1
|
Taheri Z, Mozafari N, Moradian G, Lovison D, Dehshahri A, De Marco R. Integrin-Specific Stimuli-Responsive Nanomaterials for Cancer Theranostics. Pharmaceutics 2024; 16:1441. [PMID: 39598564 PMCID: PMC11597626 DOI: 10.3390/pharmaceutics16111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cancer is one of the leading causes of death worldwide. The tumor microenvironment makes the tumor difficult to treat, favoring drug resistance and the formation of metastases, resulting in death. Methods: Stimuli-responsive nanoparticles have shown great capacity to be used as a powerful strategy for cancer treatment, diagnostic, as well as theranostic. Nanocarriers are not only able to respond to internal stimuli such as oxidative stress, weakly acidic pH, high temperature, and the high expression of particular enzymes, but also to external stimuli such as light and paramagnetic characteristics to be exploited. Results: In this work, stimulus-responsive nanocarriers functionalized with arginine-glycine-aspartic acid (Arg-Gly-Asp) sequence as well as mimetic sequences with the capability to recognize integrin receptors are analyzed. Conclusions: This review highlights the progress that has been made in the development of new nanocarriers, capable of responding to endogenous and exogenous stimuli essential to combat cancer.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
| | - Ghazal Moradian
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Denise Lovison
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
2
|
Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022; 14:2346. [PMID: 36365164 PMCID: PMC9694300 DOI: 10.3390/pharmaceutics14112346] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023] Open
Abstract
With the development of nanomedicine technology, stimuli-responsive nanocarriers play an increasingly important role in antitumor therapy. Compared with the normal physiological environment, the tumor microenvironment (TME) possesses several unique properties, including acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive reactive oxygen species (ROS), which are closely related to the occurrence and development of tumors. However, on the other hand, these properties could also be harnessed for smart drug delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles (srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake, thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition, the challenges and prospects for the development of srNPs are discussed, which can possibly inspire researchers to develop srNPs for clinical applications in the future.
Collapse
Affiliation(s)
- Weixin Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Thakral D, Gupta R, Khan A. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches. Stem Cell Rev Rep 2022; 18:1756-1773. [DOI: 10.1007/s12015-022-10349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
|
4
|
Saravanakumar K, Hu X, Ali DM, Wang MH. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Curr Pharm Des 2020; 25:2609-2625. [PMID: 31603055 DOI: 10.2174/1381612825666190709221141] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
The conventional Drug Delivery System (DDS) has limitations such as leakage of the drug, toxicity to normal cells and loss of drug efficiency, while the stimuli-responsive DDS is non-toxic to cells, avoiding the leakage and degradation of the drug because of its targeted drug delivery to the pathological site. Thus nanomaterial chemistry enables - the development of smart stimuli-responsive DDS over the conventional DDS. Stimuliresponsive DDS ensures spatial or temporal, on-demand drug delivery to the targeted cancer cells. The DDS is engineered by using the organic (synthetic polymers, liposomes, peptides, aptamer, micelles, dendrimers) and inorganic (zinc oxide, gold, magnetic, quantum dots, metal oxides) materials. Principally, these nanocarriers release the drug at the targeted cells in response to external and internal stimuli such as temperature, light, ultrasound and magnetic field, pH value, redox potential (glutathione), and enzyme. The multi-stimuli responsive DDS is more promising than the single stimuli-responsive DDS in cancer therapy, and it extensively increases drug release and accumulation in the targeted cancer cells, resulting in better tumor cell ablation. In this regard, a handful of multi-stimuli responsive DDS is in clinical trials for further approval. A comprehensive review is crucial for addressing the existing knowledge about multi-stimuli responsive DDS, and hence, we summarized the emerging strategies in tailored ligand functionalized stimuli-responsive nanocarriers as the DDS for cancer therapies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Davoodbasha M Ali
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| |
Collapse
|
5
|
Raju GSR, Dariya B, Mungamuri SK, Chalikonda G, Kang SM, Khan IN, Sushma PS, Nagaraju GP, Pavitra E, Han YK. Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Semin Cancer Biol 2019; 69:178-189. [PMID: 31419527 DOI: 10.1016/j.semcancer.2019.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Cancer is an outrageous disease with uncontrolled differentiation, growth, and migration to the other parts of the body. It is the second-most common cause of death both in the U.S. and worldwide. Current conventional therapies, though much improved and with better prognosis, have several limitations. Chemotherapeutic agents, for instance, are cytotoxic to both tumor and healthy cells, and the non-specific distribution of drugs at tumor sites limits the dose administered. Nanotechnology, which evolved from the coalescence and union of varied scientific disciplines, is a novel science that has been the focus of much research. This technology is generating more effective cancer therapies to overcome biomedical and biophysical barriers against standard interventions in the body; its unique magnetic, electrical, and structural properties make it a promising tool. This article reviews endogenous- and exogenous-based stimulus-responsive drug delivery systems designed to overcome the limitations of conventional therapies. The article also summarizes the study of nanomaterials, including polymeric, gold, silver, magnetic, and quantum dot nanoparticles. Though an array of drug delivery systems has so far been proposed, there remain many challenges and concerns that should be addressed in order to fill the gaps in the field. Prominence is given to drug delivery systems that employ external- and internal-based stimuli and that are emerging as promising tools for cancer therapeutics in clinical settings.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sathish Kumar Mungamuri
- Ramanujan Fellow, Indian Council of Medical Research-National Institute of Nutrtion, Hyderabad, 500007, India
| | - Gayathri Chalikonda
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Ishaq N Khan
- Neurooncology & Oncomedicine Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Pinninti Santosh Sushma
- Department of Biotechnology, Dr. NTR University of Health Sciences, Vijayawada, Andhra Pradesh, 520 008, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
6
|
Radiolabeled, folate-conjugated liposomes as tumor imaging agents: Formulation and in vitro evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Zhang ZT, Huang-Fu MY, Xu WH, Han M. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur J Pharm Biopharm 2019; 137:122-130. [PMID: 30776412 DOI: 10.1016/j.ejpb.2019.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is the cellular environment that is also described as the "soil" for supporting tumor growth, proliferation, invasion and metastasis, as well as protecting tumor cells from immunological recognition. Notably, tumor cells can grow much faster than other normal organs and invade surrounding tissues more easily, which results in abnormal expression of enzymes in the tumor microenvironment, including matrix metalloproteinases, cathepsins, phospholipases, oxidoreductases, etc. In opposite, due to the high selectivity and catalytic activity, these enzymes can promote nanoparticles to recognize tumor tissues more accurately, and the more accumulation of drugs at primal tumor sites will enhance therapeutic efficacy with lower systemic toxicity. Therefore, one promising antitumor strategy is to design stimulus-responsive nanoscale delivery systems triggered by the enzymes with the support of various nanocarriers, such as liposomes, micelles and inorganic nanoparticles, etc. In this review, numerous facts were cited to summarize and discuss the typical types of enzyme-stimulus responsive nanoscale delivery systems. More importantly, we also focused on their recent advancements in antitumor therapy, and offered the direction for further studies.
Collapse
Affiliation(s)
- Zhen-Tao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yi Huang-Fu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou 310058 China.
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Secret E, Andrew JS. Enzyme-responsive Drug Delivery Systems. STIMULI-RESPONSIVE DRUG DELIVERY SYSTEMS 2018. [DOI: 10.1039/9781788013536-00209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
One major challenge in the pharmaceutical industry is how to deliver drugs locally and specifically to a target area. One way to accomplish this is to develop drug delivery vehicles that respond to biomarkers or other cues that are indicative of a disease state. Over the past several years, enzymes have become key targets for bio-recognition due to their role in both healthy and diseased tissues. This has led to the development of drug delivery vehicles that release their cargo via either carrier degradation, shape change, or bond cleavage due to enzymes over-expressed at the disease site. This chapter will focus on the use of both oxidoreductases and hydrolases as triggers for enzyme-responsive drug delivery systems.
Collapse
Affiliation(s)
- Emilie Secret
- Dept. of Materials Science and Engineering, University of Florida Gainesville FL USA
| | - Jennifer S. Andrew
- Dept. of Materials Science and Engineering, University of Florida Gainesville FL USA
| |
Collapse
|
9
|
Enhancing tumor response to targeted chemotherapy through up-regulation of folate receptor α expression induced by dexamethasone and valproic acid. J Control Release 2018; 269:36-44. [DOI: 10.1016/j.jconrel.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
|
10
|
Kolodych S, Michel C, Delacroix S, Koniev O, Ehkirch A, Eberova J, Cianférani S, Renoux B, Krezel W, Poinot P, Muller CD, Papot S, Wagner A. Development and evaluation of β-galactosidase-sensitive antibody-drug conjugates. Eur J Med Chem 2017; 142:376-382. [DOI: 10.1016/j.ejmech.2017.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
|
11
|
Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1267-1280. [DOI: 10.1016/j.msec.2016.11.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
12
|
Lohade AA, Jain RR, Iyer K, Roy SK, Shimpi HH, Pawar Y, Rajan MGR, Menon MD. A Novel Folate-Targeted Nanoliposomal System of Doxorubicin for Cancer Targeting. AAPS PharmSciTech 2016; 17:1298-1311. [PMID: 26689406 DOI: 10.1208/s12249-015-0462-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Targeted drug delivery systems for cancer improves anti-tumor efficacy and reduces systemic toxicity by restricting availability of cytotoxic drugs within tumors. Targeting moieties, such as natural ligands (folic acid, transferrin, and biotin) which are overexpressed on tumors, have been used to enhance liposome-encapsulated drug accumulation within tumors and resulted in better control. In this report, we explored the scope of targeting ligand folic acid, which is incorporated in liposome systems using folic acid-modified cholesterol (CPF), enabled highly selective tumor-targeted delivery of liposome-encapsulated doxorubicin and resulted in increased cytotoxicity within tumors. Folate-tagged poloxamer-coated liposomes (FDL) were found to have significantly higher cellular uptake than conventional poloxamer-coated liposomes (DL), as confirmed by fluorometric analysis in B16F10 melanoma cells. Biodistribution study of the radiolabeled liposomal system indicated the significantly higher tumor uptake of FDL as compared to DL. Anti-tumor activity of FDL against murine B16F10 melanoma tumor-bearing mice revealed that FDL inhibited tumor growth more efficiently than the DL. Taken together, the results demonstrated the significant potential of the folate-conjugated nanoliposomal system for drug delivery to tumors.
Collapse
|
13
|
Krushkal J, Zhao Y, Hose C, Monks A, Doroshow JH, Simon R. Concerted changes in transcriptional regulation of genes involved in DNA methylation, demethylation, and folate-mediated one-carbon metabolism pathways in the NCI-60 cancer cell line panel in response to cancer drug treatment. Clin Epigenetics 2016; 8:73. [PMID: 27347216 PMCID: PMC4919895 DOI: 10.1186/s13148-016-0240-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrant patterns of DNA methylation are abundant in cancer, and epigenetic pathways are increasingly being targeted in cancer drug treatment. Genetic components of the folate-mediated one-carbon metabolism pathway can affect DNA methylation and other vital cell functions, including DNA synthesis, amino acid biosynthesis, and cell growth. RESULTS We used a bioinformatics tool, the Transcriptional Pharmacology Workbench, to analyze temporal changes in gene expression among epigenetic regulators of DNA methylation and demethylation, and one-carbon metabolism genes in response to cancer drug treatment. We analyzed gene expression information from the NCI-60 cancer cell line panel after treatment with five antitumor agents, 5-azacytidine, doxorubicin, vorinostat, paclitaxel, and cisplatin. Each antitumor agent elicited concerted changes in gene expression of multiple pathway components across the cell lines. Expression changes of FOLR2, SMUG1, GART, GADD45A, MBD1, MTR, MTHFD1, and CTH were significantly correlated with chemosensitivity to some of the agents. Among many genes with concerted expression response to individual antitumor agents were genes encoding DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, epigenetic and DNA repair factors MGMT, GADD45A, and MBD1, and one-carbon metabolism pathway members MTHFD1, TYMS, DHFR, MTR, MAT2A, SLC19A1, ATIC, and GART. CONCLUSIONS These transcriptional changes are likely to influence vital cellular functions of DNA methylation and demethylation, cellular growth, DNA biosynthesis, and DNA repair, and some of them may contribute to cytotoxic and apoptotic action of the drugs. This concerted molecular response was observed in a time-dependent manner, which may provide future guidelines for temporal selection of genetic drug targets for combination drug therapy treatment regimens.
Collapse
Affiliation(s)
- Julia Krushkal
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| | - Yingdong Zhao
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| | - Curtis Hose
- />Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Anne Monks
- />Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - James H. Doroshow
- />Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892 USA
| | - Richard Simon
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| |
Collapse
|
14
|
Alsarraf J, Péraudeau E, Poinot P, Tranoy-Opalinski I, Clarhaut J, Renoux B, Papot S. A dendritic β-galactosidase-responsive folate–monomethylauristatin E conjugate. Chem Commun (Camb) 2015; 51:15792-5. [DOI: 10.1039/c5cc05294g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed a dendritic folate–drug conjugate allowing the β-galactosidase-catalysed release of two MMAE molecules inside folate receptor-positive cancer cells.
Collapse
Affiliation(s)
- Jérôme Alsarraf
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- groupe “Systèmes Moléculaires Programmés”
- 86073 Poitiers
| | - Elodie Péraudeau
- Université de Poitiers
- CNRS ERL 7368
- 86073 Poitiers
- France
- CHU de Poitiers
| | - Pauline Poinot
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- Equipe Eau
- Géochimie Organique
| | - Isabelle Tranoy-Opalinski
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- groupe “Systèmes Moléculaires Programmés”
- 86073 Poitiers
| | - Jonathan Clarhaut
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- groupe “Systèmes Moléculaires Programmés”
- 86073 Poitiers
| | - Brigitte Renoux
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- groupe “Systèmes Moléculaires Programmés”
- 86073 Poitiers
| | - Sébastien Papot
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- groupe “Systèmes Moléculaires Programmés”
- 86073 Poitiers
| |
Collapse
|
15
|
Bao B, Azmi AS, Aboukameel A, Ahmad A, Bolling-Fischer A, Sethi S, Ali S, Li Y, Kong D, Banerjee S, Back J, Sarkar FH. Pancreatic cancer stem-like cells display aggressive behavior mediated via activation of FoxQ1. J Biol Chem 2014; 289:14520-33. [PMID: 24719318 DOI: 10.1074/jbc.m113.532887] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44(+)/CD133(+)/EpCAM(+)) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44(+)/CD133(+)/EpCAM(+)) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44(-)/CD133(-)/EpCAM(-)) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC.
Collapse
Affiliation(s)
- Bin Bao
- From the Department of Pathology
| | | | | | | | | | | | | | - Yiwei Li
- From the Department of Pathology
| | | | | | - Jessica Back
- Flow Cytometry Core Facility, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|