1
|
Kumari A, Akhtar M, Shah R, Tanveer M. Support matrix machine: A review. Neural Netw 2025; 181:106767. [PMID: 39488110 DOI: 10.1016/j.neunet.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024]
Abstract
Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. SMM preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class-imbalance, and multi-class classification models. We also analyze the applications of the SMM and conclude the article by outlining potential future research avenues and possibilities that may motivate researchers to advance the SMM algorithm.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - Mushir Akhtar
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - Rupal Shah
- Department of Electrical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| | - M Tanveer
- Department of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
2
|
Li W, Xu Z, Mei M, Lan M, Liu C, Gao X. A Semi-Supervised Adaptive Matrix Machine Approach for Fault Diagnosis in Railway Switch Machine. SENSORS (BASEL, SWITZERLAND) 2024; 24:4402. [PMID: 39001181 PMCID: PMC11244449 DOI: 10.3390/s24134402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The switch machine, an essential element of railway infrastructure, is crucial in maintaining the safety of railway operations. Traditional methods for fault diagnosis are constrained by their dependence on extensive labeled datasets. Semi-supervised learning (SSL), although a promising solution to the scarcity of samples, faces challenges such as the imbalance of pseudo-labels and inadequate data representation. In response, this paper presents the Semi-Supervised Adaptive Matrix Machine (SAMM) model, designed for the fault diagnosis of switch machine. SAMM amalgamates semi-supervised learning with adaptive technologies, leveraging adaptive low-rank regularizer to discern the fundamental links between the rows and columns of matrix data and applying adaptive penalty items to correct imbalances across sample categories. This model methodically enlarges its labeled dataset using probabilistic outputs and semi-supervised, automatically adjusting parameters to accommodate diverse data distributions and structural nuances. The SAMM model's optimization process employs the alternating direction method of multipliers (ADMM) to identify solutions efficiently. Experimental evidence from a dataset containing current signals from switch machines indicates that SAMM outperforms existing baseline models, demonstrating its exceptional status diagnostic capabilities in situations where labeled samples are scarce. Consequently, SAMM offers an innovative and effective approach to semi-supervised classification tasks involving matrix data.
Collapse
Affiliation(s)
- Wenqing Li
- School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Zhongwei Xu
- School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Meng Mei
- School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Meng Lan
- School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Chuanzhen Liu
- School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| | - Xiao Gao
- School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
3
|
Hu X, Zhang P, Liu D, Zhang J, Zhang Y, Dong Y, Fan Y, Deng L. IGCNSDA: unraveling disease-associated snoRNAs with an interpretable graph convolutional network. Brief Bioinform 2024; 25:bbae179. [PMID: 38647155 PMCID: PMC11033953 DOI: 10.1093/bib/bbae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Accurately delineating the connection between short nucleolar RNA (snoRNA) and disease is crucial for advancing disease detection and treatment. While traditional biological experimental methods are effective, they are labor-intensive, costly and lack scalability. With the ongoing progress in computer technology, an increasing number of deep learning techniques are being employed to predict snoRNA-disease associations. Nevertheless, the majority of these methods are black-box models, lacking interpretability and the capability to elucidate the snoRNA-disease association mechanism. In this study, we introduce IGCNSDA, an innovative and interpretable graph convolutional network (GCN) approach tailored for the efficient inference of snoRNA-disease associations. IGCNSDA leverages the GCN framework to extract node feature representations of snoRNAs and diseases from the bipartite snoRNA-disease graph. SnoRNAs with high similarity are more likely to be linked to analogous diseases, and vice versa. To facilitate this process, we introduce a subgraph generation algorithm that effectively groups similar snoRNAs and their associated diseases into cohesive subgraphs. Subsequently, we aggregate information from neighboring nodes within these subgraphs, iteratively updating the embeddings of snoRNAs and diseases. The experimental results demonstrate that IGCNSDA outperforms the most recent, highly relevant methods. Additionally, our interpretability analysis provides compelling evidence that IGCNSDA adeptly captures the underlying similarity between snoRNAs and diseases, thus affording researchers enhanced insights into the snoRNA-disease association mechanism. Furthermore, we present illustrative case studies that demonstrate the utility of IGCNSDA as a valuable tool for efficiently predicting potential snoRNA-disease associations. The dataset and source code for IGCNSDA are openly accessible at: https://github.com/altriavin/IGCNSDA.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Pan Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 410078, ChangshaChina
| | - Dayun Liu
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, 92093, CA, United States
| | - Yuanpeng Zhang
- School of Software, Xinjiang University, 830046, Urumqi, China
| | - Yihan Dong
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Yanhao Fan
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| |
Collapse
|
4
|
Wang L, Li ZW, You ZH, Huang DS, Wong L. GSLCDA: An Unsupervised Deep Graph Structure Learning Method for Predicting CircRNA-Disease Association. IEEE J Biomed Health Inform 2024; 28:1742-1751. [PMID: 38127594 DOI: 10.1109/jbhi.2023.3344714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.
Collapse
|
5
|
Wu J, Ning Z, Ding Y, Wang Y, Peng Q, Fu L. KGETCDA: an efficient representation learning framework based on knowledge graph encoder from transformer for predicting circRNA-disease associations. Brief Bioinform 2023; 24:bbad292. [PMID: 37587836 DOI: 10.1093/bib/bbad292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Recent studies have demonstrated the significant role that circRNA plays in the progression of human diseases. Identifying circRNA-disease associations (CDA) in an efficient manner can offer crucial insights into disease diagnosis. While traditional biological experiments can be time-consuming and labor-intensive, computational methods have emerged as a viable alternative in recent years. However, these methods are often limited by data sparsity and their inability to explore high-order information. In this paper, we introduce a novel method named Knowledge Graph Encoder from Transformer for predicting CDA (KGETCDA). Specifically, KGETCDA first integrates more than 10 databases to construct a large heterogeneous non-coding RNA dataset, which contains multiple relationships between circRNA, miRNA, lncRNA and disease. Then, a biological knowledge graph is created based on this dataset and Transformer-based knowledge representation learning and attentive propagation layers are applied to obtain high-quality embeddings with accurately captured high-order interaction information. Finally, multilayer perceptron is utilized to predict the matching scores of CDA based on their embeddings. Our empirical results demonstrate that KGETCDA significantly outperforms other state-of-the-art models. To enhance user experience, we have developed an interactive web-based platform named HNRBase that allows users to visualize, download data and make predictions using KGETCDA with ease. The code and datasets are publicly available at https://github.com/jinyangwu/KGETCDA.
Collapse
Affiliation(s)
- Jinyang Wu
- School of Automation Science and Engineering, Xi'an Jiaotong University, 710049, Shaanxi, China
| | - Zhiwei Ning
- School of Automation Science and Engineering, Xi'an Jiaotong University, 710049, Shaanxi, China
| | - Yidong Ding
- School of Automation Science and Engineering, Xi'an Jiaotong University, 710049, Shaanxi, China
| | - Ying Wang
- School of Automation Science and Engineering, Xi'an Jiaotong University, 710049, Shaanxi, China
| | - Qinke Peng
- School of Automation Science and Engineering, Xi'an Jiaotong University, 710049, Shaanxi, China
| | - Laiyi Fu
- School of Automation Science and Engineering, Xi'an Jiaotong University, 710049, Shaanxi, China
- Research Institute of Xi'an Jiaotong University, 311200, Zhejiang, China
- Sichuan Digital Economy Industry Development Research Institute, 610036, Sichuan, China
| |
Collapse
|
6
|
Ai C, Yang H, Ding Y, Tang J, Guo F. Low Rank Matrix Factorization Algorithm Based on Multi-Graph Regularization for Detecting Drug-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3033-3043. [PMID: 37159322 DOI: 10.1109/tcbb.2023.3274587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting potential associations between drugs and diseases plays an indispensable role in drug development, which has also become a research hotspot in recent years. Compared with traditional methods, some computational approaches have the advantages of fast speed and low cost, which greatly accelerate the progress of predicting the drug-disease association. In this study, we propose a novel similarity-based method of low-rank matrix decomposition based on multi-graph regularization. On the basis of low-rank matrix factorization with L2 regularization, the multi-graph regularization constraint is constructed by combining a variety of similarity matrices from drugs and diseases respectively. In the experiments, we analyze the difference in the combination of different similarities, resulting that combining all the similarity information on drug space is unnecessary, and only a part of the similarity information can achieve the desired performance. Then our method is compared with other existing models on three data sets (Fdataset, Cdataset and LRSSLdataset) and have a good advantage in the evaluation measurement of AUPR. Besides, a case study experiment is conducted and showing that the superior ability for predicting the potential disease-related drugs of our model. Finally, we compare our model with some methods on six real world datasets, and our model has a good performance in detecting real world data.
Collapse
|
7
|
Ma Z, Kuang Z, Deng L. NGCICM: A Novel Deep Learning-Based Method for Predicting circRNA-miRNA Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3080-3092. [PMID: 37027645 DOI: 10.1109/tcbb.2023.3248787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The circRNAs and miRNAs play an important role in the development of human diseases, and they can be widely used as biomarkers of diseases for disease diagnosis. In particular, circRNAs can act as sponge adsorbers for miRNAs and act together in certain diseases. However, the associations between the vast majority of circRNAs and diseases and between miRNAs and diseases remain unclear. Computational-based approaches are urgently needed to discover the unknown interactions between circRNAs and miRNAs. In this paper, we propose a novel deep learning algorithm based on Node2vec and Graph ATtention network (GAT), Conditional Random Field (CRF) layer and Inductive Matrix Completion (IMC) to predict circRNAs and miRNAs interactions (NGCICM). We construct a GAT-based encoder for deep feature learning by fusing the talking-heads attention mechanism and the CRF layer. The IMC-based decoder is also constructed to obtain interaction scores. The Area Under the receiver operating characteristic Curve (AUC) of the NGCICM method is 0.9697, 0.9932 and 0.9980, and the Area Under the Precision-Recall curve (AUPR) is 0.9671, 0.9935 and 0.9981, respectively, using 2-fold, 5-fold and 10-fold Cross-Validation (CV) as the benchmark. The experimental results confirm the effectiveness of the NGCICM algorithm in predicting the interactions between circRNAs and miRNAs.
Collapse
|
8
|
Wang XF, Yu CQ, You ZH, Qiao Y, Li ZW, Huang WZ, Zhou JR, Jin HY. KS-CMI: A circRNA-miRNA interaction prediction method based on the signed graph neural network and denoising autoencoder. iScience 2023; 26:107478. [PMID: 37583550 PMCID: PMC10424127 DOI: 10.1016/j.isci.2023.107478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Circular RNA (circRNA) plays an important role in the diagnosis, treatment, and prognosis of human diseases. The discovery of potential circRNA-miRNA interactions (CMI) is of guiding significance for subsequent biological experiments. Limited by the small amount of experimentally supported data and high randomness, existing models are difficult to accomplish the CMI prediction task based on real cases. In this paper, we propose KS-CMI, a novel method for effectively accomplishing CMI prediction in real cases. KS-CMI enriches the 'behavior relationships' of molecules by constructing circRNA-miRNA-cancer (CMCI) networks and extracts the behavior relationship attribute of molecules based on balance theory. Next, the denoising autoencoder (DAE) is used to enhance the feature representation of molecules. Finally, the CatBoost classifier was used for prediction. KS-CMI achieved the most reliable prediction results in real cases and achieved competitive performance in all datasets in the CMI prediction.
Collapse
Affiliation(s)
- Xin-Fei Wang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Wen-Zhun Huang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Ji-Ren Zhou
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Hai-Yan Jin
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China
| |
Collapse
|
9
|
Lu C, Zhang L, Zeng M, Lan W, Duan G, Wang J. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network. Brief Bioinform 2023; 24:6960978. [PMID: 36572658 DOI: 10.1093/bib/bbac549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA-disease associations at a lower cost. Aggregating multi-source pathogenesis data helps to alleviate data sparsity and infer potential associations at the system level. The majority of computational approaches construct a homologous network using multi-source data, but they lose the heterogeneity of the data. Effective methods that use the features of multi-source data are considered as a matter of urgency. In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and heterogeneous graph neural networks for potential circRNA-disease association prediction. The circRNA network, micro RNA network, disease network and heterogeneous network are constructed based on multi-source data. To reflect association probabilities between nodes, an edge-weighted graph attention network model is designed for node features. To assign attention weights to different types of edges and learn contextual meta-path, CDHGNN infers potential circRNA-disease association based on heterogeneous neural networks. CDHGNN outperforms state-of-the-art algorithms in terms of accuracy. Edge-weighted graph attention networks and heterogeneous graph networks have both improved performance significantly. Furthermore, case studies suggest that CDHGNN is capable of identifying specific molecular associations and investigating biomolecular regulatory relationships in pathogenesis. The code of CDHGNN is freely available at https://github.com/BioinformaticsCSU/CDHGNN.
Collapse
Affiliation(s)
- Chengqian Lu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, Hunan, China.,School of Computer Science, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Lishen Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, Hunan, China
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, Hunan, China
| | - Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, Hunan, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
10
|
Lan W, Dong Y, Zhang H, Li C, Chen Q, Liu J, Wang J, Chen YPP. Benchmarking of computational methods for predicting circRNA-disease associations. Brief Bioinform 2023; 24:6972300. [PMID: 36611256 DOI: 10.1093/bib/bbac613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidences demonstrate that circular RNA (circRNA) plays an important role in human diseases. Identification of circRNA-disease associations can help for the diagnosis of human diseases, while the traditional method based on biological experiments is time-consuming. In order to address the limitation, a series of computational methods have been proposed in recent years. However, few works have summarized these methods or compared the performance of them. In this paper, we divided the existing methods into three categories: information propagation, traditional machine learning and deep learning. Then, the baseline methods in each category are introduced in detail. Further, 5 different datasets are collected, and 14 representative methods of each category are selected and compared in the 5-fold, 10-fold cross-validation and the de novo experiment. In order to further evaluate the effectiveness of these methods, six common cancers are selected to compare the number of correctly identified circRNA-disease associations in the top-10, top-20, top-50, top-100 and top-200. In addition, according to the results, the observation about the robustness and the character of these methods are concluded. Finally, the future directions and challenges are discussed.
Collapse
Affiliation(s)
- Wei Lan
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yi Dong
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hongyu Zhang
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Chunling Li
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information and State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
11
|
Wang L, Wong L, Li Z, Huang Y, Su X, Zhao B, You Z. A machine learning framework based on multi-source feature fusion for circRNA-disease association prediction. Brief Bioinform 2022; 23:6693603. [PMID: 36070867 DOI: 10.1093/bib/bbac388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/14/2022] Open
Abstract
Circular RNAs (circRNAs) are involved in the regulatory mechanisms of multiple complex diseases, and the identification of their associations is critical to the diagnosis and treatment of diseases. In recent years, many computational methods have been designed to predict circRNA-disease associations. However, most of the existing methods rely on single correlation data. Here, we propose a machine learning framework for circRNA-disease association prediction, called MLCDA, which effectively fuses multiple sources of heterogeneous information including circRNA sequences and disease ontology. Comprehensive evaluation in the gold standard dataset showed that MLCDA can successfully capture the complex relationships between circRNAs and diseases and accurately predict their potential associations. In addition, the results of case studies on real data show that MLCDA significantly outperforms other existing methods. MLCDA can serve as a useful tool for circRNA-disease association prediction, providing mechanistic insights for disease research and thus facilitating the progress of disease treatment.
Collapse
Affiliation(s)
- Lei Wang
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Leon Wong
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Zhengwei Li
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Yuan Huang
- Department of Computing, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xiaorui Su
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bowei Zhao
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhuhong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
12
|
Xu H, Pan H, Zheng J, Liu Q, Tong J. Dynamic penalty adaptive matrix machine for the intelligent detection of unbalanced faults in roller bearing. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Wu B, Li L, Cui Y, Zheng K. Cross-Adversarial Learning for Molecular Generation in Drug Design. Front Pharmacol 2022; 12:827606. [PMID: 35126153 PMCID: PMC8815768 DOI: 10.3389/fphar.2021.827606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Molecular generation is an important but challenging task in drug design, as it requires optimization of chemical compound structures as well as many complex properties. Most of the existing methods use deep learning models to generate molecular representations. However, these methods are faced with the problems of generation validity and semantic information of labels. Considering these challenges, we propose a cross-adversarial learning method for molecular generation, CRAG for short, which integrates both the facticity of VAE-based methods and the diversity of GAN-based methods to further exploit the complex properties of Molecules. To be specific, an adversarially regularized encoder-decoder is used to transform molecules from simplified molecular input linear entry specification (SMILES) into discrete variables. Then, the discrete variables are trained to predict property and generate adversarial samples through projected gradient descent with corresponding labels. Our CRAG is trained using an adversarial pattern. Extensive experiments on two widely used benchmarks have demonstrated the effectiveness of our proposed method on a wide spectrum of metrics. We also utilize a novel metric named Novel/Sample to measure the overall generation effectiveness of models. Therefore, CRAG is promising for AI-based molecular design in various chemical applications.
Collapse
Affiliation(s)
- Banghua Wu
- School of Cyber Science and Engineering, Sichuan University, Chengdu, China
| | - Linjie Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Cui
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Zheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Kai Zheng,
| |
Collapse
|
14
|
Ma Z, Kuang Z, Deng L. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network. BMC Bioinformatics 2021; 22:551. [PMID: 34772332 PMCID: PMC8588735 DOI: 10.1186/s12859-021-04467-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The existing studies show that circRNAs can be used as a biomarker of diseases and play a prominent role in the treatment and diagnosis of diseases. However, the relationships between the vast majority of circRNAs and diseases are still unclear, and more experiments are needed to study the mechanism of circRNAs. Nowadays, some scholars use the attributes between circRNAs and diseases to study and predict their associations. Nonetheless, most of the existing experimental methods use less information about the attributes of circRNAs, which has a certain impact on the accuracy of the final prediction results. On the other hand, some scholars also apply experimental methods to predict the associations between circRNAs and diseases. But such methods are usually expensive and time-consuming. Based on the above shortcomings, follow-up research is needed to propose a more efficient calculation-based method to predict the associations between circRNAs and diseases. RESULTS In this study, a novel algorithm (method) is proposed, which is based on the Graph Convolutional Network (GCN) constructed with Random Walk with Restart (RWR) and Principal Component Analysis (PCA) to predict the associations between circRNAs and diseases (CRPGCN). In the construction of CRPGCN, the RWR algorithm is used to improve the similarity associations of the computed nodes with their neighbours. After that, the PCA method is used to dimensionality reduction and extract features, it makes the connection between circRNAs with higher similarity and diseases closer. Finally, The GCN algorithm is used to learn the features between circRNAs and diseases and calculate the final similarity scores, and the learning datas are constructed from the adjacency matrix, similarity matrix and feature matrix as a heterogeneous adjacency matrix and a heterogeneous feature matrix. CONCLUSIONS After 2-fold cross-validation, 5-fold cross-validation and 10-fold cross-validation, the area under the ROC curve of the CRPGCN is 0.9490, 0.9720 and 0.9722, respectively. The CRPGCN method has a valuable effect in predict the associations between circRNAs and diseases.
Collapse
Affiliation(s)
- Zhihao Ma
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
15
|
Bamunu Mudiyanselage T, Lei X, Senanayake N, Zhang Y, Pan Y. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks. Methods 2021; 198:32-44. [PMID: 34748953 DOI: 10.1016/j.ymeth.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulated studies have discovered that circular RNAs (CircRNAs) are closely related to many complex human diseases. Due to this close relationship, CircRNAs can be used as good biomarkers for disease diagnosis and therapeutic targets for treatments. However, the number of experimentally verified circRNA-disease associations are still fewer and also conducting wet-lab experiments are constrained by the small scale and cost of time and labour. Therefore, effective computational methods are required to predict associations between circRNAs and diseases which will be promising candidates for small scale biological and clinical experiments. In this paper, we propose novel computational models based on Graph Convolution Networks (GCN) for the potential circRNA-disease association prediction. Currently most of the existing prediction methods use shallow learning algorithms. Instead, the proposed models combine the strengths of deep learning and graphs for the computation. First, they integrate multi-source similarity information into the association network. Next, models predict potential associations using graph convolution which explore this important relational knowledge of that network structure. Two circRNA-disease association prediction models, GCN based Node Classification (GCN-NC) and GCN based Link Prediction (GCN-LP) are introduced in this work and they demonstrate promising results in various experiments and outperforms other existing methods. Further, a case study proves that some of the predicted results of the novel computational models were confirmed by published literature and all top results could be verified using gene-gene interaction networks.
Collapse
Affiliation(s)
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Nipuna Senanayake
- Department of Computer Science, Georgia State University, Atlanta, USA.
| | - Yanqing Zhang
- Department of Computer Science, Georgia State University, Atlanta, USA.
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
16
|
Pan Y, Lei X, Zhang Y. Association predictions of genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: A comprehensive approach. Med Res Rev 2021; 42:441-461. [PMID: 34346083 DOI: 10.1002/med.21847] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Currently, the research of multi-omics, such as genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, and radiomics, are hot spots. The relationship between multi-omics data, drugs, and diseases has received extensive attention from researchers. At the same time, multi-omics can effectively predict the diagnosis, prognosis, and treatment of diseases. In essence, these research entities, such as genes, RNAs, proteins, microbes, metabolites, pathways as well as pathological and medical imaging data, can all be represented by the network at different levels. And some computer and biology scholars have tried to use computational methods to explore the potential relationships between biological entities. We summary a comprehensive research strategy, that is to build a multi-omics heterogeneous network, covering multimodal data, and use the current popular computational methods to make predictions. In this study, we first introduce the calculation method of the similarity of biological entities at the data level, second discuss multimodal data fusion and methods of feature extraction. Finally, the challenges and opportunities at this stage are summarized. Some scholars have used such a framework to calculate and predict. We also summarize them and discuss the challenges. We hope that our review could help scholars who are interested in the field of bioinformatics, biomedical image, and computer research.
Collapse
Affiliation(s)
- Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|