pigs, articular cartilage lesions in the femoral trochlea were treated by the microfracture technique and either received no further treatment (MFX), or were treated by additional application of recombinant osteogenic protein-1 (MFX+OP-1), recombinant TSP-1 (MFX+TSP-1), or a combination of both proteins (MFX+TSP-1+OP-1). Six and 26 weeks after surgery, the repair tissue and the degree of endochondral ossification were assessed by histochemical and immunohistochemical methods detecting collagen types I, II, X, TSP-1, and CD31. Microfracture treatment merely induced the formation of inferior fibrocartilaginous repair tissue. OP-1 stimulated chondrogenesis, but also induced chondrocyte hypertrophy, characterized by synthesis of collagen type X, and excessive bone formation. Application of TSP-1 inhibited inadvertant endochondral ossification, but failed to induce chondrogenesis. In contrast, the simultaneous application of both TSP-1 and OP-1 induced and maintained a permanent, nonhypertrophic chondrocyte-like phenotype within cartilage repair tissue. The data of this study demonstrate that OP-1 and TSP-1 complement each other in a functional manner. While OP-1 induces chondrogenesis of the ingrowing cells, TSP-1 prevents their further hypertrophic differentiation and prevents excessive endochondral ossification within the lesions.
Collapse
Affiliation(s)
- Kolja Gelse
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hurtig MB, Buschmann MD, Fortier LA, Hoemann CD, Hunziker EB, Jurvelin JS, Mainil-Varlet P, McIlwraith CW, Sah RL, Whiteside RA. Preclinical Studies for Cartilage Repair: Recommendations from the International Cartilage Repair Society. Cartilage 2011; 2:137-52. [PMID: 26069576 PMCID: PMC4300779 DOI: 10.1177/1947603511401905] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral defects in immature laboratory species, particularly the rabbit, was considered adequate; however, if successful and timely translation from animal models to regulatory approval and clinical use is the goal, a step-wise development using laboratory animals for screening and early development work followed by larger species such as the goat, sheep and horse for late development and pivotal studies is recommended. Such animals must have fully organized and mature cartilage. Both acute and chronic chondral defects can be used but the later are more like the lesions found in patients and may be more predictive. Quantitative and qualitative outcome measures such as macroscopic appearance, histology, biochemistry, functional imaging, and biomechanical testing of cartilage, provide reliable data to support investment decisions and subsequent applications to regulatory bodies for clinical trials. No one model or species can be considered ideal for pivotal studies, but the larger animal species are recommended for pivotal studies. Larger species such as the horse, goat and pig also allow arthroscopic delivery, and press-fit or sutured implant fixation in thick cartilage as well as second look arthroscopies and biopsy procedures.
Collapse
|
31
|
The effects of lesion size and location on subchondral bone contact in experimental knee articular cartilage defects in a bovine model. Arthroscopy 2010; 26:1655-61. [PMID: 20934843 DOI: 10.1016/j.arthro.2010.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine how femoral condyle chondral defect size and location influence subchondral bone contact within the defect. METHODS Full-thickness, circular chondral defects (0.2 to 5.07 cm²) were created in 9 healthy bovine knees. Knees were loaded to 1,000 N, and subchondral bone contact area measurements were recorded with a Tekscan sensor and I-Scan software (Tekscan, Boston, MA). A MATLAB program (The MathWorks, Natick, MA) was designed to compute defect area and the area within the defect showing subchondral bone contact. One-sample t tests with Bonferroni correction were performed for medial and lateral defects at each defect size to determine when statistically significant (P < .05) contact occurred; the smallest defect size exhibiting significant contact was considered a threshold area. RESULTS The threshold at which significant subchondral bone contact occurred was different for medial and lateral defects. Contact within all defects was not observed below a defect area of 0.97 cm². The threshold at which significant (P < .05) contact occurred was 1.61 cm² and 1.99 cm² for lateral and medial condyle defects, respectively. CONCLUSIONS Subchondral bone contact within experimental femoral condyle chondral defects is dependent on defect size and intra-articular location. In our bovine model, lateral condyle defects have significant subchondral bone contact at a smaller defect size than medial defects. CLINICAL RELEVANCE Current algorithms use size as a primary factor in management of chondral defects of the knee. Although the consequences of subchondral bone contact on femoral condyle articular cartilage defect progression are unknown, the results of this study supplement current algorithms and suggest consideration of defect location, in addition to size, in the management of chondral defects of the knee.
Collapse
|
32
|
Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 2010; 92:2220-33. [PMID: 20844166 PMCID: PMC7373451 DOI: 10.2106/jbjs.j.00049] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of the present study was to determine (1) whether the current literature supports the choice of using autologous chondrocyte implantation over other cartilage procedures with regard to clinical outcome, magnetic resonance imaging, arthroscopic assessment, and durability of treatment, (2) whether the current literature supports the use of a specific generation of autologous chondrocyte implantation, and (3) whether there are patient-specific and defect-specific factors that influence outcomes after autologous chondrocyte implantation in comparison with other cartilage repair or restoration procedures. METHODS We conducted a systematic review of multiple databases in which we evaluated Level-I and II studies comparing autologous chondrocyte implantation with another cartilage repair or restoration technique as well as comparative intergenerational studies of autologous chondrocyte implantation. The methodological quality of studies was evaluated with use of Delphi list and modified Coleman methodology scores. Effect size analysis was performed for all outcome measures. RESULTS Thirteen studies (917 subjects) were included. Study methodological quality improved with later publication dates. The mean modified Coleman methodology score was 54 (of 100). Patients underwent autologous chondrocyte implantation (n = 604), microfracture (n = 271), or osteochondral autograft (n = 42). All surgical techniques demonstrated improvement in comparison with the preoperative status. Three of seven studies showed better clinical outcomes after autologous chondrocyte implantation in comparison with microfracture after one to three years of follow-up, whereas one study showed better outcomes two years after microfracture and three other studies showed no difference in these treatments after one to five years. Clinical outcomes after microfracture deteriorated after eighteen to twenty-four months (in three of seven studies). Autologous chondrocyte implantation and osteochondral autograft demonstrated equivalent short-term clinical outcomes, although there was more rapid improvement after osteochondral autograft (two studies). Although outcomes were equivalent between first and second-generation autologous chondrocyte implantation and between open and arthroscopic autologous chondrocyte implantation, complication rates were higher with open, periosteal-cover, first-generation autologous chondrocyte implantation (four studies). Younger patients with a shorter preoperative duration of symptoms and fewer prior surgical procedures had the best outcomes after both autologous chondrocyte implantation and microfracture. A defect size of >4 cm(2) was the only factor predictive of better outcomes when autologous chondrocyte implantation was compared with a non-autologous chondrocyte implantation surgical technique. CONCLUSIONS Cartilage repair or restoration in the knee provides short-term success with microfracture, autologous chondrocyte implantation, or osteochondral autograft. There are patient-specific and defect-specific factors that influence clinical outcomes.
Collapse
Affiliation(s)
- Joshua D. Harris
- Division of Sports Medicine Cartilage Repair Center, Department of Orthopaedics, The Ohio State University Sports Medicine Center, 2050 Kenny Road, Suite 3100, Columbus, OH 43221-3502
| | - Robert A. Siston
- Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210
| | - Xueliang Pan
- Center for Biostatistics, The Ohio State University, 2012 Kenny Road, Columbus, OH 43221
| | - David C. Flanigan
- Division of Sports Medicine Cartilage Repair Center, Department of Orthopaedics, The Ohio State University Sports Medicine Center, 2050 Kenny Road, Suite 3100, Columbus, OH 43221-3502
| |
Collapse
|
33
|
Computational biomechanics of articular cartilage of human knee joint: Effect of osteochondral defects. J Biomech 2009; 42:2458-65. [DOI: 10.1016/j.jbiomech.2009.07.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/08/2009] [Accepted: 07/15/2009] [Indexed: 11/24/2022]
|
34
|
Gallo RA, Feeley BT. Cartilage defects of the femoral trochlea. Knee Surg Sports Traumatol Arthrosc 2009; 17:1316-25. [PMID: 19399479 DOI: 10.1007/s00167-009-0799-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Despite improvements in the ability to detect articular cartilage defects of the trochlea, determining the significance of these lesions remains difficult. Physical examination and history taking remain the best way to estimate the clinical impact of these lesions. Debridement and/or microfracture are often initial surgical interventions; these procedures can be expected to provide functional improvement in over 50%, but studies suggest that the amount of improvement deteriorates within 3 years. While initial reports on ACI and osteochondral allografts in the treatment of trochlear defects appear to be more promising solutions, long-term follow-up studies are lacking. Similarly, the effect of tibial tubercle osteotomy combined with cartilage restoration techniques remains unresolved. Nonetheless, based on the limited available evidence, ACI or osteochondral allografts combined with a tibial tubercle osteotomy when appropriate have provided the most durable treatment for these difficult-to-treat lesions.
Collapse
Affiliation(s)
- Robert A Gallo
- Department of Orthopedics and Rehabilitation, Pennsylvania State University College of Medicine, Bone and Joint Institute, Milton S. Hershey Medical Center, 30 Hope Drive, Hershey, PA 17033, USA.
| | | |
Collapse
|
35
|
Blanke M, Carl HD, Klinger P, Swoboda B, Hennig F, Gelse K. Transplanted chondrocytes inhibit endochondral ossification within cartilage repair tissue. Calcif Tissue Int 2009; 85:421-33. [PMID: 19763370 DOI: 10.1007/s00223-009-9288-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the effect of transplanted chondrocytes on endochondral bone formation in cartilage repair tissue. In the knee joint of miniature pigs, cartilage lesions were treated by microfracturing and were then either left empty, covered with a collagen membrane, or treated by matrix-associated autologous chondrocyte transplantation. In control lesions, the subchondral bone plate was left intact (partial-thickness lesion). The repair tissues were analyzed after 12 weeks by histological methods focusing on bone formation and vascularization. The effect of chondrocytes on angiogenesis was assessed by in vitro assays. The presence of antiangiogenic proteins in cartilage repair tissue, including thrombospondin-1 (TSP-1) and chondromodulin-I (ChM-I), was detected immunohistochemically and their expression in chondrocytes and bone marrow stromal cells was measured by quantitative RT-PCR. Significant outgrowths of subchondral bone and excessive endochondral ossification within the repair tissue were regularly observed in lesions with an exposed or microfractured subchondral bone plate. In contrast, such excessive bone formation was significantly inhibited by the additional transplantation of chondrocytes. Cartilaginous repair tissue that resisted ossification was strongly positive for the antiangiogenic proteins, TSP-1 and ChM-I, which were, however, not detectable in vascularized osseous outgrowths. Chondrocytes were identified to be the major source of TSP-1- and ChM-I expression and were shown to counteract the angiogenic activity of endothelial cells. These data suggest that the resistance of cartilaginous repair tissue against endochondral ossification following the transplantation of chondrocytes is associated with the presence of antiangiogenic proteins whose individual relevance has yet to be further explored.
Collapse
Affiliation(s)
- M Blanke
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 2008; 41:3340-8. [PMID: 19022449 DOI: 10.1016/j.jbiomech.2008.09.033] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/10/2008] [Accepted: 09/28/2008] [Indexed: 11/21/2022]
Abstract
Collagen fibrils networks in knee cartilage and menisci change in content and structure from a region to another. While resisting tension, they influence global joint response as well as local strains particularly at short-term periods. To investigate the role of fibrils networks in knee joint mechanics and in particular cartilage response, a novel model of the knee joint is developed that incorporates the cartilage and meniscus fibrils networks as well as depth-dependent properties in cartilage. The joint response under up to 2000N compression is investigated for conditions simulating the absence in cartilage of deep fibrils normal to subchondral bone or superficial fibrils parallel to surface as well as localized split of cartilage at subchondral junction or localized damage to superficial fibrils at loaded areas. Deep vertical fibrils network in cartilage play a crucial role in stiffening (by 10%) global response and protecting cartilage by reducing large strains (from maximum of 102% to 38%), in particular at subchondral junction. Superficial horizontal fibrils protect the tissue mainly from excessive strains at superficial layers (from 27% to 8%). Local cartilage split at base disrupts the normal function of vertical fibrils at the affected areas resulting in higher strains. Deep fibrils, and to a lesser extent superficial fibrils, play dominant mechanical roles in cartilage response under transient compression. Any treatment modality attempting to repair or regenerate cartilage defects involving partial or full thickness osteochondral grafts should account for the crucial role of collagen fibrils networks and the demanding mechanical environment of the tissue.
Collapse
|
37
|
Franceschi F, Longo UG, Ruzzini L, Marinozzi A, Maffulli N, Denaro V. Simultaneous arthroscopic implantation of autologous chondrocytes and high tibial osteotomy for tibial chondral defects in the varus knee. Knee 2008; 15:309-13. [PMID: 18541430 DOI: 10.1016/j.knee.2008.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 02/02/2023]
Abstract
There is no consensus on the ideal management of patients with chondral defects of the medial tibial plateau and varus malalignment of the knee. We performed a cohort study to evaluate the outcome of patients affected by these conditions, who underwent arthroscopic implantation of autologous chondrocytes and a medial opening wedge high tibial osteotomy. Eight patients (four men and four women; mean age, 50 years, range: 42 to 58) with chondral defects of the medial tibial plateau in a varus knee underwent arthroscopic implantations of autologous chondrocytes in conjunction with a medial opening wedge osteotomy. At final post-operative follow up of 28 months following the index procedure, the post-operative scores were improved for the IKDC score (four patients abnormal and four patients severely abnormal to four patients normal, three patients nearly normal and one patient abnormal), Lysholm score (65.7 range 49-88 to 94.6 range 89-100), Tegner score (3.7 range 3-5 to 7 range 5-8) and VAS score (7.2 to 2.0). In conclusion, the association of arthroscopic implantation of autologous chondrocytes with a medial opening wedge osteotomy of the proximal tibia is a viable option for the management of chondral defects in varus knees.
Collapse
Affiliation(s)
- Francesco Franceschi
- Department of Orthopaedic and Trauma Surgery, Campus Biomedico University, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. Knee 2006; 13:194-202. [PMID: 16632362 DOI: 10.1016/j.knee.2006.02.012] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/14/2006] [Accepted: 02/20/2006] [Indexed: 02/02/2023]
Abstract
Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI) is a new operation procedure using a cell seeded collagen matrix for the treatment of localized full-thickness cartilage defects. A prospective clinical investigation was carried out in order to clarify whether this proves suitable and confirms objective and subjective clinical improvement over a period of up to 5 years after operation. Thirty-eight patients with localised cartilage defects were treated with MACT. Within the context of clinical follow-up, these patients were evaluated for up to 5 years after the intervention. Four different scores (Meyers score, Tegner-Lysholm activity score, Lysholm-Gillquist score, ICRS score) as well as the results of six arthroscopies and biopsies obtained from four patients formed the basis of this study. For 15 patients, 5 or more years had elapsed since the operation at the time this study was completed. It was possible to obtain results 5 years postoperatively from 11 (73.3%) of these 15 patients. Overall, we included 25 patients into the evaluation with a 2-year or longer postoperative period. Five years after transplantation 8 out of 11 patients rated the function of their knee as much better or better than before. Three of the four scores showed significant improvement compared to the preoperative value. One score, the Tegner-Lysholm score showed improvement, which, however, did not prove to be significant. The significantly improved results on three scores after 5 years suggest that MACT represents a suitable but cost-intensive alternative in the treatment of local cartilage defects in the knee.
Collapse
Affiliation(s)
- Peter Behrens
- Department of Orthopaedics, University Clinic of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany.
| | | | | | | |
Collapse
|