1
|
Wisniewski A, Humer D, Möller M, Kanje S, Spadiut O, Hober S. Targeted HER2-positive cancer therapy using ADAPT6 fused to horseradish peroxidase. N Biotechnol 2024; 83:74-81. [PMID: 39032630 DOI: 10.1016/j.nbt.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Targeted cancer therapy is a promising alternative to the currently established cancer treatments, aiming to selectively kill cancer cells while sparing healthy tissues. Hereby, molecular targeting agents, such as monoclonal antibodies, are used to bind to cancer cell surface markers specifically. Although these agents have shown great clinical success, limitations still remain such as low tumor penetration and off-target effects. To overcome this limitation, novel fusion proteins comprised of the two proteins ADAPT6 and Horseradish Peroxidase (HRP) were engineered. Cancer cell targeting is hereby enabled by the small scaffold protein ADAPT6, engineered to specifically bind to human epidermal growth factor receptor 2 (HER2), a cell surface marker overexpressed in various cancer types, while the enzyme HRP oxidizes the nontoxic prodrug indole-3-acetic acid (IAA) which leads to the formation of free radicals and thereby to cytotoxic effects on cancer cells. The high affinity to HER2, as well as the enzymatic activity of HRP, were still present for the ADAPT6-HRP fusion proteins. Further, in vitro cytotoxicity assay using HER2-positive SKOV-3 cells revealed a clear advantage of the fusion proteins over free HRP by association of the fusion proteins directly to the cancer cells and therefore sustained cell killing. This novel strategy of combining ADAPT6 and HRP represents a promising approach and a viable alternative to antibody conjugation for targeted cancer therapy.
Collapse
Affiliation(s)
- Andreas Wisniewski
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Diana Humer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, AT-1060 Vienna, Austria
| | - Marit Möller
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, AT-1060 Vienna, Austria
| | - Sophia Hober
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Humer D, Spadiut O. Enzyme prodrug therapy: cytotoxic potential of paracetamol turnover with recombinant horseradish peroxidase. MONATSHEFTE FUR CHEMIE 2021; 152:1389-1397. [PMID: 34759433 PMCID: PMC8542555 DOI: 10.1007/s00706-021-02848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022]
Abstract
Targeted cancer treatment is a promising, less invasive alternative to chemotherapy as it is precisely directed against tumor cells whilst leaving healthy tissue unaffected. The plant-derived enzyme horseradish peroxidase (HRP) can be used for enzyme prodrug cancer therapy with indole-3-acetic acid or the analgesic paracetamol (acetaminophen). Oxidation of paracetamol by HRP in the presence of hydrogen peroxide leads to N-acetyl-p-benzoquinone imine and polymer formation via a radical reaction mechanism. N-acetyl-p-benzoquinone imine binds to DNA and proteins, resulting in severe cytotoxicity. However, plant HRP is not suitable for this application since the foreign glycosylation pattern is recognized by the human immune system, causing rapid clearance from the body. Furthermore, plant-derived HRP is a mixture of isoenzymes with a heterogeneous composition. Here, we investigated the reaction of paracetamol with defined recombinant HRP variants produced in E. coli, as well as plant HRP, and found that they are equally effective in paracetamol oxidation at a concentration ≥ 400 µM. At low paracetamol concentrations, however, recombinant HRP seems to be more efficient in paracetamol oxidation. Yet upon treatment of HCT-116 colon carcinoma and FaDu squamous carcinoma cells with HRP-paracetamol no cytotoxic effect was observed, neither in the presence nor absence of hydrogen peroxide. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00706-021-02848-x.
Collapse
Affiliation(s)
- Diana Humer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
3
|
Humer D, Furlanetto V, Schruef AK, Wlodarczyk A, Kuttke M, Divne C, Spadiut O. Potential of unglycosylated horseradish peroxidase variants for enzyme prodrug cancer therapy. Biomed Pharmacother 2021; 142:112037. [PMID: 34392084 DOI: 10.1016/j.biopha.2021.112037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/17/2022] Open
Abstract
Fighting cancer still relies on chemo- and radiation therapy, which is a trade-off between effective clearance of malignant cells and severe side effects on healthy tissue. Targeted cancer treatment on the other hand is a promising and refined strategy with less systemic interference. The enzyme horseradish peroxidase (HRP) exhibits cytotoxic effects on cancer cells in combination with indole-3-acetic acid (IAA). However, the plant-derived enzyme is out of bounds for medical purposes due to its foreign glycosylation pattern and resulting rapid clearance and immunogenicity. In this study, we generated recombinant, unglycosylated HRP variants in Escherichia coli using random mutagenesis and investigated their biochemical properties and suitability for cancer treatment. The cytotoxicity of the HRP-IAA enzyme prodrug system was assessed in vitro with HCT-116 human colon, FaDu human nasopharyngeal squamous cell carcinoma and murine colon adenocarcinoma cells (MC38). Extensive cytotoxicity was shown in all three cancer cell lines: the cell viability of HCT-116 and MC38 cells treated with HRP-IAA was below 1% after 24 h incubation and the surviving fraction of FaDu cells was ≤ 10% after 72 h. However, no cytotoxic effect was observed upon in vivo intratumoral application of HRP-IAA on a MC38 tumor model in C57BL/6J mice. However, we expect that targeting of HRP to the tumor by conjugation to specific antibodies or antibody fragments will reduce HRP clearance and thereby enhance therapy efficacy.
Collapse
Affiliation(s)
- Diana Humer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Valentina Furlanetto
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health Department of Industrial Biotechnology, AlbaNova, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Anna-Katharina Schruef
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Angelika Wlodarczyk
- Austrian Research Institute for Chemistry and Engineering (OFI), Franz-Grill-Straße 5, Objekt 213, 1030 Vienna, Austria
| | - Mario Kuttke
- Medical University of Vienna, Institute for Vascular Biology and Thrombosis Research, Center for Pharmacology and Physiology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Christina Divne
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health Department of Industrial Biotechnology, AlbaNova, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
4
|
Beloborodova NV, Chernevskaya EA, Getsina ML. Indolic Structure Metabolites as Potential Biomarkers of Non-infectious Diseases. Curr Pharm Des 2021; 27:238-249. [PMID: 33092503 DOI: 10.2174/1381612826666201022121653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Interest in indolic structure metabolites, including a number of products of microbial biotransformation of the aromatic amino acid tryptophan, is increasingly growing. The review prepared by a team of authors is based on in-depthscrutiny of data available in PubMed, Scopus, Cyberleninka, Clinical Trials, and Cochrane Library, eventually narrowing the search to a set of keywords such as tryptophan metabolites; plasma metabolomics profiling; metabolomics fingerprinting; gas-, liquid chromatography mass spectrometry; serotonin; melatonin; tryptamine; indoxyl sulfate; indole-3-acetic acid; indole-3-propionic acid; 5-hydroxyindole-3-acetic acid; gut microbiota and microbial metabolites. It provides a summary that outlines the pattern of changes in the level of indolic structure metabolites in a number of diseases and deals with the data from the field of human microbiota metabolites. In modern experimental studies, including the use of gnotobiological (germ-free) animals, it has been convincingly proved that the formation of tryptophan metabolites such as indole-3-acetic acid, indole-3-propionic acid, tryptamine, and indoxyl sulfate is associated with gut bacteria. Attention to some concentration changes of indolic compounds is due to the fact that pronounced deviations and a significant decrease of these metabolites in the blood were found in a number of serious cardiovascular, brain or gastrointestinal diseases. The literature-based analysis allowed the authors to conclude that a constant (normal) level of the main metabolites of the indolic structure in the human body is maintained by a few strict anaerobic bacteria from the gut of a healthy body belonging to the species of Clostridium, Bacteroides, Peptostreptococcus, Eubacteria, etc. The authors focus on several metabolites of the indolic structure that can be called clinically significant in certain diseases, such as schizophrenia, depression, atherosclerosis, colorectal cancer, etc. Determining the level of indole metabolites in the blood can be used to diagnose and monitor the effectiveness of a comprehensive treatment approach.
Collapse
Affiliation(s)
- Natalia V Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka 25, bild 2, Moscow, 107031, Russian Federation
| | - Ekaterina A Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka 25, bild 2, Moscow, 107031, Russian Federation
| | - Maria L Getsina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka 25, bild 2, Moscow, 107031, Russian Federation
| |
Collapse
|
5
|
Zarei M, Rahbar MR, Negahdaripour M. Interaction of indole-3-acetic acid with horseradish peroxidase as a potential anticancer agent: from docking to molecular dynamics simulation. J Biomol Struct Dyn 2020; 40:4188-4196. [PMID: 33280524 DOI: 10.1080/07391102.2020.1854118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The oxidation process, catalyzed by the peroxidase enzymes, occurs in all domains of life to detoxify the hydrogen peroxide toxicity. The most well-known, applicable and vastly studied member of the peroxidases family is horseradish peroxidase (HRP), especially the isoenzyme C (HRP C). HRP (primarily HRP C) is commercially available and applicable in biotechnology and diagnosis. Recently, a novel application of HRP has been introduced in cancer therapy as the combination of HRP with indole-3-acetic acid (IAA). The anticancer activity of HRP/IAA complex is through oxidation of IAA by HRP in hypoxic tumor condition, which leads to apoptosis and cancerous cell death. However, the molecular interaction of HRP/IAA has not been elucidated. Identifying the interaction of IAA with HRP would provide a better insight into its function and applications. In this study, molecular docking and molecular dynamics (MD) simulation were applied to determine the molecular interaction of the IAA/HRP complex. The docking study represented that IAA bound at the 'exposed' heme edge of the HRP enzyme, and the IAA entrance to the enzyme was situated at the carboxymethyl side-chain of the selected structure. Our computational results showed the HRP/IAA complex structure stability. While hydrogen bond formation with ARG38 and HIS42 stabilized the substrate, hydrophobic interactions with Phe68, Gly69, Leu138, Pro139, Pro141 and Phe179 contributed to IAA/HRP complex stability. The results can help to better understand peroxidase enzyme activity and would pave the way for future development of new therapeutics with improved anticancer efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Density functional theory studies of Hypaphorine from Erythrina mildbraedii and Erythrina addisoniae: structural and biological properties. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2228-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Dye Adsorption and Fluorescence Sensing Behaviour About Rare Earth-Indole Carboxylic Acid Complexes. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0869-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:toxins10010033. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Heterologous Expression, Purification and Characterization of a Peroxidase Isolated from Lepidium draba. Protein J 2017; 36:461-471. [DOI: 10.1007/s10930-017-9741-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Cerezo AB, Hornedo-Ortega R, Álvarez-Fernández MA, Troncoso AM, García-Parrilla MC. Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds. Nutrients 2017; 9:nu9030249. [PMID: 28282869 PMCID: PMC5372912 DOI: 10.3390/nu9030249] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/17/2022] Open
Abstract
Excessive concentrations of vascular endothelial growth factor (VEGF) trigger angiogenesis, which causes complications such as the destabilization of atherosclerotic plaques and increased growth of tumors. This work focuses on the determination of the inhibitory activity of melatonin and other indolic related compounds on VEGF-induced VEGF receptor-2 (VEGFR-2) activation and an approximation to the molecular mechanism underlying the inhibition. Quantification of phosphorylated VEGFR-2 was measured by ELISA. Migration wound-healing assay was used to determine cell migration of human umbilical vein endothelial cells (HUVECs). This is the first time that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin are proved to significantly inhibit VEGF-induced VEGFR-2 activation in human umbilical vein endothelial cells and subsequent angiogenesis. 3-Indolacetic acid showed the highest inhibitory effect (IC50 value of 0.9704 mM), followed by 5-hydroxytryptophol (35% of inhibition at 0.1 mM), melatonin (30% of inhibition at 1 mM), and serotonin (24% of inhibition at 1 mM). An approximation to the molecular mechanism of the inhibition has been proposed, suggesting that indolic compounds might interact with the cell surface components of the endothelial membrane in a way that prevents VEGF from activating the receptor. Additionally, wound-healing assay revealed that exposure of HUVECs to melatonin and 3-indolacetic acid in the presence of VEGF significantly inhibited cell migration by 87% and 99%, respectively, after 24 h. These data demonstrate that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin would be good molecules for future exploitation as anti-VEGF signaling agents.
Collapse
Affiliation(s)
- Ana B Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - M Antonia Álvarez-Fernández
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - M Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| |
Collapse
|
11
|
Li H, Chen L, Shi Y, Yuan B, Ma Y, Wei H, Zhao G. Design of Block Copolymer Micellar Aggregates for Co-Delivery of Enzyme and Anticancer Prodrug. Chem Asian J 2016; 12:176-180. [DOI: 10.1002/asia.201601198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Hongping Li
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Institute of Biochemical Engineering&Environmental Technology; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Lulu Chen
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Institute of Biochemical Engineering&Environmental Technology; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Yuting Shi
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Institute of Biochemical Engineering&Environmental Technology; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Binbin Yuan
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Institute of Biochemical Engineering&Environmental Technology; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Yingxia Ma
- School of Material Science and Engineering; Lanzhou University of Technology; Lanzhou 730050 P. R. China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Institute of Biochemical Engineering&Environmental Technology; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Guanghui Zhao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Institute of Biochemical Engineering&Environmental Technology; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
- Zhongwei High-tech Institute of Lanzhou University; Zhongwei 755000 P. R. China
| |
Collapse
|
12
|
Neochoritis CG, Livadiotou D, Tsiaras V, Zarganes-Tzitzikas T, Samatidou E. The indoleacetic acids in IMCRs: a three-component Ugi reaction involving TosMIC. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Bonifert G, Folkes L, Gmeiner C, Dachs G, Spadiut O. Recombinant horseradish peroxidase variants for targeted cancer treatment. Cancer Med 2016; 5:1194-203. [PMID: 26990592 PMCID: PMC4924378 DOI: 10.1002/cam4.668] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/04/2016] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
Cancer is a major cause of death. Common chemo- and radiation-therapies damage healthy tissue and cause painful side effects. The enzyme horseradish peroxidase (HRP) has been shown to activate the plant hormone indole-3-acetic acid (IAA) to a powerful anticancer agent in in vitro studies, but gene directed enzyme prodrug therapy (GDEPT) studies showed ambivalent results. Thus, HRP/IAA in antibody directed enzyme prodrug therapy (ADEPT) was investigated as an alternative. However, this approach has not been intensively studied, since the enzyme preparation from plant describes an undefined mixture of isoenzymes with a heterogenic glycosylation pattern incompatible with the human system. Here, we describe the recombinant production of the two HRP isoenzymes C1A and A2A in a Pichia pastoris benchmark strain and a glyco-engineered strain with a knockout of the α-1,6-mannosyltransferase (OCH1) responsible for hypermannosylation. We biochemically characterized the enzyme variants, tested them with IAA and applied them on cancer cells. In the absence of H2 O2 , HRP C1A turned out to be highly active with IAA, independent of its surface glycosylation. Subsequent in vitro cytotoxicity studies with human T24 bladder carcinoma and MDA-MB-231 breast carcinoma cells underlined the applicability of recombinant HRP C1A with reduced surface glycoslyation for targeted cancer treatment. Summarizing, this is the first study describing the successful use of recombinantly produced HRP for targeted cancer treatment. Our findings might pave the way for an increased use of the powerful isoenzyme HRP C1A in cancer research in the future.
Collapse
Affiliation(s)
- Günther Bonifert
- Research Area Biochemical EngineeringInstitute of Chemical EngineeringVienna University of TechnologyViennaAustria
| | - Lisa Folkes
- Department of Oncology Oxford Institute for Radiation OncologyUniversity of OxfordNorthwoodMiddlesexU.K.
| | - Christoph Gmeiner
- Research Area Biochemical EngineeringInstitute of Chemical EngineeringVienna University of TechnologyViennaAustria
| | - Gabi Dachs
- Mackenzie Cancer Research GroupDepartment of PathologyUniversity of OtagoChristchurchNew Zealand
| | - Oliver Spadiut
- Research Area Biochemical EngineeringInstitute of Chemical EngineeringVienna University of TechnologyViennaAustria
| |
Collapse
|
14
|
Krainer FW, Glieder A. An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 2015; 99:1611-25. [PMID: 25575885 PMCID: PMC4322221 DOI: 10.1007/s00253-014-6346-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/28/2022]
Abstract
Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge—the efficient recombinant production of horseradish peroxidase enzymes.
Collapse
Affiliation(s)
- Florian W Krainer
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria,
| | | |
Collapse
|
15
|
Abstract
Unconjugated monoclonal antibodies that target hematopoietic differentiation antigens have been developed to treat hematologic malignancies. Although some of these have activity against chronic lymphocytic leukemia and hairy cell leukemia, in general, monoclonal antibodies have limited efficacy as single agents in the treatment of leukemia. To increase their potency, the binding domains of monoclonal antibodies can be attached to protein toxins. Such compounds, termed immunotoxins, are delivered to the interior of leukemia cells based on antibody specificity for cell surface target antigens. Recombinant immunotoxins have been shown to be highly cytotoxic to leukemic blasts in vitro, in xenograft model systems, and in early-phase clinical trials in humans. These agents will likely play an increasing role in the treatment of leukemia.
Collapse
|
16
|
Guan QL, Xing YH, Liu J, Wei WJ, Zhang R, Wang X, Bai FY. Application of multiple parallel perfused microbioreactors: Synthesis, characterization and cytotoxicity testing of the novel rare earth complexes with indole acid as a ligand. J Inorg Biochem 2013; 128:57-67. [DOI: 10.1016/j.jinorgbio.2013.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
|