1
|
Chan LSA, Gu LC, Leitch HA, Wells RA. Intracellular ROS profile in hematopoietic progenitors of MDS patients: association with blast count and iron overload. ACTA ACUST UNITED AC 2021; 26:88-95. [PMID: 34000978 DOI: 10.1080/16078454.2020.1870373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives: Reactive oxygen species (ROS) are under scrutiny as a participant in the pathophysiology of myelodysplastic syndrome (MDS) and the progression of MDS to acute myeloid leukemia (AML). Measurement of intracellular ROS (iROS) is particularly important since iROS is a direct indicator of cellular health and integrity.Methods: We developed a technique to measure standardize iROS (siROS) level in lymphocytes and bone marrow (BM) CD34+ hematopoietic progenitors using the fluorescent probe dichlorofluorescein (DCF). We then quantified the siROS in 38 consecutive BM specimens from 27 MDS patients over the course of 10 months. Disease outcome of these patients were also assessed.Results: High serum ferritin, high blast count and poor IPSS were associated with inferior survival and AML progression in this cohort. High blast MDS patients had lower siROS in their BM CD34+ cells than those of low blast patients, consistent with increased reliance on glycolysis and enhanced ROS defense in high blast MDS. We also observed narrower siROS distribution in the BM CD34+ cells of high blast patients, suggesting that loss of heterogeneity in ROS content accompanies the clonal evolution of MDS. Furthermore, we observed a strong correlation between CD34+ cells siROS and serum ferritin level in high blast patients. In one case, iron chelation therapy (ICT) resulted in parallel decreases in serum ferritin and CD34+ cells siROS.Conclusion: Our findings established the siROS profile in early hematopoietic cells of MDS patients and its relationship with blast count and iron overload.
Collapse
Affiliation(s)
- Lap Shu Alan Chan
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lilly ChunHong Gu
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Heather A Leitch
- Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, Canada
| | - Richard A Wells
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
2
|
Zeng J, Zhang H, Liu Y, Sun W, Yi D, Zhu L, Zhang Y, Pan X, Chen Y, Zhou Y, Bian G, Lai M, Zhou Q, Liu J, Chen B, Ma F. Overexpression of p21 Has Inhibitory Effect on Human Hematopoiesis by Blocking Generation of CD43+ Cells via Cell-Cycle Regulation. Int J Stem Cells 2020; 13:202-211. [PMID: 32587134 PMCID: PMC7378898 DOI: 10.15283/ijsc20033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives p21, an important member of the Cip/Kip family, is involved in inhibitory effects of RUNX1b overexpression during the early stage of human hematopoiesis. Methods and Results We established a human embryonic stem cell (hESC) line with inducible expression of p21 (p21/hESCs). Overexpression of p21 did not influence either mesoderm induction or emergence of CD34+ cells, but it significantly decreased the production of CD43+ cells and changed the expression profile of hematopoiesis-related factors, leading to the negative effects of p21 on hematopoiesis. Conclusions In RUNX1b/hESC co-cultures when RUNX1b was induced from D0, perturbation of the cell cycle caused by upregulation of p21 probably prevented the appearance of CD43+ cells, but not CD34+ cells. The mechanisms via which CD34+ cells are blocked by RUNX1b overexpression remain to be elucidated.
Collapse
Affiliation(s)
- Jiahui Zeng
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Huifang Zhang
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yuanling Liu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Wencui Sun
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Danying Yi
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Lijiao Zhu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yonggang Zhang
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yijing Chen
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Guohui Bian
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Jiaxin Liu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bo Chen
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, China
| |
Collapse
|
3
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 756] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
4
|
Contact-independent suppressive activity of regulatory T cells is associated with telomerase inhibition, telomere shortening and target lymphocyte apoptosis. Mol Immunol 2018; 101:229-244. [PMID: 30025223 DOI: 10.1016/j.molimm.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Tregs) play a fundamental role in the maintenance of immunological tolerance by suppressing effector target T, B and NK lymphocytes. Contact-dependent suppression mechanisms have been well-studied, though contact-independent Treg activity is not fully understood. In the present study, we showed that human native Tregs, as well as induced ex vivo Tregs, can cause in vitro telomere-dependent senescence in target T, B and NK cells in a contact-independent manner. The co-cultivation of target cells with Tregs separated through porous membranes induced alternative splicing of the telomerase catalytic subunit hTERT (human Telomerase Reverse Transcriptase), which suppressed telomerase activity. Induction of the hTERT splicing variant was associated with increased expression of the apoptotic endonuclease EndoG, a splicing regulator. Inhibited telomerase in target cells co-cultivated with Tregs for a long period of time led to a decrease in their telomere lengths, cell cycle arrest, conversion of the target cells to replicative senescence and apoptotic death. Induced Tregs showed the ability to up-regulate EndoG expression, TERT alternative splicing and telomerase inhibition in mouse T, B and NK cells after in vivo administration. The results of the present study describe a novel mechanism of contact-independent Treg cell suppression that induces telomerase inhibition through the EndoG-provoked alternative splicing of hTERT and converts cells to senescence and apoptosis phenotypes.
Collapse
|
5
|
Zhdanov DD, Gladilina YA, Pokrovsky VS, Grishin DV, Grachev VA, Orlova VS, Pokrovskaya MV, Alexandrova SS, Sokolov NN. Murine regulatory T cells induce death of effector T, B, and NK lymphocytes through a contact-independent mechanism involving telomerase suppression and telomere-associated senescence. Cell Immunol 2018; 331:146-160. [PMID: 29935763 DOI: 10.1016/j.cellimm.2018.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022]
Abstract
Regulatory T cells (Tregs) suppress the activity of effector T, B and NK lymphocytes and sustain immunological tolerance, but the proliferative activity of suppressed cells remains unexplored. In the present study, we report that mouse Tregs can induce replicative senescence and the death of responder mouse CD4+CD25- T cells, CD8+ T cells, B cells and NK cells in vitro and in vivo. Contact-independent in vitro co-cultivation with Tregs up-regulated endonuclease G (EndoG) expression and its translocation to the nucleus in responder cells. EndoG localization in the nucleus induced alternative mRNA splicing of the telomerase catalytic subunit Tert and telomerase inhibition. The lack of telomerase activity in proliferating cells led to telomere loss followed by the development of senescence and cell death. Injection of Tregs into mice resulted in EndoG-associated alternative splicing of Tert, telomerase inhibition, telomere loss, senescence development and increased cell death in vivo. The present study describes a novel contact-independent mechanism by which Tregs specify effector cell fate and provides new insights into cellular crosstalk related to immune suppression.
Collapse
Affiliation(s)
- Dmitry D Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia.
| | - Yulia A Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia; N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia
| | - Dmitry V Grishin
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia
| | - Vladimir A Grachev
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Valentina S Orlova
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | | | | | - Nikolay N Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia
| |
Collapse
|
6
|
Borges DDP, Dos Santos AWA, Paier CRK, Ribeiro HL, Costa MB, Farias IR, de Oliveira RTG, França IGDF, Cavalcante GM, Magalhães SMM, Pinheiro RF. Prognostic importance of Aurora Kinases and mitotic spindle genes transcript levels in Myelodysplastic syndrome. Leuk Res 2017; 64:61-70. [PMID: 29220700 DOI: 10.1016/j.leukres.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndrome (MDS) are a heterogeneous group of clonal disease characterized by insufficiency of bone marrow, increase of apoptosis and increased risk of acute leukemia progression. Proteins related to the mitotic spindle (AURKA, AURKB, TPX2), to the mitotic checkpoint (MAD2, CDC20) and the regulation of the cell cycle (p21) are directly related to chromosomal stability and tumor development. This study aimed to evaluate the mRNA expression levels of these genes in 101 MDS patients using a real-time PCR methodology. We identified that CDC20 expression are increased in patients with dysmegakaryopoiesis (p=0.024), thrombocytopenia (p=0.000) and high-risk patients (p=0.014, 0.018) MAD2 expression are decreased in patients with 2 or 3 cytopenias (p=0.000) and neutrophil below 800/mm3. TPX2 is also overexpressed in patients presenting dysmegakaryopoiesis (p=0.009). A decrease in AURKA and AURKB expression were observed in patients with altered karyotype (p=0.000), who presented dysplasia in 3 lineages (p=0.000; 0.017) and hemoglobin inferior to 8g/dL (p=0.024). The expression of AURKA, AURKB and MAD2 (p=0.000; 0.001; 0.025) were decreased in patients with hypoplastic MDS, associated with high frequency of chromosomal alterations and high mortality rate. This study reaffirms the importance of aurora kinases and mitotic spindle genes to the pathogenesis and clinical evolution of MDS.
Collapse
Affiliation(s)
- Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Antônio Wesley Araújo Dos Santos
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marília Braga Costa
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Izabelle Rocha Farias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ivo Gabriel da Frota França
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Gabrielle Melo Cavalcante
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Sílvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
7
|
Zambetti N, Ping Z, Chen S, Kenswil K, Mylona M, Sanders M, Hoogenboezem R, Bindels E, Adisty M, Van Strien P, van der Leije C, Westers T, Cremers E, Milanese C, Mastroberardino P, van Leeuwen J, van der Eerden B, Touw I, Kuijpers T, Kanaar R, van de Loosdrecht A, Vogl T, Raaijmakers M. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell 2016; 19:613-627. [DOI: 10.1016/j.stem.2016.08.021] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022]
|
8
|
Vicente R, Mausset‐Bonnefont A, Jorgensen C, Louis‐Plence P, Brondello J. Cellular senescence impact on immune cell fate and function. Aging Cell 2016; 15:400-6. [PMID: 26910559 PMCID: PMC4854915 DOI: 10.1111/acel.12455] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T-lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T-helper lymphocyte-dependent tissue homeostatic functions and T-regulatory cell-dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide-reaching role as a homeostatic orchestrator.
Collapse
Affiliation(s)
- Rita Vicente
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Anne‐Laure Mausset‐Bonnefont
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Christian Jorgensen
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Pascale Louis‐Plence
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Jean‐Marc Brondello
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| |
Collapse
|
9
|
Moudra A, Hubackova S, Machalova V, Vancurova M, Bartek J, Reinis M, Hodny Z, Jonasova A. Dynamic alterations of bone marrow cytokine landscape of myelodysplastic syndromes patients treated with 5-azacytidine. Oncoimmunology 2016; 5:e1183860. [PMID: 27853634 DOI: 10.1080/2162402x.2016.1183860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 01/05/2023] Open
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal stem cell disorders characterized by ineffective hematopoiesis frequently progressing into acute myeloid leukemia (AML), with emerging evidence implicating aberrant bone marrow (BM) microenvironment and inflammation-related changes. 5-azacytidine (5-AC) represents standard MDS treatment. Besides inhibiting DNA/RNA methylation, 5-AC has been shown to induce DNA damage and apoptosis in vitro. To provide insights into in vivo effects, we assessed the proinflammatory cytokines alterations during MDS progression, cytokine changes after 5-AC, and contribution of inflammatory comorbidities to the cytokine changes in MDS patients. We found that IL8, IP10/CXCL10, MCP1/CCL2 and IL27 were significantly elevated and IL12p70 decreased in BM of MDS low-risk, high-risk and AML patients compared to healthy donors. Repeated sampling of the high-risk MDS patients undergoing 5-AC therapy revealed that the levels of IL8, IL27 and MCP1 in BM plasma were progressively increasing in agreement with in vitro experiments using several cancer cell lines. Moreover, the presence of inflammatory diseases correlated with higher levels of IL8 and MCP1 in low-risk but not in high-risk MDS. Overall, all forms of MDS feature a deregulated proinflammatory cytokine landscape in the BM and such alterations are further augmented by therapy of MDS patients with 5-AC.
Collapse
Affiliation(s)
- Alena Moudra
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Sona Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Laboratory of Molecular Therapy, Institute of Biotechnology, v.v.i., Academy of Sciences of the Czech Republic, BIOCEV, Vestec, Czech Republic
| | - Veronika Machalova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Marketa Vancurova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institute, Solna, Sweden
| | - Milan Reinis
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Immunology Unit, Czech Center for Phenogenomics, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Anna Jonasova
- 1st Department of Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital , Prague, Czech Republic
| |
Collapse
|
10
|
Peng DY, Song H, Liu LB. Resveratrol-downregulated phosphorylated liver kinase B1 is involved in senescence of acute myeloid leukemia stem cells. ACTA ACUST UNITED AC 2015. [PMID: 26223914 DOI: 10.1007/s11596-015-1457-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Senescence is an important obstacle to cancer development. Engaging a senescent response may be an effective way to cure acute myeloid leukemia (AML). The aim of this study was to examine the effect of resveratrol-downregulated phosphorylated liver kinase B1 (pLKB1) on the senescence of acute myeloid leukemia (AML) stem cells. The protein expressions of pLKB1 and Sirtuin 1 (SIRT1), a regulator of pLKB1, were measured in CD34(+)CD38(-) KG1a cells treated with resveratrol (40 μmol/L) or not by Western blotting. Senescence-related factors were examined, including p21 mRNA tested by real-time PCR, cell morphology by senescence-associated β-galactosidase (SA-β-gal) staining, cell proliferation by MTT assay and cell cycle by flow cytometry. Besides, apoptosis was flow cytometrically determined. The results showed that pLKB1 was highly expressed in CD34(+)CD38(-) KG1a cells, and resveratrol, which could downregulate pLKB1 through activation of SIRT1, induced senescence and apoptosis of CD34(+)CD38(-) KG1a cells. It was concluded that resveratrol-downregulated pLKB1 is involved in the senescence of AML stem cells.
Collapse
Affiliation(s)
- Dan-Yue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Song
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling-Bo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
LIU H, URBANAVICIUS D, TAN P, SPENCER A, DEAR A. Mechanisms and potential molecular markers of early response to combination epigenetic therapy in patients with myeloid malignancies. Int J Oncol 2014; 45:1742-8. [DOI: 10.3892/ijo.2014.2555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/30/2014] [Indexed: 11/05/2022] Open
|