1
|
Zhao A, Zhao M, Qian W, Liang A, Li P, Liu H. Secondary myeloid neoplasms after CD19 CAR T therapy in patients with refractory/relapsed B-cell lymphoma: Case series and review of literature. Front Immunol 2023; 13:1063986. [PMID: 36713414 PMCID: PMC9880439 DOI: 10.3389/fimmu.2022.1063986] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Background Several chimeric antigen receptor T cells (CAR T) targeting CD19 have induced profound and prolonged remission for refractory/relapsed (R/R) B-cell lymphoma. The risk of secondary malignancies, especially myeloid neoplasms, is of particular concern in the CAR T community, which still remains unclear. Methods Four patients with R/R B-cell lymphoma after CD19 CAR T therapy diagnosed with secondary myeloid neoplasms (SMN) from 2 hospitals in eastern China were presented, including 3 with myelodysplastic syndrome (MDS) and 1 with acute myeloid leukemia (AML). Using single-cell RNA sequencing (scRNA-seq), we compared the cellular components of bone marrow (BM) samples obtained from one of these MDS patients and a health donor. We also provided a review of recently published literature concerning SMN risk of CAR T therapy. Results Relevant demographic, clinical, laboratory, therapeutic and outcome data were collected and presented by chart review. In our case series, the male-female ratio was 3.0 and the median age at MDS onset was 61.25 years old (range, 50-78). Median number of previous systemic therapies was 4.5 (range, 4-5), including autologous hematopoietic stem cell transplantation (auto-HSCT) in one patient. BM assessments prior to CAR T therapy confirmed normal hematopoiesis without myeloid neoplasms. Moreover, for 3 patients with SMN in our series, cytogenetic analysis predicted a relatively adverse outcome. In our experience and in the literature, treatment choices for the patients with SMN included allogeneic hematopoietic stem cell transplantation (allo-HSCT), hypomethylating agent (HMA), period filgrastim, transfusions and other supportive care. Finally, treatment responses of lymphoma, together with SMN, directly correlated with the overall survival of this community. Of note, it appeared that pathogenesis of MDS wasn't associated with the CAR T toxicities, since all 4 patients experienced a pretty mild CRS of grade 1-2. Additionally, scRNA-seq analysis described the transcriptional alteration of CD34+ cells, identified 13 T/NK clusters, and also indicated increased cytotoxic T cells in MDS BM. Conclusion Our study illustrated the onset and progression of SMN after CD19 CAR T therapy in patients with R/R B-cell lymphoma, which provides useful information of this uncommon later event.
Collapse
Affiliation(s)
- Aiqi Zhao
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingzhe Zhao
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China,*Correspondence: Ping Li, ; Hui Liu,
| | - Hui Liu
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Ping Li, ; Hui Liu,
| |
Collapse
|
2
|
Kaisrlikova M, Vesela J, Kundrat D, Votavova H, Dostalova Merkerova M, Krejcik Z, Divoky V, Jedlicka M, Fric J, Klema J, Mikulenkova D, Stastna Markova M, Lauermannova M, Mertova J, Soukupova Maaloufova J, Jonasova A, Cermak J, Belickova M. RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: a study on patients with lower-risk MDS. Leukemia 2022; 36:1898-1906. [PMID: 35505182 PMCID: PMC9252911 DOI: 10.1038/s41375-022-01584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
Abstract
Patients with lower-risk myelodysplastic syndromes (LR-MDS) have a generally favorable prognosis; however, a small proportion of cases progress rapidly. This study aimed to define molecular biomarkers predictive of LR-MDS progression and to uncover cellular pathways contributing to malignant transformation. The mutational landscape was analyzed in 214 LR-MDS patients, and at least one mutation was detected in 137 patients (64%). Mutated RUNX1 was identified as the main molecular predictor of rapid progression by statistics and machine learning. To study the effect of mutated RUNX1 on pathway regulation, the expression profiles of CD34 + cells from LR-MDS patients with RUNX1 mutations were compared to those from patients without RUNX1 mutations. The data suggest that RUNX1-unmutated LR-MDS cells are protected by DNA damage response (DDR) mechanisms and cellular senescence as an antitumor cellular barrier, while RUNX1 mutations may be one of the triggers of malignant transformation. Dysregulated DDR and cellular senescence were also observed at the functional level by detecting γH2AX expression and β-galactosidase activity. Notably, the expression profiles of RUNX1-mutated LR-MDS resembled those of higher-risk MDS at diagnosis. This study demonstrates that incorporating molecular data improves LR-MDS risk stratification and that mutated RUNX1 is associated with a suppressed defense against LR-MDS progression.
Collapse
Affiliation(s)
- Monika Kaisrlikova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - David Kundrat
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marek Jedlicka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Fric
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Klema
- Czech Technical University, Prague, Czech Republic
| | - Dana Mikulenkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | | | - Jolana Mertova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Anna Jonasova
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic. .,First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
Chen R, Cao J, Jiang W, Wang S, Cheng J. Upregulated Expression of CYBRD1 Predicts Poor Prognosis of Patients with Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:7548406. [PMID: 34594380 PMCID: PMC8478559 DOI: 10.1155/2021/7548406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 01/21/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Cytochrome b reductase 1 (CYBRD1) promotes the development of ovarian serous cystadenocarcinoma (OV). We assessed the function of CYBRD1 in OV underlying The Cancer Genome Atlas (TCGA) database. The correlation between clinicopathological characteristics and CYBRD1 expression was estimated. The Cox proportional hazards regression model and the Kaplan-Meier method were applied to identify clinical features related to overall survival and disease-specific survival. Gene set enrichment analysis (GSEA) was applied to identify the relationship between CYBRD1 expression and immune infiltration. CYBRD1 expression in OV was significantly associated with poor outcomes of primary therapy and FIGO stage. Patients with high levels of CYBRD1 expression were prone to the development of a poorly differentiated tumor and experience of an unfavorable outcome. CYBRD1 expression had significant association with shorter OS and acts as an independent predictor of poor outcome. Moreover, enhanced CYBRD1 expression was positively associated with Tem, NK cells, and mast cells but negatively associated with CD56 bright NK cells and Th2 cells. CYBRD1 expression may serve as a diagnostic and prognostic indicator of OV patients. The mechanisms of poor prognosis of CYBRD1-mediated OV may include increased iron uptake, regulation of immune microenvironment, ferroptosis related pathway, and ERK signaling pathway, among which ferroptosis and ERK signaling pathway may be important pathways of CYBRD1-mediated OV. Furthermore, we verified that CYBRD1 was upregulated in OV and significant correlated with lymph nodes metastasis, advanced stage, poor-differentiated tumor, and poor clinical prognosis in East Hospital cohort. The results of this study may provide guidance for the development of optimal treatment strategies for OV.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| | - Jianhong Cao
- Department of Heart Failure, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Wei Jiang
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| | - Shunli Wang
- Department of Pathology, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| |
Collapse
|
4
|
DHODH inhibition synergizes with DNA-demethylating agents in the treatment of myelodysplastic syndromes. Blood Adv 2021; 5:438-450. [PMID: 33496740 DOI: 10.1182/bloodadvances.2020001461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) catalyzes a rate-limiting step in de novo pyrimidine nucleotide synthesis. DHODH inhibition has recently been recognized as a potential new approach for treating acute myeloid leukemia (AML) by inducing differentiation. We investigated the efficacy of PTC299, a novel DHODH inhibitor, for myelodysplastic syndrome (MDS). PTC299 inhibited the proliferation of MDS cell lines, and this was rescued by exogenous uridine, which bypasses de novo pyrimidine synthesis. In contrast to AML cells, PTC299 was inefficient at inhibiting growth and inducing the differentiation of MDS cells, but synergized with hypomethylating agents, such as decitabine, to inhibit the growth of MDS cells. This synergistic effect was confirmed in primary MDS samples. As a single agent, PTC299 prolonged the survival of mice in xenograft models using MDS cell lines, and was more potent in combination with decitabine. Mechanistically, a treatment with PTC299 induced intra-S-phase arrest followed by apoptotic cell death. Of interest, PTC299 enhanced the incorporation of decitabine, an analog of cytidine, into DNA by inhibiting pyrimidine production, thereby enhancing the cytotoxic effects of decitabine. RNA-seq data revealed the marked downregulation of MYC target gene sets with PTC299 exposure. Transfection of MDS cell lines with MYC largely attenuated the growth inhibitory effects of PTC299, suggesting MYC as one of the major targets of PTC299. Our results indicate that the DHODH inhibitor PTC299 suppresses the growth of MDS cells and acts in a synergistic manner with decitabine. This combination therapy may be a new therapeutic option for the treatment of MDS.
Collapse
|
5
|
Changes in lncRNAs and related genes in β-thalassemia minor and β-thalassemia major. Front Med 2017; 11:74-86. [DOI: 10.1007/s11684-017-0503-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
|
6
|
Monika Belickova M, Merkerova MD, Votavova H, Valka J, Vesela J, Pejsova B, Hajkova H, Klema J, Cermak J, Jonasova A. Up-regulation of ribosomal genes is associated with a poor response to azacitidine in myelodysplasia and related neoplasms. Int J Hematol 2016; 104:566-573. [DOI: 10.1007/s12185-016-2058-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
7
|
Flores-Figueroa E, Gratzinger D. Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic. Int J Mol Sci 2016; 17:553. [PMID: 27089321 PMCID: PMC4849009 DOI: 10.3390/ijms17040553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
We review the murine and human microenvironment and hematopoietic stem cell niche in the context of intact bone marrow architecture in man and mouse, both in normal and in myelodysplastic syndrome marrow. We propose that the complexity of the hematopoietic stem cell niche can usefully be approached in the context of its topobiology, and we provide a model that incorporates in vitro and in vivo models as well as in situ findings from intact human marrow to explain the changes seen in myelodysplastic syndrome patients. We highlight the clinical application of the study of the bone marrow microenvironment and its topobiology in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Eugenia Flores-Figueroa
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, c.p. 06720 Mexico City, Mexico.
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine 300 Pasteur Dr., L235, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Hung FH, Chiu HW. Differentiating disease subtypes by using pathway patterns constructed from gene expressions and protein networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6519-22. [PMID: 26737786 DOI: 10.1109/embc.2015.7319886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene expression profiles differ in different diseases. Even if diseases are at the same stage, such diseases exhibit different gene expressions, not to mention the different subtypes at a single lesion site. Distinguishing different disease subtypes at a single lesion site is difficult. In early cases, subtypes were initially distinguished by doctors. Subsequently, further differences were found through pathological experiments. For example, a brain tumor can be classified according to its origin, its cell-type origin, or the tumor site. Because of the advancements in bioinformatics and the techniques for accumulating gene expressions, researchers can use gene expression data to classify disease subtypes. Because the operation of a biopathway is closely related to the disease mechanism, the application of gene expression profiles for clustering disease subtypes is insufficient. In this study, we collected gene expression data of healthy and four myelodysplastic syndrome subtypes and applied a method that integrated protein-protein interaction and gene expression data to identify different patterns of disease subtypes. We hope it is efficient for the classification of disease subtypes in adventure.
Collapse
|
9
|
Plasma Protein Biomarker Candidates for Myelodysplastic Syndrome Subgroups. BIOMED RESEARCH INTERNATIONAL 2015; 2015:209745. [PMID: 26448929 PMCID: PMC4584066 DOI: 10.1155/2015/209745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 01/13/2023]
Abstract
In recent years the plasma proteomes of several different myelodysplastic syndrome (MDS) subgroups have been investigated and compared with those of healthy donors. However, the resulting data do not facilitate a direct and statistical comparison of the changes among the different MDS subgroups that would be useful for the selection and proposal of diagnostic biomarker candidates. The aim of this work was to identify plasma protein biomarker candidates for different MDS subgroups by reanalyzing the proteomic data of four MDS subgroups: refractory cytopenia with multilineage dysplasia (RCMD), refractory anemia or refractory anemia with ringed sideroblasts (RA-RARS), refractory anemia with excess blasts subtype 1 (RAEB-1), and refractory anemia with excess blasts subtype 2 (RAEB-2). Reanalysis of a total of 47 MDS patients revealed biomarker candidates, with alpha-2-HS-glycoprotein and leucine-rich alpha-2-glycoprotein as the most promising candidates.
Collapse
|
10
|
Anděl M, Kléma J, Krejčík Z. Network-constrained forest for regularized classification of omics data. Methods 2015; 83:88-97. [PMID: 25872185 DOI: 10.1016/j.ymeth.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/28/2022] Open
Abstract
Contemporary molecular biology deals with wide and heterogeneous sets of measurements to model and understand underlying biological processes including complex diseases. Machine learning provides a frequent approach to build such models. However, the models built solely from measured data often suffer from overfitting, as the sample size is typically much smaller than the number of measured features. In this paper, we propose a random forest-based classifier that reduces this overfitting with the aid of prior knowledge in the form of a feature interaction network. We illustrate the proposed method in the task of disease classification based on measured mRNA and miRNA profiles complemented by the interaction network composed of the miRNA-mRNA target relations and mRNA-mRNA interactions corresponding to the interactions between their encoded proteins. We demonstrate that the proposed network-constrained forest employs prior knowledge to increase learning bias and consequently to improve classification accuracy, stability and comprehensibility of the resulting model. The experiments are carried out in the domain of myelodysplastic syndrome that we are concerned about in the long term. We validate our approach in the public domain of ovarian carcinoma, with the same data form. We believe that the idea of a network-constrained forest can straightforwardly be generalized towards arbitrary omics data with an available and non-trivial feature interaction network. The proposed method is publicly available in terms of miXGENE system (http://mixgene.felk.cvut.cz), the workflow that implements the myelodysplastic syndrome experiments is presented as a dedicated case study.
Collapse
Affiliation(s)
- Michael Anděl
- Department of Computer Science, Czech Technical University, Technická 2, Prague, Czech Republic.
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Technická 2, Prague, Czech Republic.
| | - Zdeněk Krejčík
- Department of Molecular Genetics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, Czech Republic.
| |
Collapse
|
11
|
Ramsey H, Zhang Q, Wu MX. Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets 2014; 26:459-66. [PMID: 25025394 DOI: 10.3109/09537104.2014.935315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myelodysplastic syndromes (MDS) are hallmarked by cytopenia and dysplasia of hematopoietic cells, often accompanied by mitochondrial dysfunction and increases of reactive oxygen species (ROS) within affected cells. However, it is not known whether the increase in ROS production is an instigator or a byproduct of the disease. The present investigation shows that mice lacking immediate early responsive gene X-1 (IEX-1) exhibit lineage specific increases in ROS production and abnormal cytology upon radiation in blood cell types commonly identified in MDS. These affected cell lineages chiefly have the bone marrow as a primary site of differentiation and maturation, while cells with extramedullary differentiation and maturation like B- and T-cells remain unaffected. Increased ROS production is likely to contribute significantly to irradiation-induced thrombocytopenia in the absence of IEX-1 as demonstrated by effective reversal of the disorder after mitoquinone (MitoQ) treatment, a mitochondria-specific antioxidant. MitoQ reduced intracellular ROS production within megakaryocytes and platelets. It also normalized mitochondrial membrane potential and superoxide production in platelets in irradiated, IEX-1 deficient mice. The lineage-specific effects of mitochondrial ROS may help us understand the etiology of thrombocytopenia in association with MDS in a subgroup of the patients.
Collapse
Affiliation(s)
- Haley Ramsey
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS) , Boston , MA and
| | | | | |
Collapse
|
12
|
Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:416028. [PMID: 24669287 PMCID: PMC3942103 DOI: 10.1155/2014/416028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/15/2013] [Accepted: 12/18/2013] [Indexed: 01/21/2023]
Abstract
The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001)
, homocysteine (P < 0.001),
and cysteinylglycine (P < 0.006)
and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03)
and nitrite (P < 0.001)
in MDS patients compared to healthy donors. Moreover, total (P < 0.032)
and oxidized cysteinylglycine (P = 0.029)
and nitrite (P = 0.021)
differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001)
and serum free iron levels (r = 0.60, P = 0.001)
and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease.
Collapse
|
13
|
Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, Mathews L, Ferrer M, Southall N, Guha R, Keller J, Thomas C, Beverly LJ, Cortelezzi A, Oliva EN, Cuzzola M, Maciejewski JP, Mulloy JC, Starczynowski DT. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 2013; 24:90-104. [PMID: 23845443 PMCID: PMC3711103 DOI: 10.1016/j.ccr.2013.05.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/11/2013] [Accepted: 05/09/2013] [Indexed: 12/16/2022]
Abstract
Myelodysplastic syndromes (MDSs) arise from a defective hematopoietic stem/progenitor cell. Consequently, there is an urgent need to develop targeted therapies capable of eliminating the MDS-initiating clones. We identified that IRAK1, an immune-modulating kinase, is overexpressed and hyperactivated in MDSs. MDS clones treated with a small molecule IRAK1 inhibitor (IRAK1/4-Inh) exhibited impaired expansion and increased apoptosis, which coincided with TRAF6/NF-κB inhibition. Suppression of IRAK1, either by RNAi or with IRAK1/4-Inh, is detrimental to MDS cells, while sparing normal CD34(+) cells. Based on an integrative gene expression analysis, we combined IRAK1 and BCL2 inhibitors and found that cotreatment more effectively eliminated MDS clones. In summary, these findings implicate IRAK1 as a drugable target in MDSs.
Collapse
Affiliation(s)
- Garrett W Rhyasen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Belickova M, Merkerova MD, Stara E, Vesela J, Sponerova D, Mikulenkova D, Brdicka R, Neuwirtova R, Jonasova A, Cermak J. DNA repair gene variants are associated with an increased risk of myelodysplastic syndromes in a Czech population. J Hematol Oncol 2013; 6:9. [PMID: 23339595 PMCID: PMC3556100 DOI: 10.1186/1756-8722-6-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023] Open
Abstract
Background Interactions between genetic variants and risk factors in myelodysplastic syndromes are poorly understood. In this case–control study, we analyzed 1 421 single nucleotide polymorphisms in 408 genes involved in cancer-related pathways in 198 patients and 292 controls. Methods The Illumina SNP Cancer Panel was used for genotyping of samples. The chi-squared, p-values, odds ratios and upper and lower limits of the 95% confidence interval were calculated for all the SNPs that passed the quality control filtering. Results Gene-based analysis showed nine candidate single nucleotide polymorphisms significantly associated with the disease susceptibility (q-value < 0.05). Four of these polymorphisms were located in oxidative damage/DNA repair genes (LIG1, RAD52, MSH3 and GPX3), which may play important roles in the pathobiology of myelodysplastic syndromes. Two of nine candidate polymorphisms were located in transmembrane transporters (ABCB1 and SLC4A2), contributing to individual variability in drug responses and patient prognoses. Moreover, the variations in the ROS1 and STK6 genes were associated with the overall survival of patients. Conclusions Our association study identified genetic variants in Czech population that may serve as potential markers for myelodysplastic syndromes.
Collapse
Affiliation(s)
- Monika Belickova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matarraz S, Teodosio C, Fernandez C, Albors M, Jara-Acevedo M, López A, Gonzalez-Gonzalez M, Gutierrez ML, Flores-Montero J, Cerveró C, Pizarro-Perea M, Garrastazul MP, Caballero G, Gutierrez O, Mendez GD, González-Silva M, Laranjeira P, Orfao A. The proliferation index of specific bone marrow cell compartments from myelodysplastic syndromes is associated with the diagnostic and patient outcome. PLoS One 2012; 7:e44321. [PMID: 22952954 PMCID: PMC3432128 DOI: 10.1371/journal.pone.0044321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/01/2012] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal stem cell disorders which frequently show a hypercellular dysplastic bone marrow (BM) associated with inefficient hematopoiesis and peripheral cytopenias due to increased apoptosis and maturation blockades. Currently, little is known about the role of cell proliferation in compensating for the BM failure syndrome and in determining patient outcome. Here, we analyzed the proliferation index (PI) of different compartments of BM hematopoietic cells in 106 MDS patients compared to both normal/reactive BM (n = 94) and acute myeloid leukemia (AML; n = 30 cases) using multiparameter flow cytometry. Our results show abnormally increased overall BM proliferation profiles in MDS which significantly differ between early/low-risk and advanced/high-risk cases. Early/low-risk patients showed increased proliferation of non-lymphoid CD34(+) precursors, maturing neutrophils and nucleated red blood cells (NRBC), while the PI of these compartments of BM precursors progressively fell below normal values towards AML levels in advanced/high-risk MDS. Decreased proliferation of non-lymphoid CD34(+) and NRBC precursors was significantly associated with adverse disease features, shorter overall survival (OS) and transformation to AML, both in the whole series and when low- and high-risk MDS patients were separately considered, the PI of NRBC emerging as the most powerful independent predictor for OS and progression to AML. In conclusion, assessment of the PI of NRBC, and potentially also of other compartments of BM precursors (e.g.: myeloid CD34(+) HPC), could significantly contribute to a better management of MDS.
Collapse
Affiliation(s)
- Sergio Matarraz
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Cristina Teodosio
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carlos Fernandez
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Manuel Albors
- Servicio de Hematología, Hospital Juan Canalejo, La Coruña, Spain
| | - María Jara-Acevedo
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Antonio López
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - María Gonzalez-Gonzalez
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - María Laura Gutierrez
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Juan Flores-Montero
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carlos Cerveró
- Servicio de Hematología, Hospital Virgen de la Luz, Cuenca, Spain
| | | | | | | | - Oliver Gutierrez
- Servicio de Hematología, Hospital Rio Hortega, Valladolid, Spain
| | - Guy Daniel Mendez
- Servicio de Hematología, Hospital de Jerez de la Frontera, Cádiz, Spain
| | | | - Paula Laranjeira
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Centro de Investigación del Cáncer (Instituto de Biología Celular y Molecular del Cáncer, CSIC-USAL), IBSAL, Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
16
|
Expression of the runt homology domain of RUNX1 disrupts homeostasis of hematopoietic stem cells and induces progression to myelodysplastic syndrome. Blood 2012; 120:4028-37. [PMID: 22919028 DOI: 10.1182/blood-2012-01-404533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations of RUNX1 are detected in patients with myelodysplastic syndrome (MDS). In particular, C-terminal truncation mutations lack a transcription regulatory domain and have increased DNA binding through the runt homology domain. The expression of the runt homology domain, RUNX1(41-214), in mouse hematopoietic cells induced progression to MDS and acute myeloid leukemia. Analysis of premyelodysplastic animals found expansion of c-Kit(+)Sca-1(+)Lin(-) cells and skewed differentiation to myeloid at the expense of the lymphoid lineage. These abnormalities correlate with the phenotype of Runx1-deficient animals, as expected given the reported dominant-negative role of C-terminal mutations over the full-length RUNX1. However, MDS is not observed in Runx1-deficient animals. Gene expression profiling found that RUNX1(41-214) c-Kit(+)Sca-1(+)Lin(-) cells have an overlapping yet distinct gene expression profile from Runx1-deficient animals. Moreover, an unexpected parallel was observed between the hematopoietic phenotype of RUNX1(41-214) and aged animals. Genes deregulated in RUNX1(41-214), but not in Runx1-deficient animals, were inversely correlated with the aging gene signature of HSCs, suggesting that disruption of the expression of genes related to normal aging by RUNX1 mutations contributes to development of MDS. The data presented here provide insights into the mechanisms of development of MDS in HSCs by C-terminal mutations of RUNX1.
Collapse
|
17
|
Delgado MD, Albajar M, Gomez-Casares MT, Batlle A, León J. MYC oncogene in myeloid neoplasias. Clin Transl Oncol 2012; 15:87-94. [PMID: 22911553 DOI: 10.1007/s12094-012-0926-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/24/2012] [Indexed: 01/13/2023]
Abstract
MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.
Collapse
Affiliation(s)
- M Dolores Delgado
- Group of Transcriptional Control and Cancer, Departamento de Biología Molecular, Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria, CSIC, SODERCAN, Avda Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | | | | | | | | |
Collapse
|
18
|
Merkerova MD, Bystricka D, Belickova M, Krejcik Z, Zemanova Z, Polak J, Hajkova H, Brezinova J, Michalova K, Cermak J. From cryptic chromosomal lesions to pathologically relevant genes: integration of SNP-array with gene expression profiling in myelodysplastic syndrome with normal karyotype. Genes Chromosomes Cancer 2012; 51:419-28. [PMID: 22250017 DOI: 10.1002/gcc.21927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/08/2011] [Indexed: 01/26/2023] Open
Abstract
Myelodysplastic syndrome (MDS), a clonal disorder originating from hematopoietic stem cell, is characterized by a progressive character often leading to transformation to acute myeloid leukemia. We used single nucleotide polymorphism arrays (SNP-A) to identify previously cryptic chromosomal abnormalities such as copy number alterations and uniparental disomies (UPD) in cytogenetically normal MDS. In the aberrant regions, we attempted to localize candidate genes with potential relevance to the disease. Using SNP-A, we analyzed peripheral blood granulocytes from 37 MDS patients. The analysis identified 13 cryptic chromosomal defects in 10 patients (27%). Four UPD (affecting chromosomes 3q, 7q, 17q, and 20p), 5 deletions and 4 duplications were detected. Gene expression data measured on CD34+ cells were available for 4 patients with and 6 patients without SNP-A lesions. We performed an integrative analysis of genotyping and gene expression microarrays and found several genes with an altered expression located in the aberrant regions. The expression microarrays suggested BMP2 and TRIB3 located in 20p UPD as potential candidate genes contributing to MDS. We showed that the genome-wide integrative approach is beneficial to the comprehension of molecular backgrounds of diseases with incompletely understood etiopathology.
Collapse
|
19
|
Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood 2011; 119:1532-42. [PMID: 22160620 DOI: 10.1182/blood-2011-03-343475] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal human erythroid cell maturation requests the transcription factor GATA-1 and a transient activation of caspase-3, with GATA-1 being protected from caspase-3-mediated cleavage by interaction with the chaperone heat shock protein 70 (Hsp70) in the nucleus. Erythroid cell dysplasia observed in early myelodysplastic syndromes (MDS) involves impairment of differentiation and excess of apoptosis with a burst of caspase activation. Analysis of gene expression in MDS erythroblasts obtained by ex vivo cultures demonstrates the down-regulation of a set of GATA-1 transcriptional target genes, including GYPA that encodes glycophorin A (GPA), and the up-regulation of members of the HSP70 family. GATA-1 protein expression is decreased in MDS erythroblasts, but restores in the presence of a pan-caspase inhibitor. Expression of a mutated GATA-1 that cannot be cleaved by caspase-3 rescues the transcription of GATA-1 targets, and the erythroid differentiation, but does not improve survival. Hsp70 fails to protect GATA-1 from caspases because the protein does not accumulate in the nucleus with active caspase-3. Expression of a nucleus-targeted mutant of Hsp70 protects GATA-1 and rescues MDS erythroid cell differentiation. Alteration of Hsp70 cytosolic-nuclear shuttling is a major feature of MDS that favors GATA-1 cleavage and differentiation impairment, but not apoptosis, in dysplastic erythroblasts.
Collapse
|
20
|
Májek P, Reicheltová Z, Suttnar J, Cermák J, Dyr JE. Plasma proteome changes associated with refractory cytopenia with multilineage dysplasia. Proteome Sci 2011; 9:64. [PMID: 21975265 PMCID: PMC3192726 DOI: 10.1186/1477-5956-9-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/05/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Refractory cytopenia with multilineage dysplasia (RCMD) is a subgroup of myelodysplastic syndrome (MDS), which belongs to oncohematological diseases, occurring particularly in elderly patients, and represents a heterogeneous group of bone marrow diseases. The goal of this study was to look for plasma proteins that changed quantitatively or qualitatively in RCMD patients. RESULTS A total of 46 plasma samples were depleted, proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Sixty-one unique, significantly (p < 0.05, ANOVA) different spots were found; proteins in 59 spots were successfully identified and corresponded to 57 different proteins. Protein fragmentation was observed in several proteins: complement C4-A, complement C4-B, inter-alpha-trypsin inhibitor heavy chain H4, and endorepellin. CONCLUSIONS This study describes proteins, which change quantitatively or qualitatively in RCMD patients, and represents the first report on significant alterations in C4-A and C4-B complement proteins and ITIH4 fragments in patients with MDS-RCMD.
Collapse
Affiliation(s)
- Pavel Májek
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
21
|
Votavova H, Grmanova M, Dostalova Merkerova M, Belickova M, Vasikova A, Neuwirtova R, Cermak J. Differential expression of microRNAs in CD34+ cells of 5q- syndrome. J Hematol Oncol 2011; 4:1. [PMID: 21211043 PMCID: PMC3024999 DOI: 10.1186/1756-8722-4-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/06/2011] [Indexed: 01/07/2023] Open
Abstract
Background Myelodysplastic syndrome with isolated chromosome 5q deletion (5q- syndrome) is a clonal stem cell disorder characterized by ineffective hematopoiesis. MicroRNAs (miRNAs) are important regulators of hematopoiesis and their aberrant expression was detected in some clonal hematopoietic disorders. We thus analyzed miRNA expressions in bone marrow CD34+ cells of 5q- syndrome patients. Further, we studied gene expressions of miR-143, miR-145, miR-378 and miR-146a mapped within the 5q deletion. Results Using microarrays we identified 21 differently expressed miRNAs in 5q- patients compared to controls. Especially, miR-34a was markedly overexpressed in 5q- patients, suggesting its role in an increased apoptosis of bone marrow progenitors. Out of four miRNAs at del(5q), only miR-378 and miR-146a showed reduced gene expression in the patients. An integrative analysis of mRNA profiles and predicted putative targets defined potential downstream targets of the deregulated miRNAs. The list of targets included several genes that play an important role in the regulation of hematopoiesis (e.g. KLF4, LEF1, SPI1). Conclusions The study demonstrates global overexpression of miRNAs is associated with 5q- phenotype. Identification of hematopoiesis-relevant target genes indicates that the deregulated miRNAs may be involved in the pathogenesis of 5q- syndrome by a modulation of these targets. The expression data on miRNAs at del(5q) suggest the presence of mechanisms for compensation of a gene dosage.
Collapse
Affiliation(s)
- Hana Votavova
- Department of Molecular Genetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 2010; 19:313-9. [PMID: 21150891 DOI: 10.1038/ejhg.2010.209] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs functioning as regulators of hematopoiesis. Their differential expression patterns have been linked with various pathological processes originating from hematopoietic stem cells (HSCs). However, limited information is available regarding the role of miRNAs in myelodysplastic syndrome (MDS). Using miRNA arrays, we measured expression of 1,145 miRNAs in CD34+ bone marrow cells obtained from 39 MDS and acute myeloid leukemia (AML) evolved from MDS patients, and compared them with those of six healthy donors. Differential miRNA expression was analyzed and a panel of upregulated (n=13) and downregulated (n=9) miRNAs were found (P<0.001) in MDS/AML patients. An increased expression of a large miRNA cluster mapped within the 14q32 locus was detected. Differences in miRNA expression of MDS subtypes showed a distinction between early and advanced MDS; an apparent dissimilarity was observed between RAEB-1 and RAEB-2 subtypes. In early MDS, we monitored upregulation of proapoptotic miR-34a, which may contribute to the increased apoptosis of HSCs. Patients with 5q deletion were characterized by decreased levels of miR-143(*) and miR-378 mapped within the commonly deleted region at 5q32. This is an early report describing differential expression in MDS CD34+ cells, likely reflecting their disease-specific regulation.
Collapse
|