1
|
de Groot AP, de Haan G. How CBX proteins regulate normal and leukemic blood cells. FEBS Lett 2024. [PMID: 38426219 DOI: 10.1002/1873-3468.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.
Collapse
Affiliation(s)
- Anne P de Groot
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), The Netherlands
- Sanquin Research, Landsteiner Laboratory, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), The Netherlands
- Sanquin Research, Landsteiner Laboratory, Sanquin Blood Supply, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
2
|
Jan S, Dar MI, Shankar G, Wani R, Sandey J, Balgotra S, Mudassir S, Dar MJ, Sawant SD, Akhter Y, Syed SH. Discovery of SDS-347 as a specific peptide competitive inhibitor of G9a with promising anti-cancer potential. Biochim Biophys Acta Gen Subj 2023:130399. [PMID: 37295690 DOI: 10.1016/j.bbagen.2023.130399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND G9a is a histone H3K9 methyltransferase enzyme found highly upregulated in many cancers. H3 binds to the rigid I-SET domain and the cofactor, S-adenosyl methionine, binds to the flexible post-SET domain of G9a. Inhibition of G9a is known to inhibit the growth of cancer cell-lines. METHODS Recombinant G9a and H3 were used to develop radioisotope-based inhibitor screening assay. The identified inhibitor was evaluated for isoform selectivity. The mode of enzymatic inhibition was studied by enzymatic assays and bioinformatics. Anti-proliferative activity of the inhibitor was studied in cancer cell lines by utilizing MTT assay. The mechanism of cell death was studied by western blotting and microscopy. RESULTS We developed a robust G9a inhibitor screening assay that led to the discovery of SDS-347 as a potent G9a inhibitor with IC50 of 3.06 μM. It was shown to reduce the levels of H3K9me2 in cell-based assay. The inhibitor was found to be peptide competitive and highly specific as it did not show any significant inhibition of other histone methyltransferases and DNA methyltransferase. Docking studies showed that SDS-347 could form direct bonding interaction with Asp1088 of the peptide-binding site. SDS-347 showed anti-proliferative effect against various cancer cell lines especially the K562 cells. Our data suggested that SDS-347 mediated antiproliferative action via ROS generation, induction of autophagy and apoptosis. CONCLUSION Overall, the findings of the current study include development of a new G9a inhibitor screening assay and identification of SDS-347, as a novel, peptide competitive and highly specific G9a inhibitor with promising anticancer potential.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd I Dar
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Rubiada Wani
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagjeet Sandey
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shilpi Balgotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Syed Mudassir
- High Content Imaging Facility, CSIR-Indian Institute of Integrative Medicine, India
| | - Mohd J Dar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D Sawant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Sajad H Syed
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Sbirkov Y, Schenk T, Kwok C, Stengel S, Brown R, Brown G, Chesler L, Zelent A, Fuchter MJ, Petrie K. Dual inhibition of EZH2 and G9A/GLP histone methyltransferases by HKMTI-1-005 promotes differentiation of acute myeloid leukemia cells. Front Cell Dev Biol 2023; 11:1076458. [PMID: 37035245 PMCID: PMC10076884 DOI: 10.3389/fcell.2023.1076458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
All-trans-retinoic acid (ATRA)-based differentiation therapy of acute promyelocytic leukemia (APL) represents one of the most clinically effective examples of precision medicine and the first example of targeted oncoprotein degradation. The success of ATRA in APL, however, remains to be translated to non-APL acute myeloid leukemia (AML). We previously showed that aberrant histone modifications, including histone H3 lysine 4 (H3K4) and lysine 27 (H3K27) methylation, were associated with this lack of response and that epigenetic therapy with small molecule inhibitors of the H3K4 demethylase LSD1/KDM1A could reprogram AML cells to respond to ATRA. Serving as the enzymatic component of Polycomb Repressive Complex 2, EZH2/KMT6A methyltransferase plays a critical role in normal hematopoiesis by affecting the balance between self-renewal and differentiation. The canonical function of EZH2 is methylation of H3K27, although important non-canonical roles have recently been described. EZH2 mutation or deregulated expression has been conclusively demonstrated in the pathogenesis of AML and response to treatment, thus making it an attractive therapeutic target. In this study, we therefore investigated whether inhibition of EZH2 might also improve the response of non-APL AML cells to ATRA-based therapy. We focused on GSK-343, a pyridone-containing S-adenosyl-L-methionine cofactor-competitive EZH2 inhibitor that is representative of its class, and HKMTI-1-005, a substrate-competitive dual inhibitor targeting EZH2 and the closely related G9A/GLP H3K9 methyltransferases. We found that treatment with HKMTI-1-005 phenocopied EZH2 knockdown and was more effective in inducing differentiation than GSK-343, despite the efficacy of GSK-343 in terms of abolishing H3K27 trimethylation. Furthermore, transcriptomic analysis revealed that in contrast to treatment with GSK-343, HKMTI-1-005 upregulated the expression of differentiation pathway genes with and without ATRA, while downregulating genes associated with a hematopoietic stem cell phenotype. These results pointed to a non-canonical role for EZH2, which was supported by the finding that EZH2 associates with the master regulator of myeloid differentiation, RARα, in an ATRA-dependent manner that was enhanced by HKMTI-1-005, possibly playing a role in co-regulator complex exchange during transcriptional activation. In summary, our results strongly suggest that addition of HKMTI-1-005 to ATRA is a new therapeutic approach against AML that warrants further investigation.
Collapse
Affiliation(s)
- Y. Sbirkov
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - T. Schenk
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, Jena, Germany
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - C. Kwok
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - S. Stengel
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Division of Gastroenterology, Hepatology and Infectious Diseases, Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - R. Brown
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - G. Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - L. Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - A. Zelent
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Magdalenka, Poland
| | - M. J. Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, United Kingdom
| | - K. Petrie
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| |
Collapse
|
4
|
Xu L, Gao X, Yang P, Sang W, Jiao J, Niu M, Liu M, Qin Y, Yan D, Song X, Sun C, Tian Y, Zhu F, Sun X, Zeng L, Li Z, Xu K. EHMT2 inhibitor BIX-01294 induces endoplasmic reticulum stress mediated apoptosis and autophagy in diffuse large B-cell lymphoma cells. J Cancer 2021; 12:1011-1022. [PMID: 33442400 PMCID: PMC7797660 DOI: 10.7150/jca.48310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/15/2020] [Indexed: 01/12/2023] Open
Abstract
Despite advancement in the treatment of diffuse large B-cell lymphoma (DLBCL), many patients tend to relapse or become refractory after initial therapy. Therefore, it is essential to identify novel therapeutic targets and drugs, understand the molecular pathogenesis mechanism of DLBCL, and find ways to prevent and treat relapsed or refractory DLBCL. BIX-01294 is a small molecule compound that specifically inhibits EHMT2 activity. In this study, we demonstrate that BIX-01294 triggered the inhibition of human DLBCL cell proliferation, lead to G1 phase arrest via increasing P21 level and reducing cyclin E level. BIX-01294 also induced apoptosis via endogenous and exogenous apoptotic pathways. Moreover, BIX-01294 triggered autophagy and activated ER stress in human DLBCL cells. Furthermore, we showed that both key components of ER stress, ATF3, and ATF4, are required for BIX-01294-induced apoptosis and autophagy. Hence, this study provides new evidence that EHMT2 may be a new therapeutic target, and BIX-01294 may be a potential therapeutic drug for treating DLBCL.
Collapse
Affiliation(s)
- Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xiang Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Pu Yang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Jun Jiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Mengdi Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yuanyuan Qin
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuguang Song
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cai Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Tian
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xiaoshen Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Jan S, Dar MI, Wani R, Sandey J, Mushtaq I, Lateef S, Syed SH. Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol 2020; 893:173827. [PMID: 33347828 DOI: 10.1016/j.ejphar.2020.173827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin. G9a levels are elevated in many cancers and its selective inhibition is known to reduce the cell growth and induce autophagy, apoptosis and senescence. We carried out a thorough search of online literature databases including Pubmed, Scopus, Journal websites, Clinical trials etc to gather the maximum possible information related to the G9a. The main messages from the cited papers are presented in a systematic manner. Chemical structures were drawn by Chemdraw software. In this review, we shed light on current understanding of structure and biological activity of G9a, the molecular events directing its targeting to genomic regions and its post-translational modification. Finally, we discuss the current strategies to target G9a in different cancers and evaluate the available compounds and agents used to inhibit G9a functions. The review provides the present status and future directions of research in targeting G9a and provides the basis to persuade the development of novel strategies to target G9a -related effects in cancer cells.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Ishaq Dar
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiada Wani
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagjeet Sandey
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Iqra Mushtaq
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sammar Lateef
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sajad Hussain Syed
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Chen G, Yu X, Zhang M, Zheng A, Wang Z, Zuo Y, Liang Q, Jiang D, Chen Y, Zhao L, Jiang L, Li D, Liao S. Inhibition of Euchromatic Histone Lysine Methyltransferase 2 (EHMT2) Suppresses the Proliferation and Invasion of Cervical Cancer Cells. Cytogenet Genome Res 2019; 158:205-212. [DOI: 10.1159/000502072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
EHMT2 (euchromatic histone lysine methyltransferase 2), a histone methyltransferase, has been shown to be involved in multiple human cancers. In this study, we determined mRNA and protein expression of EHMT2 in cervical cancer cells and normal cervical epithelial cells. EHMT2 was inhibited with short hairpin RNA (shEHMT2) in cervical cancer cells. Cell viability, colony proliferation, apoptosis, adhesion, and invasion assays and Western blot were performed to assess the function of EHMT2. As a result, EHMT2 was upregulated in human cervical cancer cells compared to normal cervical epithelial cells. Suppression of EHMT2 expression impairs cell proliferation and induces apoptosis. Furthermore, EHMT2 silencing inhibited cell adhesion and invasion. Finally, knockdown of EHMT2 resulted in a reduction of the expression of the tumorigenic proteins Bcl-2, Mcl-1, and Survivin and in an increase in the expression of the anti-malignant protein E-cadherin. In conclusion, our data suggest that EHMT2 plays a key role in cell proliferation and metastatic capacity in cervical cancer cells and could serve as a potential therapeutic target.
Collapse
|
8
|
Cao H, Li L, Yang D, Zeng L, Yewei X, Yu B, Liao G, Chen J. Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents. Eur J Med Chem 2019; 179:537-546. [PMID: 31276898 DOI: 10.1016/j.ejmech.2019.06.072] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
Epigenetics is the study of heritable changes in gene expression without changing the DNA sequence - a change in phenotype without a change in genotype. Epigenetic abnormalities can lead to serious diseases such as cancer in organisms. Histone methylation is one of the several manifestations of epigenetics, and requires specific enzymes to catalyze, for example, G9a, which is a histone methyl transferase. G9a catalyzes the methylation of histone 3 lysine 9 (H3K9) and histone 3 lysine 27 (H3K27). In addition, G9a also plays an essential role in DNA replication, damage and repair, and gene expression by regulating DNA methylation. Moreover, G9a has been found to be overexpressed in many tumor cells and is associated with the occurrence and development of tumors. Because of its unique characteristics, G9a has become a very promising target for anti-cancer agents. Over the last decade, dozens of G9a inhibitors have been discovered as potential anticancer therapeutic agents. In this review, we summarize and classify current G9a inhibitors, the challenges and future direction are also discussed in detail.
Collapse
Affiliation(s)
- Hao Cao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liming Zeng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xie Yewei
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Jarred EG, Bildsoe H, Western PS. Out of sight, out of mind? Germ cells and the potential impacts of epigenomic drugs. F1000Res 2018; 7. [PMID: 30613387 PMCID: PMC6305226 DOI: 10.12688/f1000research.15935.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications, including DNA methylation and histone modifications, determine the way DNA is packaged within the nucleus and regulate cell-specific gene expression. The heritability of these modifications provides a memory of cell identity and function. Common dysregulation of epigenetic modifications in cancer has driven substantial interest in the development of epigenetic modifying drugs. Although these drugs have the potential to be highly beneficial for patients, they act systemically and may have “off-target” effects in other cells such as the patients’ sperm or eggs. This review discusses the potential for epigenomic drugs to impact on the germline epigenome and subsequent offspring and aims to foster further examination into the possible effects of these drugs on gametes. Ultimately, the information gained by further research may improve the clinical guidelines for the use of such drugs in patients of reproductive age.
Collapse
Affiliation(s)
- Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Heidi Bildsoe
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| |
Collapse
|
10
|
Vitkeviciene A, Baksiene S, Borutinskaite V, Navakauskiene R. Epigallocatechin-3-gallate and BIX-01294 have different impact on epigenetics and senescence modulation in acute and chronic myeloid leukemia cells. Eur J Pharmacol 2018; 838:32-40. [DOI: 10.1016/j.ejphar.2018.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/15/2022]
|
11
|
Kim TW, Lee SY, Kim M, Cheon C, Ko SG. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 2018; 9:875. [PMID: 30158521 PMCID: PMC6115440 DOI: 10.1038/s41419-018-0930-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023]
Abstract
Kaempferol, a flavonoid, found in traditional medicine, fruits, and vegetables, and an HDAC inhibitor, is a powerful anti-cancer reagent against various cancer cell lines. However, detailed mechanisms involved in the treatment of gastric cancer (GC) using kaempferol are not fully understood. In our study, we investigated the biological activity and molecular mechanism involved in kaempferol-mediated treatment of GC. Kaempferol promoted autophagy and cell death, and increased LC3-I to LC3-II conversion and the downregulation of p62 in GC. Furthermore, our results showed that kaempferol induces autophagic cell death via the activation of the IRE1-JNK-CHOP signaling, indicating ER stress response. Indeed, the inhibition of ER stress suppressed kaempferol-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further showed that kaempferol mediates epigenetic change via the inhibition of G9a (HDAC/G9a axis) and also activates autophagic cell death. Taken together, our findings indicate that kaempferol activates the IRE1-JNK-CHOP signaling from cytosol to nucleus, and G9a inhibition activates autophagic cell death in GC cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Seon Young Lee
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Mia Kim
- Department of Cardiovascular and Neurologic disease (Stroke center), College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
12
|
Mayr C, Helm K, Jakab M, Ritter M, Shrestha R, Makaju R, Wagner A, Pichler M, Beyreis M, Staettner S, Jaeger T, Klieser E, Kiesslich T, Neureiter D. The histone methyltransferase G9a: a new therapeutic target in biliary tract cancer. Hum Pathol 2017; 72:117-126. [PMID: 29133140 DOI: 10.1016/j.humpath.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
The histone methyltransferase G9a (EHMT2) is a key enzyme for dimethylation of lysine 9 at histone 3 (H3K9me2), a suppressive epigenetic mark. G9a is over-expressed in tumor cells and contributes to cancer aggressiveness. Biliary tract cancer (BTC) is a rare cancer with dismal prognosis due to a lack of effective therapies. Currently, there are no data on the role of G9a in BTC carcinogenesis. We analyzed G9a expression in n=68 BTC patient specimens and correlated the data with clinicopathological and survival data. Moreover, we measured G9a expression in a panel of BTC cell lines and evaluated the cytotoxic effect of G9a inhibition in BTC cells using established small-molecule G9a inhibitors. G9a was considerably expressed in about half of BTC cases and was significantly associated with grading and tumor size. Additionally, we observed significant differences of G9a expression between growth type and tumor localization groups. G9a expression diametrically correlated with Vimentin (positive) and E-Cadherin (negative) expression. Importantly, survival analysis revealed G9a as a significant prognostic factor of poor survival in patients with BTC. In BTC cells, G9a and H3K9me2 were detectable in a cell line-dependent manner on mRNA and/or protein level, respectively. Treatment of BTC cells with established small-molecule G9a inhibitors resulted in reduction of cell viability as well as reduced G9a and H3K9me2 protein levels. The present study strongly suggests that G9a contributes to BTC carcinogenesis and may represent a potential prognostic factor as well as a therapeutic target.
Collapse
Affiliation(s)
- Christian Mayr
- Laboratory for Tumour Biology and Experimental Therapies (TREAT), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Katharina Helm
- Laboratory for Tumour Biology and Experimental Therapies (TREAT), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Laboratory of Functional and Molecular Membrane Physiology (FMMP), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Martin Jakab
- Laboratory of Functional and Molecular Membrane Physiology (FMMP), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Markus Ritter
- Laboratory for Tumour Biology and Experimental Therapies (TREAT), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Laboratory of Functional and Molecular Membrane Physiology (FMMP), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Department for Radon Therapy Research, Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Rajeev Shrestha
- Cancer Research Unit, Research and Development Department, Dhulikhel Hospital, Kathmandu University, 45200 Dhulikhel, Nepal.
| | - Ramesh Makaju
- Department of Pathology, Dhulikhel Hospital, Kathmandu University Hospital, 45200 Dhulikhel, Nepal.
| | - Andrej Wagner
- Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; Department of Experimental Therapeutics, The UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Marlena Beyreis
- Laboratory for Tumour Biology and Experimental Therapies (TREAT), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Laboratory of Functional and Molecular Membrane Physiology (FMMP), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Stefan Staettner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Tarkan Jaeger
- Department of Surgery, Paracelsus Medical University / Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Eckhard Klieser
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University / Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Laboratory for Tumour Biology and Experimental Therapies (TREAT), Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University / Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| |
Collapse
|
13
|
BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells. Sci Rep 2016; 6:38723. [PMID: 27934912 PMCID: PMC5146656 DOI: 10.1038/srep38723] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) contains rare glioma stem-like cells (GSCs) with capacities of self-renewal, multi-lineage differentiation, and resistance to conventional therapy. Drug-induced differentiation of GSCs is recognized as a promising approach of anti-glioma therapy. Accumulating evidence suggests that unique properties of stem cells depend on autophagy. Here we demonstrate that BIX01294, an inhibitor of a G9a histone methyltransferase (introducing H3K9me2 and H3K27me3 repressive marks) triggers autophagy in human glioma cells. Pharmacological or genetic inhibition of autophagy decreased LC3-II accumulation and GFP-LC3 punctation in BIX01294-treated cells. GSCs-enriched spheres originating from glioma cells and GBM patient-derived cultures express lower levels of autophagy related (ATG) genes than the parental glioma cell cultures. Typical differentiation inducers that upregulate neuronal and astrocytic markers in sphere cultures, increase the level of ATG mRNAs. G9a binds to the promoters of autophagy (LC3B, WIPI1) and differentiation-related (GFAP, TUBB3) genes in GSCs. Higher H3K4me3 (an activation mark) and lower H3K9me2 (the repressive mark) levels at the promoters of studied genes were detected in serum-differentiated cells than in sphere cultures. BIX01294 treatment upregulates the expression of autophagy and differentiation-related genes in GSCs. Pharmacological inhibition of autophagy decreases GFAP and TUBB3 expression in BIX01294-treated GSCs suggesting that BIX01294-induced differentiation of GSCs is autophagy-dependent.
Collapse
|
14
|
Carlson SM, Gozani O. Nonhistone Lysine Methylation in the Regulation of Cancer Pathways. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026435. [PMID: 27580749 DOI: 10.1101/cshperspect.a026435] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteins are regulated by an incredible array of posttranslational modifications (PTMs). Methylation of lysine residues on histone proteins is a PTM with well-established roles in regulating chromatin and epigenetic processes. The recent discovery that hundreds and likely thousands of nonhistone proteins are also methylated at lysine has opened a tremendous new area of research. Major cellular pathways involved in cancer, such as growth signaling and the DNA damage response, are regulated by lysine methylation. Although the field has developed quickly in recent years many fundamental questions remain to be addressed. We review the history and molecular functions of lysine methylation. We then discuss the enzymes that catalyze methylation of lysine residues, the enzymes that remove lysine methylation, and the cancer pathways known to be regulated by lysine methylation. The rest of the article focuses on two open questions that we suggest as a roadmap for future research. First is understanding the large number of candidate methyltransferase and demethylation enzymes whose enzymatic activity is not yet defined and which are potentially associated with cancer through genetic studies. Second is investigating the biological processes and cancer mechanisms potentially regulated by the multitude of lysine methylation sites that have been recently discovered.
Collapse
Affiliation(s)
- Scott M Carlson
- Department of Biology, Stanford University, Stanford, California 94305
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
15
|
Navakauskienė R, Mori M, Christodoulou MS, Zentelytė A, Botta B, Via LD, Ricci F, Damia G, Passarella D, Zilio C, Martinet N. Histone demethylating agents as potential S-adenosyl-l-methionine-competitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00170j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Histone H3 methylation on K9 and/or K27 depends on histone lysine methyltransferases (KMTs).
Collapse
Affiliation(s)
- R. Navakauskienė
- Department of Molecular Cell Biology
- Institute of Biochemistry
- Vilnius University
- LT-08662 Vilnius
- Lithuania
| | - M. Mori
- Center for Life Nano Science@Sapienza
- Istituto Italiano di Tecnologia
- 00161 Rome
- Italy
| | | | - A. Zentelytė
- Department of Molecular Cell Biology
- Institute of Biochemistry
- Vilnius University
- LT-08662 Vilnius
- Lithuania
| | - B. Botta
- Dipartimento di Chimica e Tecnologie del Farmaco
- Università degli Studi di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - L. Dalla Via
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - F. Ricci
- Mario Negri Institute for Pharmacological Research
- 20156 Milano
- Italy
| | - G. Damia
- Mario Negri Institute for Pharmacological Research
- 20156 Milano
- Italy
| | - D. Passarella
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - C. Zilio
- Institute of Chemistry
- UMR CNRS 7272
- Nice 06108
- France
| | - N. Martinet
- Institute of Chemistry
- UMR CNRS 7272
- Nice 06108
- France
| |
Collapse
|
16
|
Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol 2015; 6:487. [PMID: 26441991 PMCID: PMC4585248 DOI: 10.3389/fimmu.2015.00487] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of DNA and histones are epigenetic mechanisms, which affect the chromatin structure, ultimately leading to gene expression changes. A number of different epigenetic enzymes are actively involved in the addition or the removal of various covalent modifications, which include acetylation, methylation, phosphorylation, ubiquitination, and sumoylation. Deregulation of these processes is a hallmark of cancer. For instance, G9a, a histone methyltransferase responsible for histone H3 lysine 9 (H3K9) mono- and dimethylation, has been observed to be upregulated in different types of cancer and its overexpression has been associated with poor prognosis. Key roles played by these enzymes in various diseases have led to the hypothesis that these molecules represent valuable targets for future therapies. Several small molecule inhibitors have been developed to specifically block the epigenetic activity of these enzymes, representing promising therapeutic tools in the treatment of human malignancies, such as cancer. In this review, the role of one of these epigenetic enzymes, G9a, is discussed, focusing on its functional role in regulating gene expression as well as its implications in cancer initiation and progression. We also discuss important findings from recent studies using epigenetic inhibitors in cell systems in vitro as well as experimental tumor growth and metastasis assays in vivo.
Collapse
Affiliation(s)
- Francesco Casciello
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; School of Natural Sciences, Griffith University , Nathan, QLD , Australia
| | - Karolina Windloch
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Frank Gannon
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Kelvin Grove, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
17
|
Karpavičienė I, Valiulienė G, Raškevičius V, Lebedytė I, Brukštus A, Kairys V, Rūta Navakauskienė, Čikotienė I. Synthesis and antiproliferative activity of α-branched α,β-unsaturated ketones in human hematological and solid cancer cell lines. Eur J Med Chem 2015; 98:30-48. [DOI: 10.1016/j.ejmech.2015.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 01/15/2023]
|
18
|
Fan JD, Lei PJ, Zheng JY, Wang X, Li S, Liu H, He YL, Wang ZN, Wei G, Zhang X, Li LY, Wu M. The selective activation of p53 target genes regulated by SMYD2 in BIX-01294 induced autophagy-related cell death. PLoS One 2015; 10:e0116782. [PMID: 25562686 PMCID: PMC4285553 DOI: 10.1371/journal.pone.0116782] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/13/2014] [Indexed: 01/21/2023] Open
Abstract
Transcription regulation emerged to be one of the key mechanisms in regulating autophagy. Inhibitors of H3K9 methylation activates the expression of LC3B, as well as other autophagy-related genes, and promotes autophagy process. However, the detailed mechanisms of autophagy regulated by nuclear factors remain elusive. In this study, we performed a drug screen of SMYD2-/- cells and discovered that SMYD2 deficiency enhanced the cell death induced by BIX01294, an inhibitor of histone H3K9 methylation. BIX-01294 induces accumulation of LC3 II and autophagy-related cell death, but not caspase-dependent apoptosis. We profiled the global gene expression pattern after treatment with BIX-01294, in comparison with rapamycin. BIX-01294 selectively activates the downstream genes of p53 signaling, such as p21 and DOR, but not PUMA, a typical p53 target gene inducing apoptosis. BIX-01294 also induces other autophagy-related genes, such as ATG4A and ATG9A. SMYD2 is a methyltransferase for p53 and regulates its transcription activity. Its deficiency enhances the BIX-01294-induced autophagy-related cell death through transcriptionally promoting the expression of p53 target genes. Taken together, our data suggest BIX-01294 induces autophagy-related cell death and selectively activates p53 target genes, which is repressed by SMYD2 methyltransferase.
Collapse
Affiliation(s)
- Jia-Dong Fan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Pin-Ji Lei
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun-Yi Zheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shangze Li
- Department of Cell Biology and Development Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Huan Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi-Lei He
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao-Ning Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Gang Wei
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Zhang
- Department of Cell Biology and Development Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian-Yun Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|