1
|
Budak B, Tükel EY, Turanlı B, Kiraz Y. Integrated systems biology analysis of acute lymphoblastic leukemia: unveiling molecular signatures and drug repurposing opportunities. Ann Hematol 2024; 103:4121-4134. [PMID: 38836918 PMCID: PMC11512839 DOI: 10.1007/s00277-024-05821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by aberrant proliferation and accumulation of lymphoid precursor cells within the bone marrow. The tyrosine kinase inhibitor (TKI), imatinib mesylate, has played a significant role in the treatment of Philadelphia chromosome-positive ALL (Ph + ALL). However, the achievement of durable and sustained therapeutic success remains a challenge due to the development of TKI resistance during the clinical course.The primary objective of this investigation is to propose a novel and efficacious treatment approach through drug repositioning, targeting ALL and its Ph + subtype by identifying and addressing differentially expressed genes (DEGs). This study involves a comprehensive analysis of transcriptome datasets pertaining to ALL and Ph + ALL in order to identify DEGs associated with the progression of these diseases to identify possible repurposable drugs that target identified hub proteins.The outcomes of this research have unveiled 698 disease-related DEGs for ALL and 100 for Ph + ALL. Furthermore, a subset of drugs, specifically glipizide for Ph + ALL, and maytansine and isoprenaline for ALL, have been identified as potential candidates for therapeutic intervention. Subsequently, cytotoxicity assessments were performed to confirm the in vitro cytotoxic effects of these selected drugs on both ALL and Ph + ALL cell lines.In conclusion, this study offers a promising avenue for the management of ALL and Ph + ALL through drug repurposed drugs. Further investigations are necessary to elucidate the mechanisms underlying cell death, and clinical trials are recommended to validate the promising results obtained through drug repositioning strategies.
Collapse
Affiliation(s)
- Betül Budak
- Department of Bioengineering, Marmara University, Istanbul, Türkiye
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Türkiye
| | - Ezgi Yağmur Tükel
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balçova, Izmir, Türkiye
| | - Beste Turanlı
- Department of Bioengineering, Marmara University, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Türkiye
| | - Yağmur Kiraz
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balçova, Izmir, Türkiye.
| |
Collapse
|
2
|
Investigation of the function of the PI3-Kinase / AKT signaling pathway for leukemogenesis and therapy of acute childhood lymphoblastic leukemia (ALL). Cell Signal 2022; 93:110301. [DOI: 10.1016/j.cellsig.2022.110301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
|
3
|
Mian AA, Zafar U, Ahmed SMA, Ottmann OG, Lalani ENMA. Oncogene-independent resistance in Philadelphia chromosome - positive (Ph +) acute lymphoblastic leukemia (ALL) is mediated by activation of AKT/mTOR pathway. Neoplasia 2021; 23:1016-1027. [PMID: 34403880 PMCID: PMC8368770 DOI: 10.1016/j.neo.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, and ponatinib have significantly improved the life expectancy of Philadelphia chromosome-positive (Ph+) acute lymphocytic leukemia (ALL) patients; however, resistance to TKIs remains a major clinical challenge. Point mutations in the tyrosine kinase domain (TKD) of BCR-ABL1 have emerged as the predominant cause of acquired resistance. In approximately 30% of patients, the mechanism of resistance to TKIs remains elusive. This study aimed to investigate mechanisms of nonmutational resistance in Ph+ ALL. Here we report the development of a nonmutational resistance cell line SupB15-RT; conferring resistance to approved ABL kinase inhibitors (AKIs) and allosteric inhibitors GNF-2, ABL001, and crizotinib, except for dasatinib (IC90 50nM), a multitarget kinase inhibitor. We found that the AKT/mTOR pathway is activated in these cells and their proliferation inhibited by Torin-1 with an IC50 of 24.7 nM. These observations were confirmed using 3 different ALL patient-derived long term cultures (PDLTCs): (1) HP (BCR-ABL1 negative), (2) PH (BCR-ABL1 positive and responsive to TKIs) and (3) BV (BCR-ABL1 positive and nonmutational resistant to TKIs). Furthermore, Torin-1 and NVP-BEZ235 induced apoptosis in PH and BV cells but not in HP cells. Our experiments provide evidence of the involvement of AKT/mTOR pathway in the evolution of nonmutational resistance in Ph+ ALL which will assist in developing novel targeted therapy for Ph+ ALL patients with BCR-ABL1 independent nonmutational resistance.
Collapse
Affiliation(s)
- Afsar Ali Mian
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan.
| | - Usva Zafar
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| | | | | | - El-Nasir M A Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
4
|
Biological Aspects of mTOR in Leukemia. Int J Mol Sci 2018; 19:ijms19082396. [PMID: 30110936 PMCID: PMC6121663 DOI: 10.3390/ijms19082396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central processor of intra- and extracellular signals, regulating many fundamental cellular processes such as metabolism, growth, proliferation, and survival. Strong evidences have indicated that mTOR dysregulation is deeply implicated in leukemogenesis. This has led to growing interest in the development of modulators of its activity for leukemia treatment. This review intends to provide an outline of the principal biological and molecular functions of mTOR. We summarize the current understanding of how mTOR interacts with microRNAs, with components of cell metabolism, and with controllers of apoptotic machinery. Lastly, from a clinical/translational perspective, we recapitulate the therapeutic results in leukemia, obtained by using mTOR inhibitors as single agents and in combination with other compounds.
Collapse
|
5
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Ultimo S, Simioni C, Martelli AM, Zauli G, Evangelisti C, Celeghini C, McCubrey JA, Marisi G, Ulivi P, Capitani S, Neri LM. PI3K isoform inhibition associated with anti Bcr-Abl drugs shows in vitro increased anti-leukemic activity in Philadelphia chromosome-positive B-acute lymphoblastic leukemia cell lines. Oncotarget 2018; 8:23213-23227. [PMID: 28390196 PMCID: PMC5410298 DOI: 10.18632/oncotarget.15542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/12/2017] [Indexed: 12/30/2022] Open
Abstract
B-acute lymphoblastic leukemia (B-ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. Philadelphia chromosome-positive (Ph+) B-ALL is a subtype that expresses the Bcr-Abl fusion protein which represents a negative prognostic factor. Constitutive activation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) network is a common feature of B-ALL, influencing cell growth and survival. In the present study, we aimed to investigate the efficacy of PI3K isoform inhibition in B-ALL cell lines harboring the Bcr-Abl fusion protein.We studied the effects of anti Bcr-Abl drugs Imatinib, Nilotinib and GZD824 associated with PI3K isoform inhibitors. We used a panel of six compounds which specifically target PI3K isoforms including the pan-PI3K inhibitor ZSTK474, p110α BYL719 inhibitor and the dual p110γ/p110δ inhibitor IPI145. The effects of single drugs and of several drug combinations were analyzed to assess cytotoxicity by MTS assays, apoptosis and autophagy by flow cytometry and Western blot, as well as the phosphorylation status of the pathway.ZSTK474, BYL719 and IPI145 administered in combination with imatinib, nilotinib and GZD824 for 48 h, decreased cell viability, induced apoptosis and autophagy in a marked synergistic manner.These findings suggest that selected PI3K isoform inhibitors used in combination with anti Bcr-Abl drugs may be an attractive novel therapeutic intervention in Ph+ B-ALL.
Collapse
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy
| | | | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Zhang C, Zhang X, Yang SJ, Chen XH. Growth of tyrosine kinase inhibitor-resistant Philadelphia-positive acute lymphoblastic leukemia: Role of bone marrow stromal cells. Oncol Lett 2017; 13:2059-2070. [PMID: 28454362 PMCID: PMC5403224 DOI: 10.3892/ol.2017.5686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2016] [Indexed: 01/19/2023] Open
Abstract
Human bone marrow stromal cells (hBMSCs) may contribute to the growth of tyrosine kinase inhibitor (TKI)-resistant chronic myelogenous leukemia (CML). However, there are certain differences in biology between CML and Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Little is known about the role and mechanism of hBMSCs on the growth of TKI-resistant Ph+ ALL. The current study co-cultured hBMSCs with the TKI-resistant SUP-B15. Next, the proliferation of SUP-B15 was detected using a Cell Counting Kit-8. Additionally, quantitative polymerase chain reaction and flow cytometry were used to detect the expression of the associated genes and proteins. The present study explores the role and mechanism of hBMSCs on the growth of TKI-resistant Ph+ ALL. The current study showed that hBMSCs promoted the proliferation of TKI-resistant Ph+ ALL. This was shown by the increase in cells in the S+G2-M phase of the cell cycle. It was also found that the expression of cyclins A, C, D1 and E was increased. Apoptosis was inhibited through upregulation of anti-apoptotic genes [B-cell lymphoma-2 (BCL-2) and BCL-extra large] and downregulation of apoptotic genes (BCL-XS, BCL-2-associated X protein, and caspases 3, 7 and 9). Expression of the breakpoint cluster region (BCR)-Abelson murine leukemia viral oncogene homolog 1 (ABL) gene, Wnt5a, and Wnt signaling pathway-associated genes (glycogen synthase kinase-3β, β-catenin, E-cadherin and phosphoinositide 3-kinase) and transcription factors (c-myc, ephrin type-B2, fibroblast growth factor 20 and matrix metalloproteinase 7) was also increased. Furthermore, the expression of drug resistance genes (low-density lipoprotein receptor, multidrug resistance-associated protein and multi-drug resistance gene) was increased and the expression of anti-oncogenes (death-associated protein kinase and interferon regulatory factor-1) was decreased. It was concluded that hBMSCs promote the growth of TKI-resistant Ph+ ALL by these aforementioned mechanisms. Therefore, targeting hBMSCs may be a promising approach for preventing the growth of TKI-resistant Ph+ ALL.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shi-Jie Yang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xing-Hua Chen
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
8
|
Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A, Saki N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci 2015; 72:2337-47. [PMID: 25712020 PMCID: PMC11113278 DOI: 10.1007/s00018-015-1867-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Increased activity of PI3K/AKT/mTOR pathway has been observed in a huge number of malignancies. This pathway can function as a prosurvival factor in leukemia stem cells and early committed leukemic precursors and its inhibition is regarded as a therapeutic approach. Accordingly, the aim of this review is to evaluate the PI3K/Akt/mTOR inhibitors used in leukemia models. DISCUSSION Inhibition of the PI3K/AKT/mTOR pathway has been reported to have beneficial therapeutic effects in leukemias, both in vitro in leukemia cell lines and in vivo in animal models. Overall, the use of dual PI3K/mTOR inhibitor, dual Akt/RTK inhibitor, Akt inhibitor, selective inhibitor of PI3K, mTOR inhibitor and dual PI3K/PDK1 inhibitor in CML, AML, APL, CLL, B-ALL and T-ALL has a better therapeutic effect than conventional treatments. CONCLUSIONS Targeting the PI3K/Akt/mTOR pathway may have pro-apoptotic and antiproliferative effects on hematological malignancies. Furthermore, modulation of miRNA can be used as a novel therapeutic approach to regulate the PI3K/Akt/mTOR pathway. However, both aspects require further clinical studies.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Nazanin Heidari
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laura Mediani
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Combination therapy with nilotinib for drug-sensitive and drug-resistant BCR-ABL-positive leukemia and other malignancies. Arch Toxicol 2014; 88:2233-42. [DOI: 10.1007/s00204-014-1385-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022]
|
10
|
Reinke EN, Ekoue DN, Bera S, Mahmud N, Diamond AM. Translational regulation of GPx-1 and GPx-4 by the mTOR pathway. PLoS One 2014; 9:e93472. [PMID: 24691473 PMCID: PMC3972146 DOI: 10.1371/journal.pone.0093472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/05/2014] [Indexed: 02/02/2023] Open
Abstract
Glutathione peroxidase activity was previously determined to be elevated in lymphocytes obtained from patients treated with the Bcr-Abl kinase inhibitor imatinib mesylate. In order to expand upon this observation, the established chronic myelogenous leukemia cell lines KU812 and MEG-01 were treated with imatinib and the effect on several anti-oxidant proteins was determined. The levels of GPx-1 were significantly increased following treatment with imatinib. This increase was not due to altered steady-state mRNA levels, and appeared to be dependent on the expression of Bcr-Abl, as no increases were observed following imatinib treatment of cells that did not express the fusion protein. The nutrient-sensing signaling protein, mammalian target of rapamycin (mTOR), can be activated by Bcr-Abl and its activity regulates the translation of many different proteins. Treatment of those same cells used in the imatinib studies with rapamycin, an inhibitor of mTOR, resulted in elevated GPx-1 and GPx-4 protein levels independent of Bcr-Abl expression. These proteins all belong to the selenoprotein family of peptides that contain the UGA-encoded amino acid selenocysteine. Collectively, these data provide evidence of a novel means of regulating anti-oxidants of the selenoprotein family via the mTOR pathway.
Collapse
Affiliation(s)
- Emily N. Reinke
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dede N. Ekoue
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Soumen Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alan M. Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Stephens RS, Servinsky LE, Rentsendorj O, Kolb TM, Pfeifer A, Pearse DB. Protein kinase G increases antioxidant function in lung microvascular endothelial cells by inhibiting the c-Abl tyrosine kinase. Am J Physiol Cell Physiol 2014; 306:C559-69. [PMID: 24401847 DOI: 10.1152/ajpcell.00375.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidant injury contributes to acute lung injury (ALI). We previously reported that activation of protein kinase GI (PKGI) posttranscriptionally increased the key antioxidant enzymes catalase and glutathione peroxidase 1 (Gpx-1) and attenuated oxidant-induced cytotoxicity in mouse lung microvascular endothelial cells (MLMVEC). The present studies tested the hypothesis that the antioxidant effect of PKGI is mediated via inhibition of the c-Abl tyrosine kinase. We found that activation of PKGI with the cGMP analog 8pCPT-cGMP inhibited c-Abl activity and decreased c-Abl expression in wild-type but not PKGI(-/-) MLMVEC. Treatment of wild-type MLMVEC with atrial natriuretic peptide also inhibited c-Abl activation. Moreover, treatment of MLMVEC with the c-Abl inhibitor imatinib increased catalase and GPx-1 protein in a posttranscriptional fashion. In imatinib-treated MLMVEC, there was no additional effect of 8pCPT-cGMP on catalase or GPx-1. The imatinib-induced increase in antioxidant proteins was associated with an increase in extracellular H2O2 scavenging by MLMVEC, attenuation of oxidant-induced endothelial barrier dysfunction, and prevention of oxidant-induced endothelial cell death. Finally, in the isolated perfused lung, imatinib prevented oxidant-induced endothelial toxicity. We conclude that cGMP, through activation of PKGI, inhibits c-Abl, leading to increased key antioxidant enzymes and resistance to lung endothelial oxidant injury. Inhibition of c-Abl by active PKGI may be the downstream mechanism underlying PKGI-mediated antioxidant signaling. Tyrosine kinase inhibitors may represent a novel therapeutic approach in oxidant-induced ALI.
Collapse
Affiliation(s)
- R Scott Stephens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, and
| | | | | | | | | | | |
Collapse
|
12
|
Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS One 2013; 8:e80070. [PMID: 24244612 PMCID: PMC3828226 DOI: 10.1371/journal.pone.0080070] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 01/22/2023] Open
Abstract
Purpose Aberrant PI3K/AKT/mTOR signaling has been linked to oncogenesis and therapy resistance in various malignancies including leukemias. In Philadelphia chromosome (Ph) positive leukemias, activation of PI3K by dysregulated BCR-ABL tyrosine kinase (TK) contributes to the pathogenesis and development of resistance to ABL-TK inhibitors (TKI). The PI3K pathway thus is an attractive therapeutic target in BCR-ABL positive leukemias, but its role in BCR-ABL negative ALL is conjectural. Moreover, the functional contribution of individual components of the PI3K pathway in ALL has not been established. Experimental Design We compared the activity of the ATP-competitive pan-PI3K inhibitor NVP-BKM120, the allosteric mTORC1 inhibitor RAD001, the ATP-competitive dual PI3K/mTORC1/C2 inhibitors NVP-BEZ235 and NVP-BGT226 and the combined mTORC1 and mTORC2 inhibitors Torin 1, PP242 and KU-0063794 using long-term cultures of ALL cells (ALL-LTC) from patients with B-precursor ALL that expressed the BCR-ABL or TEL-ABL oncoproteins or were BCR-ABL negative. Results Dual PI3K/mTOR inhibitors profoundly inhibited growth and survival of ALL cells irrespective of their genetic subtype and their responsiveness to ABL-TKI. Combined suppression of PI3K, mTORC1 and mTORC2 displayed greater antileukemic activity than selective inhibitors of PI3K, mTORC1 or mTORC1 and mTORC2. Conclusions Inhibition of the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL. Greater antileukemic activity of dual PI3K/mTORC1/C2 inhibitors appears to be due to the redundant function of PI3K and mTOR. Clinical trials examining dual PI3K/mTORC1/C2 inhibitors in patients with B-precursor ALL are warranted, and should not be restricted to particular genetic subtypes.
Collapse
|
13
|
Irwin ME, Nelson LD, Santiago-O’Farrill JM, Knouse PD, Miller CP, Palla SL, Siwak DR, Mills GB, Estrov Z, Li S, Kornblau SM, Hughes DP, Chandra J. Small molecule ErbB inhibitors decrease proliferative signaling and promote apoptosis in philadelphia chromosome-positive acute lymphoblastic leukemia. PLoS One 2013; 8:e70608. [PMID: 23936456 PMCID: PMC3731286 DOI: 10.1371/journal.pone.0070608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/20/2013] [Indexed: 02/04/2023] Open
Abstract
The presence of the Philadelphia chromosome in patients with acute lymphoblastic leukemia (Ph+ALL) is a negative prognostic indicator. Tyrosine kinase inhibitors (TKI) that target BCR/ABL, such as imatinib, have improved treatment of Ph+ALL and are generally incorporated into induction regimens. This approach has improved clinical responses, but molecular remissions are seen in less than 50% of patients leaving few treatment options in the event of relapse. Thus, identification of additional targets for therapeutic intervention has potential to improve outcomes for Ph+ALL. The human epidermal growth factor receptor 2 (ErbB2) is expressed in ∼30% of B-ALLs, and numerous small molecule inhibitors are available to prevent its activation. We analyzed a cohort of 129 ALL patient samples using reverse phase protein array (RPPA) with ErbB2 and phospho-ErbB2 antibodies and found that activity of ErbB2 was elevated in 56% of Ph+ALL as compared to just 4.8% of Ph−ALL. In two human Ph+ALL cell lines, inhibition of ErbB kinase activity with canertinib resulted in a dose-dependent decrease in the phosphorylation of an ErbB kinase signaling target p70S6-kinase T389 (by 60% in Z119 and 39% in Z181 cells at 3 µM). Downstream, phosphorylation of S6-kinase was also diminished in both cell lines in a dose-dependent manner (by 91% in both cell lines at 3 µM). Canertinib treatment increased expression of the pro-apoptotic protein Bim by as much as 144% in Z119 cells and 49% in Z181 cells, and further produced caspase-3 activation and consequent apoptotic cell death. Both canertinib and the FDA-approved ErbB1/2-directed TKI lapatinib abrogated proliferation and increased sensitivity to BCR/ABL-directed TKIs at clinically relevant doses. Our results suggest that ErbB signaling is an additional molecular target in Ph+ALL and encourage the development of clinical strategies combining ErbB and BCR/ABL kinase inhibitors for this subset of ALL patients.
Collapse
Affiliation(s)
- Mary E. Irwin
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laura D. Nelson
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Janice M. Santiago-O’Farrill
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Phillip D. Knouse
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Claudia P. Miller
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Shana L. Palla
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Doris R. Siwak
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shulin Li
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Dennis P. Hughes
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Joya Chandra
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sabir N, Iqbal Z, Aleem A, Awan T, Naeem T, Asad S, Tahir AH, Absar M, Hasanato RMW, Basit S, Chishti MA, Faiyaz Ul-Haque M, Khalid AM, Sabar MF, Rasool M, Karim S, Khan M, Samreen B, Akram AM, Siddiqi MH, Shahzadi S, Shahbaz S, Ali AS, Mahmood A, Akram M, Saeed T, Saleem A, Mohsin D, Shah IH, Khalid M, Asif M, Iqbal M, Akhtar T. Prognostically significant fusion oncogenes in Pakistani patients with adult acute lymphoblastic leukemia and their association with disease biology and outcome. Asian Pac J Cancer Prev 2012; 13:3349-55. [PMID: 22994759 DOI: 10.7314/apjcp.2012.13.7.3349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Chromosomal abnormalities play an important role in genesis of acute lymphoblastic leukemia (ALL) and have prognostic implications. Five major risk stratifying fusion genes in ALL are BCR-ABL, MLL-AF4, ETV6-RUNX11, E2A-PBX1 and SIL-TAL1. This work aimed to detect common chromosomal translocations and associated fusion oncogenes in adult ALL patients and study their relationship with clinical features and treatment outcome. METHODS We studied fusion oncogenes in 104 adult ALL patients using RT-PCR and interphase-FISH at diagnosis and their association with clinical characteristics and treatment outcome. RESULTS Five most common fusion genes i.e. BCR-ABL (t 9; 22), TCF3-PBX1 (t 1; 19), ETV6-RUNX1 (t 12; 21), MLL-AF4 (t 4; 11) and SIL-TAL1 (Del 1p32) were found in 82/104 (79%) patients. TCF3-PBX1 fusion gene was associated with lymphadenopathy, SIL-TAL positive patients had frequent organomegaly and usually presented with a platelets count of less than 50 x10(9)/l. Survival of patients with fusion gene ETV6-RUNX1 was better when compared to patients harboring other genes. MLL-AF4 and BCR-ABL positivity characterized a subset of adult ALL patients with aggressive clinical behaviour and a poor outcome. CONCLUSIONS This is the first study from Pakistan which investigated the frequency of 5 fusion oncogenes in adult ALL patients, and their association with clinical features, treatment response and outcome. Frequencies of some of the oncogenes were different from those reported elsewhere and they appear to be associated with distinct clinical characteristics and treatment outcome. This information will help in the prognostic stratification and risk adapted management of adult ALL patients.
Collapse
Affiliation(s)
- Noreen Sabir
- Faculty of Biological Sciences, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|