1
|
Bailey SM, Cross EM, Kinner-Bibeau L, Sebesta HC, Bedford JS, Tompkins CJ. Monitoring Genomic Structural Rearrangements Resulting from Gene Editing. J Pers Med 2024; 14:110. [PMID: 38276232 PMCID: PMC10817574 DOI: 10.3390/jpm14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The cytogenomics-based methodology of directional genomic hybridization (dGH) enables the detection and quantification of a more comprehensive spectrum of genomic structural variants than any other approach currently available, and importantly, does so on a single-cell basis. Thus, dGH is well-suited for testing and/or validating new advancements in CRISPR-Cas9 gene editing systems. In addition to aberrations detected by traditional cytogenetic approaches, the strand specificity of dGH facilitates detection of otherwise cryptic intra-chromosomal rearrangements, specifically small inversions. As such, dGH represents a powerful, high-resolution approach for the quantitative monitoring of potentially detrimental genomic structural rearrangements resulting from exposure to agents that induce DNA double-strand breaks (DSBs), including restriction endonucleases and ionizing radiations. For intentional genome editing strategies, it is critical that any undesired effects of DSBs induced either by the editing system itself or by mis-repair with other endogenous DSBs are recognized and minimized. In this paper, we discuss the application of dGH for assessing gene editing-associated structural variants and the potential heterogeneity of such rearrangements among cells within an edited population, highlighting its relevance to personalized medicine strategies.
Collapse
Affiliation(s)
- Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Erin M. Cross
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | | - Henry C. Sebesta
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | |
Collapse
|
2
|
Liao X, Chen L, Liu J, Hu H, Hou D, You R, Wang X, Huang H. m 6A RNA methylation regulators predict prognosis and indicate characteristics of tumour microenvironment infiltration in acute myeloid leukaemia. Epigenetics 2023; 18:2160134. [PMID: 36567510 PMCID: PMC9980463 DOI: 10.1080/15592294.2022.2160134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Patients with acute myeloid leukaemia (AML) have poor prognoses and low overall survival (OS) rates owing to its heterogeneity and the complexity of its tumour microenvironment (TME). N6-methyladenosine (m6A) modification plays a key role in the initiation and progression of haematopoietic malignancies. However, the underlying function of m6A regulators in AML remains elusive. This study thoroughly analysed the m6A modification features of 177 AML patients based on 22 m6A regulators. Utilizing unsupervised clustering, we determined three distinct m6A modification patterns related to different biological functions, TME cell-infiltrating characteristics and clinical outcomes. Additionally, a risk score was constructed based on six m6A regulators-associated prognostic signatures and was validated as an independent and valuable prognostic factor for AML. Patients with a low-risk score exhibited better survival than those with a high-risk score. Many m6A regulators were aberrantly expressed in AML, among which METTL14, YTHDC2, ZC3H13 and RBM15 were observed to be associated with the OS of AML. In addition, these four m6A regulators were found to be noticeably related to the immune checkpoint inhibitor (ICI) treatments. Finally, we verified the expression levels of these four m6A regulators in AML and healthy samples and three groups of AML patients with different risk categories. Collectively, our study indicates that the m6A modification pattern is involved in TME immune-infiltrating characteristics and prognosis in AML. A better understanding of the m6A modification pattern will help enhance our knowledge of the molecular mechanisms of AML and develop potential prognosis prediction indicators and more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xinai Liao
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ling Chen
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haoran Hu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Diyu Hou
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoting Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Gong JY, Zhang ZH, Zhang W, Wang HJ, Feng XF, Zhou J, Zhu GQ. Coexistence of recurrent chromosomal abnormalities and the Philadelphia chromosome in acute and chronic myeloid leukemias: report of five cases and review of literature. Mol Cytogenet 2020; 13:34. [PMID: 32831907 PMCID: PMC7437057 DOI: 10.1186/s13039-020-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 12/02/2022] Open
Abstract
Progression of chronic myelogenous leukemia (CML) is frequently accompanied by cytogenetic evolution. Additional genetic abnormalities are seen in 10–20% of CML cases at the time of diagnosis, and in 60–80% of cases of advanced disease. Unbalanced chromosomal changes such as an extra copy of the Philadelphia chromosome (Ph), trisomy 8, and i(17)(q10) are common. Balanced chromosomal translocations, such as t(3;3), t(8;21), t(15;17), and inv(16) are typically found in acute myeloid leukemia, but rarely occur in CML. Translocations involving 11q23, t(8;21), and inv(16) are relatively common genetic abnormalities in acute leukemia, but are extremely rare in CML. In the literature to date, there are at least 76 Ph+ cases with t(3;21), 47 Ph+ cases with inv(16), 16 Ph+ cases with t(8;21), and 9 Ph+ cases with t(9;11). But most of what has been published is now over 30 years old, without the benefit of modern immunophenotyping to confirm diagnosis, and before the introduction of treatment regimes such as TKI. In this study, we explored the rare concomitant occurrence of coexistence current chromosomal translocation and t(9;22) in CML or acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Jin-Ying Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020 People's Republic of China
| | - Zhen-Hao Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191 People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020 People's Republic of China
| | - Hui-Jun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020 People's Republic of China
| | - Xiao-Fang Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020 People's Republic of China
| | - Ji Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020 People's Republic of China
| | - Guo-Qing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020 People's Republic of China
| |
Collapse
|
4
|
Hu L, Gao Y, Shi Z, Liu Y, Zhao J, Xiao Z, Lou J, Xu Q, Tong X. DNA methylation-based prognostic biomarkers of acute myeloid leukemia patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:737. [PMID: 32042753 DOI: 10.21037/atm.2019.11.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous clonal disease that prevents normal myeloid differentiation with its common features. Its incidence increases with age and has a poor prognosis. Studies have shown that DNA methylation and abnormal gene expression are closely related to AML. Methods The methylation array data and mRNA array data are from the Gene Expression Omnibus (GEO) database. Through the GEO data, we identified differential genes from tumors and normal samples. Then we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses on these differential genes. Protein-protein interaction (PPI) network construction and module analysis were performed to screen the highest-scoring modules. Next, we used SurvExpress software to analyze the genes in the highest-scoring module and selected potential prognostic genes by univariate and multivariate Cox analysis. Finally, the three genes screened by SurvExpress software were analyzed using the methylation analysis site MethSurv to explore AML associated methylation biomarkers. Results We found three genes that can be used as independent prognostic factors for AML. These three genes are the low expression/methylation genes ATP11A and ITGAM, and the high expression/low methylation gene ZNRF2. Conclusions In this study, we performed a comprehensive analysis of DNA methylation and gene expression to identify key epigenetic genes in AML.
Collapse
Affiliation(s)
- Linjun Hu
- The Medical College of Qingdao University, Qingdao 266071, China
| | - Yuling Gao
- Department of Genetic Laboratory, Shaoxing Women and Children Hospital, Shaoxing 312030, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310014, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao 266071, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310014, China
| | - Jiayin Lou
- Department of Clinical Laboratory, Da jiang dong Hospital, Hangzhou, 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Xiangmin Tong
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
5
|
Molecular Basis and Targeted Inhibition of CBFβ-SMMHC Acute Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:229-244. [PMID: 28299661 DOI: 10.1007/978-981-10-3233-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent chromosomal rearrangements that encode for fusion proteins which drive leukemia initiation and maintenance. The inv(16) (p13q22) rearrangement is a founding mutation and the associated CBFβ-SMMHC fusion protein is essential for the survival of inv(16) AML cells. This Chapter will discuss our understanding of the function of this fusion protein in disrupting hematopoietic homeostasis and creating pre-leukemic blasts, in its cooperation with other co-occurring mutations during leukemia initiation, and in leukemia maintenance. In addition, this chapter will discuss the current approaches used for the treatment of inv(16) AML and the recent development of AI-10-49, a selective targeted inhibitor of CBFβ-SMMHC/RUNX1 binding, the first candidate targeted therapy for inv(16) AML.
Collapse
|
6
|
Giusiano S, Formisano-Tréziny C, Benziane A, Maroc N, Picard C, Hermitte F, Taranger-Charpin C, Gabert J. Development of a biochip-based assay integrated in a global strategy for identification of fusion transcripts in acute myeloid leukemia: a work flow for acute myeloid leukemia diagnosis. Int J Lab Hematol 2010; 32:398-409. [PMID: 19930410 DOI: 10.1111/j.1751-553x.2009.01201.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Three major types of rearrangements are involved in acute myeloid leukemias (AML): t(8;21)(q22;q22), inv(16)(p13q22), and 11q23/MLL abnormalities. Their precise identification becomes essential for diagnosis, prognosis, and therapeutic choices. Resulting fusion transcripts (FT) are also powerful markers for monitoring the efficacy of treatment, the minimal residual disease (MRD) and could become therapeutic targets. Today, the challenge is to propose an individual follow-up for each patient even for those with a rare fusion event. In this study, we propose a biochip-based assay integrated in a global strategy for identification of rare FT in AML, after fluorescence in situ hybridization detection, as described by the World Health Organization classification. Using cell lines, we developed and validated a biochip-based assay called the AMLFusionChip that identifies every FT of AML1-ETO, CBFbeta-MYH11 as well as MLL-AF9, MLL-ENL, MLL-AF6, and MLL-AF10. The original design of our AMLFusionChip.v01 enables the identification of these FT wherever the breakpoint on the partner gene may be. In case of biochip negative result, our 3'RACE amplification strategy enables to clone and then sequence the new translocation partner. This AMLFusionChip strategy fits into the concept of personalized medicine for the largest number of patients.
Collapse
Affiliation(s)
- S Giusiano
- Service d' Anatomie et Cytologie Pathologiques, CHU Nord, Boulevard Pierre Dramard, Marseille Cedex 20, France.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kamikubo Y, Zhao L, Wunderlich M, Corpora T, Hyde RK, Paul TA, Kundu M, Garrett L, Compton S, Huang G, Wolff L, Ito Y, Bushweller J, Mulloy JC, Liu PP. Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 2010; 17:455-68. [PMID: 20478528 PMCID: PMC2874204 DOI: 10.1016/j.ccr.2010.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 02/07/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
Abstract
Dominant RUNX1 inhibition has been proposed as a common pathway for CBF leukemia. CBF beta-SMMHC, a fusion protein in human acute myeloid leukemia (AML), dominantly inhibits RUNX1 largely through its RUNX1 high-affinity binding domain (HABD). However, the type I CBF beta-SMMHC fusion in AML patients lacks HABD. Here, we report that the type I CBF beta-SMMHC protein binds RUNX1 inefficiently. Knockin mice expressing CBF beta-SMMHC with a HABD deletion developed leukemia quickly, even though hematopoietic defects associated with Runx1-inhibition were partially rescued. A larger pool of leukemia-initiating cells, increased MN1 expression, and retention of RUNX1 phosphorylation are potential mechanisms for accelerated leukemia development in these mice. Our data suggest that RUNX1 dominant inhibition may not be a critical step for leukemogenesis by CBF beta-SMMHC.
Collapse
Affiliation(s)
- Yasuhiko Kamikubo
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Magni M, Di Nicola M, Testi A, Cabras A, Devizzi L, Guidetti A, Matteucci P, Viviani S, Bonfante V, Carniti C, Ricca I, Carbone A, Carlo-Stella C, Gianni AM. Radioimmunotherapy and secondary leukemia: A case report. Leuk Res 2010; 34:e1-4. [DOI: 10.1016/j.leukres.2009.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/16/2009] [Accepted: 04/18/2009] [Indexed: 02/09/2023]
|
9
|
Detection of a novel CBFB/MYH11 variant fusion transcript (K-type) showing partial insertion of exon 6 of CBFB gene using two commercially available multiplex RT-PCR kits. ACTA ACUST UNITED AC 2009; 189:87-92. [DOI: 10.1016/j.cancergencyto.2008.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/13/2008] [Indexed: 02/02/2023]
|
10
|
Mrózek K, Marcucci G, Paschka P, Bloomfield CD. Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Curr Opin Oncol 2008; 20:711-8. [PMID: 18841055 PMCID: PMC3677535 DOI: 10.1097/cco.0b013e32831369df] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Core-binding factor (CBF) acute myeloid leukemia (AML) is among the most common cytogenetic subtypes of AML, being detected in approximately 13% of adults with primary disease. Although CBF-AML is associated with a relatively favorable prognosis, only one-half of the patients are cured. Herein we review recent discoveries of genetic and epigenetic alterations in CBF-AML that may represent novel prognostic markers and therapeutic targets and lead to improvement of the still disappointing clinical outcome of these patients. RECENT FINDINGS Several acquired gene mutations and gene-expression and microRNA-expression changes that occur in addition to t(8;21)(q22;q22) and inv(16)(p13q22)/t(16;16)(p13;q22), the cytogenetic hallmarks of CBF-AML, have been recently reported. Alterations that may represent cooperative events in CBF-AML leukemogenesis include mutations in the KIT, FLT3, JAK2 and RAS genes, haploinsufficiency of the putative tumor suppressor genes TLE1 and TLE4 in t(8;21)-positive patients with del(9q), MN1 overexpression in inv(16) patients, and epigenetic and posttranscriptional silencing of CEBPA. Genome-wide gene-expression and microRNA-expression profiling identifying subgroups of CBF-AML patients with distinct molecular signatures, different clinical outcomes, or both, have also been reported. SUMMARY Progress has been made in delineating the genetic basis of CBF-AML that will likely result in improved prognostication and development of novel, risk-adapted therapeutic approaches.
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210-1228, USA.
| | | | | | | |
Collapse
|
11
|
Macedo Silva ML, Raimondi SC, Abdelhay E, Gross M, Mkrtchyan H, de Figueiredo AF, Ribeiro RC, de Jesus Marques-Salles T, Sobral ES, Gerardin Land MP, Liehr T. Banding and molecular cytogenetic studies detected a CBFB-MYH11 fusion gene that appeared as abnormal chromosomes 1 and 16 in a baby with acute myeloid leukemia FAB M4-Eo. ACTA ACUST UNITED AC 2008; 182:56-60. [PMID: 18328953 DOI: 10.1016/j.cancergencyto.2007.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/24/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
Abstract
The acute myeloid leukemia (AML) subtype M4Eo occurs in 5% of all AML cases and is usually associated with either an inv(16)(p13.1q22) or a t(16;16)(p13.1;q22) chromosomal abnormality. At the molecular level, these abnormalities generate a CBFB-MYH11 fusion gene. Patients with this genetic alteration are usually assigned to a low-risk group and thus receive standard chemotherapy. AML-M4Eo is rarely found in infants. We describe clinical, conventional banding, and molecular cytogenetic data for a 12-month-old baby with AML-M4Eo and a chimeric CBFB-MYH11 fusion gene masked by a novel rearrangement between chromosomes 1 and 16. This rearrangement characterizes a new type of inv(16)(p13.1q22) masked by a chromosome translocation.
Collapse
|