1
|
Gürkan Kuntalp D, Özcan N, Düzyel O, Kababulut FY, Kuntalp M. A Comparative Study of Metaheuristic Feature Selection Algorithms for Respiratory Disease Classification. Diagnostics (Basel) 2024; 14:2244. [PMID: 39410648 PMCID: PMC11475976 DOI: 10.3390/diagnostics14192244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The correct diagnosis and early treatment of respiratory diseases can significantly improve the health status of patients, reduce healthcare expenses, and enhance quality of life. Therefore, there has been extensive interest in developing automatic respiratory disease detection systems. Most recent methods for detecting respiratory disease use machine and deep learning algorithms. The success of these machine learning methods depends heavily on the selection of proper features to be used in the classifier. Although metaheuristic-based feature selection methods have been successful in addressing difficulties presented by high-dimensional medical data in various biomedical classification tasks, there is not much research on the utilization of metaheuristic methods in respiratory disease classification. This paper aims to conduct a detailed and comparative analysis of six widely used metaheuristic optimization methods using eight different transfer functions in respiratory disease classification. For this purpose, two different classification cases were examined: binary and multi-class. The findings demonstrate that metaheuristic algorithms using correct transfer functions could effectively reduce data dimensionality while enhancing classification accuracy.
Collapse
Affiliation(s)
- Damla Gürkan Kuntalp
- Department of Electrical and Electronics Engineering, Dokuz Eylül University, İzmir 35160, Türkiye;
| | - Nermin Özcan
- Department of Biomedical Engineering, İskenderun Technical University, İskenderun 31200, Türkiye;
| | - Okan Düzyel
- Department of Electrical and Electronics Engineering, İzmir Institute of Technology, İzmir 35433, Türkiye;
| | | | - Mehmet Kuntalp
- Department of Electrical and Electronics Engineering, Dokuz Eylül University, İzmir 35160, Türkiye;
| |
Collapse
|
2
|
Li M, Luo Q, Zhou Y. BGOA-TVG: Binary Grasshopper Optimization Algorithm with Time-Varying Gaussian Transfer Functions for Feature Selection. Biomimetics (Basel) 2024; 9:187. [PMID: 38534872 DOI: 10.3390/biomimetics9030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Feature selection aims to select crucial features to improve classification accuracy in machine learning and data mining. In this paper, a new binary grasshopper optimization algorithm using time-varying Gaussian transfer functions (BGOA-TVG) is proposed for feature selection. Compared with the traditional S-shaped and V-shaped transfer functions, the proposed Gaussian time-varying transfer functions have the characteristics of a fast convergence speed and a strong global search capability to convert a continuous search space to a binary one. The BGOA-TVG is tested and compared to S-shaped and V-shaped binary grasshopper optimization algorithms and five state-of-the-art swarm intelligence algorithms for feature selection. The experimental results show that the BGOA-TVG has better performance in UCI, DEAP, and EPILEPSY datasets for feature selection.
Collapse
Affiliation(s)
- Mengjun Li
- College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
| | - Qifang Luo
- College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
| | - Yongquan Zhou
- College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
3
|
Zhang C, Xue Y, Neri F, Cai X, Slowik A. Multi-Objective Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification. Int J Neural Syst 2024; 34:2450014. [PMID: 38352979 DOI: 10.1142/s012906572450014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset's dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag. 17 (1996) 87-93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct. Eng. ASCE 123 (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct. Multidiscip. Optim. 50 (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr. Comput. Aided Eng. 30 (2022) 41-52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.
Collapse
Affiliation(s)
- Chenyi Zhang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
| | - Yu Xue
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
| | - Ferrante Neri
- NICE Research Group, School of Computer Science and Electronic Engineering, University of Surrey Guildford, GU2 7XS, UK
| | - Xu Cai
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, P. R. China
| | - Adam Slowik
- Department of Electronics and Computer Science, Koszalin University of Technology, Koszalin 75-453, Poland
| |
Collapse
|
4
|
Doğan V, Evliya M, Nesrin Kahyaoglu L, Kılıç V. On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 2024; 266:125021. [PMID: 37549568 DOI: 10.1016/j.talanta.2023.125021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Real-time and on-site food spoilage monitoring is still a challenging issue to prevent food poisoning. At the onset of food spoilage, microbial and enzymatic activities lead to the formation of volatile amines. Monitoring of these amines with conventional methods requires sophisticated, costly, labor-intensive, and time consuming analysis. Here, anthocyanins rich red cabbage extract (ARCE) based colorimetric sensing system was developed with the incorporation of embedded machine learning in a smartphone application for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light. The color change of FG-UV-CD100 films with varying ammonia vapor concentrations was captured in different light sources with smartphones of various brands, and a comprehensive dataset was created to train machine learning (ML) classifiers to be robust and adaptable to ambient conditions, resulting in 98.8% classification accuracy. Meanwhile, the ML classifier was embedded into our Android application, SmartFood++, enabling analysis in about 0.1 s without internet access, unlike its counterpart using cloud operation via internet. The proposed system was also tested on a real fish sample with 99.6% accuracy, demonstrating that it has a great advantage as a potent tool for on-site real-time monitoring of food spoilage by non-specialized personnel.
Collapse
Affiliation(s)
- Vakkas Doğan
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Melodi Evliya
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Volkan Kılıç
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| |
Collapse
|
5
|
Li L, Wang M, Jiang X, Lin Y. Universal multi-factor feature selection method for radiomics-based brain tumor classification. Comput Biol Med 2023; 164:107122. [PMID: 37517322 DOI: 10.1016/j.compbiomed.2023.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023]
Abstract
Brain tumor mortality is high, and accurate classification before treatment can improve patient prognosis. Radiomics, which extracts numerous features from medical images, has been widely applied in brain tumor classification studies. Feature selection (FS) is a critical step in radiomics because it reduces redundant information and enhances classification performance. However, the lack of universal FS methods limits the development of radiomics-based brain tumor classification studies. To address this issue, we summarize the characteristics of the FS methods used in related studies and propose a universal method based on three selection factors called triple-factor cascaded selection (TFCS). Particularly, these factors correspond to the correlation between features and task labels, interdependence among features, and role of features in the model. The TFCS method divides FS into two steps. First, it utilizes mutual information to select features that are strongly correlated with the task and contain less redundant information. Recursive feature elimination is then employed to obtain the subset with the best classification performance. To validate the universality of the TFCS, we conducted experiments on seven datasets containing 13 brain tumor classification tasks and evaluated the overall performance using five types of indicators. Results: TFCS exhibited excellent overall performance for all tasks. Compared to the 13 related methods, it takes less time, has moderate parsimony, the best classification performance, adaptability, and stability, and shows better universality. Our study demonstrates that the reasonable utilization of multiple factors can enhance FS performance and provide new insights for future method design.
Collapse
Affiliation(s)
- Longfei Li
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China; Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China
| | - Meiyun Wang
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China; Department of Radiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoming Jiang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Chongqing University of Post and Telecommunications, Chongqing, China.
| | - Yusong Lin
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China; School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, China; Hanwei IoT Institute, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Alweshah M, Aldabbas Y, Abu-Salih B, Oqeil S, Hasan HS, Alkhalaileh S, Kassaymeh S. Hybrid black widow optimization with iterated greedy algorithm for gene selection problems. Heliyon 2023; 9:e20133. [PMID: 37809602 PMCID: PMC10559925 DOI: 10.1016/j.heliyon.2023.e20133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Gene Selection (GS) is a strategy method targeted at reducing redundancy, limited expressiveness, and low informativeness in gene expression datasets obtained by DNA Microarray technology. These datasets contain a plethora of diverse and high-dimensional samples and genes, with a significant discrepancy in the number of samples and genes present. The complexities of GS are especially noticeable in the context of microarray expression data analysis, owing to the inherent data imbalance. The main goal of this study is to offer a simplified and computationally effective approach to dealing with the conundrum of attribute selection in microarray gene expression data. We use the Black Widow Optimization algorithm (BWO) in the context of GS to achieve this, using two unique methodologies: the unaltered BWO variation and the hybridized BWO variant combined with the Iterated Greedy algorithm (BWO-IG). By improving the local search capabilities of BWO, this hybridization attempts to promote more efficient gene selection. A series of tests was carried out using nine benchmark datasets that were obtained from the gene expression data repository in the pursuit of empirical validation. The results of these tests conclusively show that the BWO-IG technique performs better than the traditional BWO algorithm. Notably, the hybridized BWO-IG technique excels in the efficiency of local searches, making it easier to identify relevant genes and producing findings with higher levels of reliability in terms of accuracy and the degree of gene pruning. Additionally, a comparison analysis is done against five modern wrapper Feature Selection (FS) methodologies, namely BIMFOHHO, BMFO, BHHO, BCS, and BBA, in order to put the suggested BWO-IG method's effectiveness into context. The comparison that follows highlights BWO-IG's obvious superiority in reducing the number of selected genes while also obtaining remarkably high classification accuracy. The key findings were an average classification accuracy of 94.426, average fitness values of 0.061, and an average number of selected genes of 2933.767.
Collapse
Affiliation(s)
- Mohammed Alweshah
- Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - Yasmeen Aldabbas
- Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - Bilal Abu-Salih
- Department of Computer Science, King Abdullah II School of Information Technology, The University of Jordan, Amman, Jordan
| | - Saleh Oqeil
- Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - Hazem S. Hasan
- Department of Plant Production and Protection, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - Saleh Alkhalaileh
- Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - Sofian Kassaymeh
- Software Engineering Department, Faculty of Information Technology, Aqaba University of Technology, Aqaba, Jordan
| |
Collapse
|
7
|
Abu Khurma R, Albashish D, Braik M, Alzaqebah A, Qasem A, Adwan O. An augmented Snake Optimizer for diseases and COVID-19 diagnosis. Biomed Signal Process Control 2023; 84:104718. [PMID: 36811003 PMCID: PMC9935299 DOI: 10.1016/j.bspc.2023.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Feature Selection (FS) techniques extract the most recognizable features for improving the performance of classification methods for medical applications. In this paper, two intelligent wrapper FS approaches based on a new metaheuristic algorithm named the Snake Optimizer (SO) are introduced. The binary SO, called BSO, is built based on an S-shape transform function to handle the binary discrete values in the FS domain. To improve the exploration of the search space by BSO, three evolutionary crossover operators (i.e., one-point crossover, two-point crossover, and uniform crossover) are incorporated and controlled by a switch probability. The two newly developed FS algorithms, BSO and BSO-CV, are implemented and assessed on a real-world COVID-19 dataset and 23 disease benchmark datasets. According to the experimental results, the improved BSO-CV significantly outperformed the standard BSO in terms of accuracy and running time in 17 datasets. Furthermore, it shrinks the COVID-19 dataset's dimension by 89% as opposed to the BSO's 79%. Moreover, the adopted operator on BSO-CV improved the balance between exploitation and exploration capabilities in the standard BSO, particularly in searching and converging toward optimal solutions. The BSO-CV was compared against the most recent wrapper-based FS methods; namely, the hyperlearning binary dragonfly algorithm (HLBDA), the binary moth flame optimization with Lévy flight (LBMFO-V3), the coronavirus herd immunity optimizer with greedy crossover operator (CHIO-GC), as well as four filter methods with an accuracy of more than 90% in most benchmark datasets. These optimistic results reveal the great potential of BSO-CV in reliably searching the feature space.
Collapse
Affiliation(s)
- Ruba Abu Khurma
- Computer Science Department, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, Jordan
| | - Dheeb Albashish
- Computer Science Department, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Salt, Jordan
| | - Malik Braik
- Computer Science Department, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Salt, Jordan
| | - Abdullah Alzaqebah
- Computer Science Department, Faculty of Information Technology, The World Islamic Sciences & Education University, Amman, Jordan
| | - Ashwaq Qasem
- School of Electrical Engineering and Artificial Intelligence, Xiamen University Malaysia, Sepang, Malaysia
| | - Omar Adwan
- Computer Science Department, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, Jordan
- Department of Computer Science, University of Jordan, Amman, Jordan
| |
Collapse
|
8
|
Xu M, Song Q, Xi M, Zhou Z. Binary arithmetic optimization algorithm for feature selection. Soft comput 2023; 27:1-35. [PMID: 37362265 PMCID: PMC10191101 DOI: 10.1007/s00500-023-08274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
Feature selection, widely used in data preprocessing, is a challenging problem as it involves hard combinatorial optimization. So far some meta-heuristic algorithms have shown effectiveness in solving hard combinatorial optimization problems. As the arithmetic optimization algorithm only performs well in dealing with continuous optimization problems, multiple binary arithmetic optimization algorithms (BAOAs) utilizing different strategies are proposed to perform feature selection. First, six algorithms are formed based on six different transfer functions by converting the continuous search space to the discrete search space. Second, in order to enhance the speed of searching and the ability of escaping from the local optima, six other algorithms are further developed by integrating the transfer functions and Lévy flight. Based on 20 common University of California Irvine (UCI) datasets, the performance of our proposed algorithms in feature selection is evaluated, and the results demonstrate that BAOA_S1LF is the most superior among all the proposed algorithms. Moreover, the performance of BAOA_S1LF is compared with other meta-heuristic algorithms on 26 UCI datasets, and the corresponding results show the superiority of BAOA_S1LF in feature selection. Source codes of BAOA_S1LF are publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/124545-binary-arithmetic-optimization-algorithm.
Collapse
Affiliation(s)
- Min Xu
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
| | - Qixian Song
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
| | - Mingyang Xi
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
| | - Zhaorong Zhou
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101 Sichuan China
- Meteorological Information and Signal Processing Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu, 610225 Sichuan China
| |
Collapse
|
9
|
Srivastava V. An optimization for adaptive multi-filter estimation in medical images and EEG based signal denoising. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Mafarja M, Thaher T, Al-Betar MA, Too J, Awadallah MA, Abu Doush I, Turabieh H. Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning. APPL INTELL 2023; 53:1-43. [PMID: 36785593 PMCID: PMC9909674 DOI: 10.1007/s10489-022-04427-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/11/2023]
Abstract
Software Fault Prediction (SFP) is an important process to detect the faulty components of the software to detect faulty classes or faulty modules early in the software development life cycle. In this paper, a machine learning framework is proposed for SFP. Initially, pre-processing and re-sampling techniques are applied to make the SFP datasets ready to be used by ML techniques. Thereafter seven classifiers are compared, namely K-Nearest Neighbors (KNN), Naive Bayes (NB), Linear Discriminant Analysis (LDA), Linear Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF). The RF classifier outperforms all other classifiers in terms of eliminating irrelevant/redundant features. The performance of RF is improved further using a dimensionality reduction method called binary whale optimization algorithm (BWOA) to eliminate the irrelevant/redundant features. Finally, the performance of BWOA is enhanced by hybridizing the exploration strategies of the grey wolf optimizer (GWO) and harris hawks optimization (HHO) algorithms. The proposed method is called SBEWOA. The SFP datasets utilized are selected from the PROMISE repository using sixteen datasets for software projects with different sizes and complexity. The comparative evaluation against nine well-established feature selection methods proves that the proposed SBEWOA is able to significantly produce competitively superior results for several instances of the evaluated dataset. The algorithms' performance is compared in terms of accuracy, the number of features, and fitness function. This is also proved by the 2-tailed P-values of the Wilcoxon signed ranks statistical test used. In conclusion, the proposed method is an efficient alternative ML method for SFP that can be used for similar problems in the software engineering domain.
Collapse
Affiliation(s)
- Majdi Mafarja
- Department of Computer Science, Birzeit University, Birzeit, Palestine
| | - Thaer Thaher
- Department of Computer Systems Engineering, Arab American University, Jenin, Palestine
- Information Technology Engineering, Al-Quds University, Abu Dies, Jerusalem, Palestine
| | - Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab EmiratesDeepSinghML2017, Irbid, Jordan
| | - Jingwei Too
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal Melaka, Malaysia
| | - Mohammed A. Awadallah
- Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
| | - Iyad Abu Doush
- Department of Computing, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait
- Computer Science Department, Yarmouk University, Irbid, Jordan
| | - Hamza Turabieh
- Department of Health Management and Informatics, University of Missouri, Columbia, 5 Hospital Drive, Columbia, MO 65212 USA
| |
Collapse
|
11
|
Alweshah M. Coronavirus herd immunity optimizer to solve classification problems. Soft comput 2023; 27:3509-3529. [PMID: 35309595 PMCID: PMC8922087 DOI: 10.1007/s00500-022-06917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
Classification is a technique in data mining that is used to predict the value of a categorical variable and to produce input data and datasets of varying values. The classification algorithm makes use of the training datasets to build a model which can be used for allocating unclassified records to a defined class. In this paper, the coronavirus herd immunity optimizer (CHIO) algorithm is used to boost the efficiency of the probabilistic neural network (PNN) when solving classification problems. First, the PNN produces a random initial solution and submits it to the CHIO, which then attempts to refine the PNN weights. This is accomplished by the management of random phases and the effective identification of a search space that can probably decide the optimal value. The proposed CHIO-PNN approach was applied to 11 benchmark datasets to assess its classification accuracy, and its results were compared with those of the PNN and three methods in the literature, the firefly algorithm, African buffalo algorithm, and β-hill climbing. The results showed that the CHIO-PNN achieved an overall classification rate of 90.3% on all datasets, at a faster convergence speed as compared outperforming all the methods in the literature. Supplementary Information The online version contains supplementary material available at 10.1007/s00500-022-06917-z.
Collapse
Affiliation(s)
- Mohammed Alweshah
- Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
12
|
Betshrine Rachel R, Nehemiah KH, Marishanjunath C, Manoharan RMV. Diagnosis of Pulmonary Edema and covid-19 from CT slices using squirrel search algorithm, support vector machine and back propagation neural network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-222564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Computer Aided Diagnosis (CAD) framework to diagnose Pulmonary Edema (PE) and covid-19 from the chest Computed Tomography (CT) slices have been developed and implemented in this work. The lung tissues have been segmented using Otsu’s thresholding method. The Regions of Interest (ROI) considered in this work were edema lesions and covid-19 lesions. For each ROI, the edema lesions and covid-19 lesions were elucidated by an expert radiologist, followed by texture and shape extraction. The extracted features were stored as feature vectors. The feature vectors were split into train and test set in the ratio of 80 : 20. A wrapper based feature selection approach using Squirrel Search Algorithm (SSA) with the Support Vector Machine (SVM) classifier’s accuracy as the fitness function was used to select the optimal features. The selected features were trained using the Back Propagation Neural Network (BPNN) classifier. This framework was tested on a real-time PE and covid-19 dataset. The BPNN classifier’s accuracy with SSA yielded 88.02%, whereas, without SSA it yielded 83.80%. Statistical analysis, namely Wilcoxon’s test, Kendall’s Rank Correlation Coefficient test and Mann Whitney U test were performed, which indicates that the proposed method has a significant impact on the accuracy, sensitivity and specificity of the novel dataset considered. Comparative experimentations of the proposed system with existing benchmark ML classifiers, namely Cat Boost, Ada Boost, XGBoost, RBF SVM, Poly SVM, Sigmoid SVM and Linear SVM classifiers demonstrate that the proposed system outperforms the benchmark classifiers’ results.
Collapse
Affiliation(s)
- R. Betshrine Rachel
- Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| | - Khanna H. Nehemiah
- Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| | - C.S. Marishanjunath
- Department of Information Science and Technology, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| | | |
Collapse
|
13
|
Gao C, Zhang R, Chen X, Yao T, Song Q, Ye W, Li P, Wang Z, Yi D, Wu Y. Integrating Internet multisource big data to predict the occurrence and development of COVID-19 cryptic transmission. NPJ Digit Med 2022; 5:161. [PMID: 36307547 DOI: 10.1038/s41746-022-00704-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
With the recent prevalence of COVID-19, cryptic transmission is worthy of attention and research. Early perception of the occurrence and development risk of cryptic transmission is an important part of controlling the spread of COVID-19. Previous relevant studies have limited data sources, and no effective analysis has been carried out on the occurrence and development of cryptic transmission. Hence, we collect Internet multisource big data (including retrieval, migration, and media data) and propose comprehensive and relative application strategies to eliminate the impact of national and media data. We use statistical classification and regression to construct an early warning model for occurrence and development. Under the guidance of the improved coronavirus herd immunity optimizer (ICHIO), we construct a "sampling-feature-hyperparameter-weight" synchronous optimization strategy. In occurrence warning, we propose an undersampling synchronous evolutionary ensemble (USEE); in development warning, we propose a bootstrap-sampling synchronous evolutionary ensemble (BSEE). Regarding the internal training data (Heilongjiang Province), the ROC-AUC of USEE3 incorporating multisource data is 0.9553, the PR-AUC is 0.8327, and the R2 of BSEE2 fused by the "nonlinear + linear" method is 0.8698. Regarding the external validation data (Shaanxi Province), the ROC-AUC and PR-AUC values of USEE3 were 0.9680 and 0.9548, respectively, and the R2 of BSEE2 was 0.8255. Our method has good accuracy and generalization and can be flexibly used in the prediction of cryptic transmission in various regions. We propose strategy research that integrates multiple early warning tasks based on multisource Internet big data and combines multiple ensemble models. It is an extension of the research in the field of traditional infectious disease monitoring and has important practical significance and innovative theoretical value.
Collapse
Affiliation(s)
- Chengcheng Gao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Rui Zhang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Xicheng Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Tianhua Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Qiuyue Song
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Wei Ye
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - PengPeng Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Zhenyan Wang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Dong Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Yazhou Wu
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
14
|
Dehghani M, Trojovská E, Zuščák T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci Rep 2022; 12:17387. [PMID: 36253404 PMCID: PMC9574811 DOI: 10.1038/s41598-022-22458-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
This paper introduces a new human-based metaheuristic algorithm called Sewing Training-Based Optimization (STBO), which has applications in handling optimization tasks. The fundamental inspiration of STBO is teaching the process of sewing to beginner tailors. The theory of the proposed STBO approach is described and then mathematically modeled in three phases: (i) training, (ii) imitation of the instructor's skills, and (iii) practice. STBO performance is evaluated on fifty-two benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and the CEC 2017 test suite. The optimization results show that STBO, with its high power of exploration and exploitation, has provided suitable solutions for benchmark functions. The performance of STBO is compared with eleven well-known metaheuristic algorithms. The simulation results show that STBO, with its high ability to balance exploration and exploitation, has provided far more competitive performance in solving benchmark functions than competitor algorithms. Finally, the implementation of STBO in solving four engineering design problems demonstrates the capability of the proposed STBO in dealing with real-world applications.
Collapse
Affiliation(s)
- Mohammad Dehghani
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Eva Trojovská
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Tomáš Zuščák
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Abed-alguni BH, Alawad NA, Al-Betar MA, Paul D. Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection. APPL INTELL 2022; 53:13224-13260. [PMID: 36247211 PMCID: PMC9547101 DOI: 10.1007/s10489-022-04201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 12/03/2022]
Abstract
This paper proposes new improved binary versions of the Sine Cosine Algorithm (SCA) for the Feature Selection (FS) problem. FS is an essential machine learning and data mining task of choosing a subset of highly discriminating features from noisy, irrelevant, high-dimensional, and redundant features to best represent a dataset. SCA is a recent metaheuristic algorithm established to emulate a model based on sine and cosine trigonometric functions. It was initially proposed to tackle problems in the continuous domain. The SCA has been modified to Binary SCA (BSCA) to deal with the binary domain of the FS problem. To improve the performance of BSCA, three accumulative improved variations are proposed (i.e., IBSCA1, IBSCA2, and IBSCA3) where the last version has the best performance. IBSCA1 employs Opposition Based Learning (OBL) to help ensure a diverse population of candidate solutions. IBSCA2 improves IBSCA1 by adding Variable Neighborhood Search (VNS) and Laplace distribution to support several mutation methods. IBSCA3 improves IBSCA2 by optimizing the best candidate solution using Refraction Learning (RL), a novel OBL approach based on light refraction. For performance evaluation, 19 real-wold datasets, including a COVID-19 dataset, were selected with different numbers of features, classes, and instances. Three performance measurements have been used to test the IBSCA versions: classification accuracy, number of features, and fitness values. Furthermore, the performance of the last variation of IBSCA3 is compared against 28 existing popular algorithms. Interestingly, IBCSA3 outperformed almost all comparative methods in terms of classification accuracy and fitness values. At the same time, it was ranked 15 out of 19 in terms of number of features. The overall simulation and statistical results indicate that IBSCA3 performs better than the other algorithms.
Collapse
Affiliation(s)
| | | | - Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - David Paul
- School of Science and Technology, University of New England, Armidale, Australia
| |
Collapse
|
16
|
EMİROGLU S, GÜMÜŞ TE. Optimal Control of Automatic Voltage Regulator System with Coronavirus Herd Immunity Optimizer Algorithm-Based PID plus Second Order Derivative Controller. ACADEMIC PLATFORM JOURNAL OF ENGINEERING AND SMART SYSTEMS 2022; 10:174-183. [DOI: 10.21541/apjess.1149455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Optimal control of the Automatic Voltage Regulator (AVR) system can improve the system behavior with the optimal parameters obtained based on optimization. The design of proposed Proportional Integral Derivative (PID) and Proportional Integral Derivative Plus Second Order Derivative (PIDD2) controllers are stated as an optimization problem including objective and constraint. The optimization problem is solved by using Coronavirus herd immunity optimizer (CHIO) algorithm to find the best controller parameters. In this paper, optimal design of PID and PIDD2 controllers for AVR system are presented with different objectives. The optimal design of controllers modeled as an optimization problem is solved with the help of the CHIO Algorithm. CHIO is inspired herd immunity against COVID-19 disease by social distancing. The performances of CHIO-based controllers in AVR system are compared with some well-known algorithms. Also, the obtained results demonstrate that the CHIO algorithm yields the least objective value in comparison with the other algorithms. When the results of the proposed approach are compared to those of some modern heuristic optimization algorithms, such as the Particle Swarm Optimization (PSO) algorithm, Differential Evolution (DE) algorithm, Artificial Bee Colony (ABC) algorithm etc. and the superiority of the proposed approach is demonstrated.
Collapse
|
17
|
Beheshti Z. BMPA-TVSinV: A Binary Marine Predators Algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selection. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Nadimi-Shahraki MH, Zamani H, Mirjalili S. Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study. Comput Biol Med 2022; 148:105858. [PMID: 35868045 DOI: 10.1016/j.compbiomed.2022.105858] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
The whale optimization algorithm (WOA) is a prominent problem solver which is broadly applied to solve NP-hard problems such as feature selection. However, it and most of its variants suffer from low population diversity and poor search strategy. Introducing efficient strategies is highly demanded to mitigate these core drawbacks of WOA particularly for dealing with the feature selection problem. Therefore, this paper is devoted to proposing an enhanced whale optimization algorithm named E-WOA using a pooling mechanism and three effective search strategies named migrating, preferential selecting, and enriched encircling prey. The performance of E-WOA is evaluated and compared with well-known WOA variants to solve global optimization problems. The obtained results proved that the E-WOA outperforms WOA's variants. After E-WOA showed a sufficient performance, then, it was used to propose a binary E-WOA named BE-WOA to select effective features, particularly from medical datasets. The BE-WOA is validated using medical diseases datasets and compared with the latest high-performing optimization algorithms in terms of fitness, accuracy, sensitivity, precision, and number of features. Moreover, the BE-WOA is applied to detect coronavirus disease 2019 (COVID-19) disease. The experimental and statistical results prove the efficiency of the BE-WOA in searching the problem space and selecting the most effective features compared to comparative optimization algorithms.
Collapse
Affiliation(s)
- Mohammad H Nadimi-Shahraki
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, Australia.
| | - Hoda Zamani
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, Australia; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Rai R, Das A, Ray S, Dhal KG. Human-Inspired Optimization Algorithms: Theoretical Foundations, Algorithms, Open-Research Issues and Application for Multi-Level Thresholding. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 29:5313-5352. [PMID: 35694187 PMCID: PMC9171491 DOI: 10.1007/s11831-022-09766-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
Humans take immense pride in their ability to be unpredictably intelligent and despite huge advances in science over the past century; our understanding about human brain is still far from complete. In general, human being acquire the high echelon of intelligence with the ability to understand, reason, recognize, learn, innovate, retain information, make decision, communicate and further solve problem. Thereby, integrating the intelligence of human to develop the optimization technique using the human problem-solving ability would definitely take the scenario to next level thus promising an affluent solution to the real world optimization issues. However, human behavior and evolution empowers human to progress or acclimatize with their environments at rates that exceed that of other nature based evolution namely swarm, bio-inspired, plant-based or physics-chemistry based thus commencing yet additional detachment of Nature-Inspired Optimization Algorithm (NIOA) i.e. Human-Inspired Optimization Algorithms (HIOAs). Announcing new meta-heuristic optimization algorithms are at all times a welcome step in the research field provided it intends to address problems effectively and quickly. The family of HIOA is expanding rapidly making it difficult for the researcher to select the appropriate HIOA; moreover, in order to map the problems alongside HIOA, it requires proper understanding of the theoretical fundamental, major rules governing HIOAs as well as common structure of HIOAs. Common challenges and open research issues are yet another important concern in HIOA that needs to be addressed carefully. With this in mind, our work distinguishes HIOAs on the basis of a range of criteria and discusses the building blocks of various algorithms to achieve aforementioned objectives. Further, this paper intends to deliver an acquainted survey and analysis associated with modern compartment of NIOA engineered upon the perception of human behavior and intelligence i.e. Human-Inspired Optimization Algorithms (HIOAs) stressing on its theoretical foundations, applications, open research issues and their implications on color satellite image segmentation to further develop Multi-Level Thresholding (MLT) models utilizing Tsallis and t-entropy as objective functions to judge their efficacy.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Gangtok, Sikkim India
| | - Arunita Das
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Swarnajit Ray
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| |
Collapse
|
20
|
An enhanced binary Rat Swarm Optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput Biol Med 2022; 147:105675. [PMID: 35687926 DOI: 10.1016/j.compbiomed.2022.105675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
In this paper, an enhanced binary version of the Rat Swarm Optimizer (RSO) is proposed to deal with Feature Selection (FS) problems. FS is an important data reduction step in data mining which finds the most representative features from the entire data. Many FS-based swarm intelligence algorithms have been used to tackle FS. However, the door is still open for further investigations since no FS method gives cutting-edge results for all cases. In this paper, a recent swarm intelligence metaheuristic method called RSO which is inspired by the social and hunting behavior of a group of rats is enhanced and explored for FS problems. The binary enhanced RSO is built based on three successive modifications: i) an S-shape transfer function is used to develop binary RSO algorithms; ii) the local search paradigm of particle swarm optimization is used with the iterative loop of RSO to boost its local exploitation; iii) three crossover mechanisms are used and controlled by a switch probability to improve the diversity. Based on these enhancements, three versions of RSO are produced, referred to as Binary RSO (BRSO), Binary Enhanced RSO (BERSO), and Binary Enhanced RSO with Crossover operators (BERSOC). To assess the performance of these versions, a benchmark of 24 datasets from various domains is used. The proposed methods are assessed concerning the fitness value, number of selected features, classification accuracy, specificity, sensitivity, and computational time. The best performance is achieved by BERSOC followed by BERSO and then BRSO. These proposed versions are comparatively assessed against 25 well-regarded metaheuristic methods and five filter-based approaches. The obtained results underline their superiority by producing new best results for some datasets.
Collapse
|
21
|
Dehghani M, Trojovský P. Hybrid leader based optimization: a new stochastic optimization algorithm for solving optimization applications. Sci Rep 2022; 12:5549. [PMID: 35365749 PMCID: PMC8976018 DOI: 10.1038/s41598-022-09514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022] Open
Abstract
In this paper, a new optimization algorithm called hybrid leader-based optimization (HLBO) is introduced that is applicable in optimization challenges. The main idea of HLBO is to guide the algorithm population under the guidance of a hybrid leader. The stages of HLBO are modeled mathematically in two phases of exploration and exploitation. The efficiency of HLBO in optimization is tested by finding solutions to twenty-three standard benchmark functions of different types of unimodal and multimodal. The optimization results of unimodal functions indicate the high exploitation ability of HLBO in local search for better convergence to global optimal, while the optimization results of multimodal functions show the high exploration ability of HLBO in global search to accurately scan different areas of search space. In addition, the performance of HLBO on solving IEEE CEC 2017 benchmark functions including thirty objective functions is evaluated. The optimization results show the efficiency of HLBO in handling complex objective functions. The quality of the results obtained from HLBO is compared with the results of ten well-known algorithms. The simulation results show the superiority of HLBO in convergence to the global solution as well as the passage of optimally localized areas of the search space compared to ten competing algorithms. In addition, the implementation of HLBO on four engineering design issues demonstrates the applicability of HLBO in real-world problem solving.
Collapse
Affiliation(s)
- Mohammad Dehghani
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitankého, 62, 50003, Hradec Králové, Czech Republic
| | - Pavel Trojovský
- Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitankého, 62, 50003, Hradec Králové, Czech Republic.
| |
Collapse
|
22
|
Application of Machine Learning and Internet of Things Techniques in Evaluation of English Teaching Effect in Colleges. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7643006. [PMID: 35345795 PMCID: PMC8957406 DOI: 10.1155/2022/7643006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
College English classroom teaching evaluation is one of the key issues discussed by all schools at present. First of all, teachers and students are highly concerned about English learning in the compulsory course of English examination, but there are also many problems. The distance network teaching with computer technology as the main body develops rapidly, a large number of video and audio teaching resources network through the network transmission to present in front of learners, through the network transmission of video and audio aided, expand the audience of network teaching, is conducive to the realization of digitalization, information, lifelong, new education goals. Firstly, this article summarizes the problems of poor effect, uneven performance, and mismatch between evaluation and teaching in college English at present. Then, based on the previous works, the author designed a machine learning-based Internet of things technology and verifies its feasibility. The data of teaching experiments show that the writing performance of the students in the lower section of the experimental class is better than that of the students in the middle and high sections. Among them, significant progresses have been made in grammar, length, expression, and structure, which has optimized students' preclass preview efficiency, autonomous learning motivation, quality of homework completion, and afterclass reflection behavior. Finally, the author summarized the shortcomings of this research and puts forward the prospect of relevant research, in order to provide reference value for the national college English blended teaching and promotes the efficient implementation and vigorous development of college English teaching. In the future, the evaluation index system under the pressure of performance can be further studied.
Collapse
|
23
|
A Modified Coronavirus Herd Immunity Optimizer for the Power Scheduling Problem. MATHEMATICS 2022. [DOI: 10.3390/math10030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Coronavirus herd immunity optimizer (CHIO) is a new human-based optimization algorithm that imitates the herd immunity strategy to eliminate of the COVID-19 disease. In this paper, the coronavirus herd immunity optimizer (CHIO) is modified to tackle a discrete power scheduling problem in a smart home (PSPSH). PSPSH is a combinatorial optimization problem with NP-hard features. It is a highly constrained discrete scheduling problem concerned with assigning the operation time for smart home appliances based on a dynamic pricing scheme(s) and several other constraints. The primary objective when solving PSPSH is to maintain the stability of the power system by reducing the ratio between average and highest power demand (peak-to-average ratio (PAR)) and reducing electricity bill (EB) with considering the comfort level of users (UC). This paper modifies and adapts the CHIO algorithm to deal with such discrete optimization problems, particularly PSPSH. The adaptation and modification include embedding PSPSH problem-specific operators to CHIO operations to meet the discrete search space requirements. PSPSH is modeled as a multi-objective problem considering all objectives, including PAR, EB, and UC. The proposed method is examined using a dataset that contains 36 home appliances and seven consumption scenarios. The main CHIO parameters are tuned to find their best values. These best values are used to evaluate the proposed method by comparing its results with comparative five metaheuristic algorithms. The proposed method shows encouraging results and almost obtains the best results in all consumption scenarios.
Collapse
|