1
|
Golovina E, Heizer T, Daumova L, Bajecny M, Fontana S, Griggio V, Jones R, Coscia M, Riganti C, Savvulidi Vargova K. MiR-155 deficiency and hypoxia results in metabolism switch in the leukemic B-cells. Cancer Cell Int 2024; 24:251. [PMID: 39020347 PMCID: PMC11256420 DOI: 10.1186/s12935-024-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Hypoxia represents one of the key factors that stimulates the growth of leukemic cells in their niche. Leukemic cells in hypoxic conditions are forced to reprogram their original transcriptome, miRNome, and metabolome. How the coupling of microRNAs (miRNAs)/mRNAs helps to maintain or progress the leukemic status is still not fully described. MiRNAs regulate practically all biological processes within cells and play a crucial role in the development/progression of leukemia. In the present study, we aimed to uncover the impact of hsa-miR-155-5p (miR-155, MIR155HG) on the metabolism, proliferation, and mRNA/miRNA network of human chronic lymphocytic leukemia cells (CLL) in hypoxic conditions. As a model of CLL, we used the human MEC-1 cell line where we deleted mature miR-155 with CRISPR/Cas9. We determined that miR-155 deficiency in leukemic MEC-1 cells results in lower proliferation even in hypoxic conditions in comparison to MEC-1 control cells. Additionally, in MEC-1 miR-155 deficient cells we observed decreased number of populations of cells in S phase. The miR-155 deficiency under hypoxic conditions was accompanied by an increased apoptosis. We detected a stimulatory effect of miR-155 deficiency and hypoxia at the level of gene expression, seen in significant overexpression of EGLN1, GLUT1, GLUT3 in MEC-1 miR-155 deficient cells. MiR-155 deficiency and hypoxia resulted in increase of glucose and lactate uptake. Pyruvate, ETC and ATP were reduced. To conclude, miR-155 deficiency and hypoxia affects glucose and lactate metabolism by stimulating the expression of glucose transporters as GLUT1, GLUT3, and EGLN1 [Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2)] genes in the MEC-1 cells.
Collapse
Affiliation(s)
- Elena Golovina
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Heizer
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Daumova
- Institute Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Martin Bajecny
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simona Fontana
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Valentina Griggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Rebecca Jones
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Marta Coscia
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Chiara Riganti
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Alhattab DM, Isaioglou I, Alshehri S, Khan ZN, Susapto HH, Li Y, Marghani Y, Alghuneim AA, Díaz-Rúa R, Abdelrahman S, Al-Bihani S, Ahmed F, Felimban RI, Alkhatabi H, Alserihi R, Abedalthagafi M, AlFadel A, Awidi A, Chaudhary AG, Merzaban J, Hauser CAE. Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res 2023; 27:111. [PMID: 37932837 PMCID: PMC10626721 DOI: 10.1186/s40824-023-00457-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.
Collapse
Affiliation(s)
- Dana M Alhattab
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yanyan Li
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yara Marghani
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arwa A Alghuneim
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rubén Díaz-Rúa
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shuroug Al-Bihani
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Farid Ahmed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, USA
| | - AlShaibani AlFadel
- Division of Hematology, Stem Cell Transplantation & Cellular Therapy, Oncology Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Medical School, The University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Adeel Gulzar Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
3
|
Hanafy RM, Demian SR, Abou-Shamaa LA, Ghallab O, Osman EM. In-vitro Modulation of mTOR-HIF-1α Axis by TLR7/8 Agonist (Resiquimod) in B-Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2023; 39:537-545. [PMID: 37786827 PMCID: PMC10542076 DOI: 10.1007/s12288-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/20/2023] [Indexed: 10/04/2023] Open
Abstract
Targeting toll-like receptors (TLRs), via TLR agonists, has been implicated in the regulation of immunometabolism. B-chronic lymphocytic leukemia (B-CLL) represents a suitable model for B-cell derived malignancies with shifted metabolic adaptations. Several signaling pathways have been found to be critical in metabolic reprogramming of CLL, including mechanistic target of rapamycin- hypoxia inducible factor-1α (mTOR- HIF-1α) pathway, the main metabolic regulator of glycolysis. Here, we investigated the effect of TLR7/8 agonist (Resiquimod) on the expression of mTOR and HIF-1α in patients with CLL. B cells were purified using Rosettesep Human B cell Enrichment Cocktail (Stem cell Technologies, Vancouver, BC, Canada#15,024) from peripheral venous blood of CLL patients (n = 20) and healthy individuals (n = 15). Isolated B cells were then cultured in both presence and absence of Resiquimod. Gene expression of mTOR and HIF-1α were assessed using qRT-PCR. Resiquimod significantly decreased mTOR and HIF-1α gene expression in both CLL (p < 0.001and p < 0.001, respectively) and Normal B cells (p = 0.004 and p = 0.001, respectively). Resiquimod may reprogram immunometabolism of malignant B-CLL cells via down-regulation of key glycolytic metabolic actors, mTOR and HIF-1α genes. Accordingly, Resiquimod may be an adjuvant as a therapeutic tool for CLL, which needs to be studied further. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01649-y.
Collapse
Affiliation(s)
- Rana M. Hanafy
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soheir R. Demian
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna A. Abou-Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - O. Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Ostini A, Mourtada-Maarabouni M. Investigation into the Role of Long-Non-Coding RNA MIAT in Leukemia. Noncoding RNA 2023; 9:47. [PMID: 37624039 PMCID: PMC10459085 DOI: 10.3390/ncrna9040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a nuclear long non-coding RNA (LncRNA) with four different splicing variants. MIAT dysregulation is associated with carcinogenesis, mainly acting as an oncogene regulating cellular growth, invasion, and metastasis. The aim of the current study is to investigate the role of MIAT in the regulation of T and chronic myeloid leukemic cell survival. To this end, MIAT was silenced using MIAT-specific siRNAs in leukemic cell lines, and functional assays were performed thereafter. This investigation also aims to investigate the effects of MIAT silencing on the expression of core genes involved in cancer. Functional studies and gene expression determination confirm that MIAT knockdown not only affects short- and long-term survival and the apoptosis of leukemic cells but also plays a pivotal role in the alteration of key genes involved in cancer, including c-MYC and HIF-1A. Our observations suggest that MIAT could act as an oncogene and it has the potential to be used not only as a reliable biomarker for leukemia, but also be employed for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
| | - Mirna Mourtada-Maarabouni
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
5
|
Network Pharmacology and Molecular Docking Approach to Reveal the Immunotherapeutic Mechanism of Cuscutae Semen in Treating Thin Endometrium. J Immunol Res 2022; 2022:4333128. [PMID: 36249421 PMCID: PMC9553449 DOI: 10.1155/2022/4333128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Thin endometrium is considered as a leading cause of infertility, recurrent pregnancy loss, and repeated implantation failure. The seed of Cuscutae Semen (CS) has been used to prevent aging and improve sexual function in Traditional Chinese Medicine. However, the pharmacological mechanism of CS in preventing and treating thin endometrium remains to be elucidated. Methods. Three public databases, TCMSP, GeneCards, and OMIM, were searched to collect the main active compounds and putative molecules of CS, as well as the targets of thin endometrium, respectively. The CS and thin endometrium common targets were subject to protein-protein interaction (PPI) analysis followed by functional enrichment analysis. The best binding mode of CS compounds and common target proteins was evaluated by molecular docking and analysis in the AutoDockTools. Results. In total, 11 main active compounds, 102 drug target proteins, and 70 CS and thin endometrium common targets were identified. There were 68 nodes with 722 edges in the PPI network; HIF1A, MYC, ESR1, and EGFR were the top 4 targets. After functional enrichment analysis, it was revealed that the therapeutic effects of active compounds of CS on thin endometrium were achieved through cellular response to chemical stress, transcription regulator, DNA-binding transcription factor binding, chemical carcinogenesis-receptor activation, lipid, and atherosclerosis. The molecular docking analysis revealed that the 3 active compounds of CS, quercetin, matrine, and isorhamnetin, have good binding ability with their targets, HIF1A, MYC, ESR1, and EGFR. Conclusion. Our study uncovers the main active compounds in CS and their corresponding targets related to thin endometrium which explains the pharmacological mechanism underlying therapeutic effects of CS on thin endometrium.
Collapse
|
6
|
Magliulo D, Bernardi R. Hypoxic stress and hypoxia-inducible factors in leukemias. Front Oncol 2022; 12:973978. [PMID: 36059690 PMCID: PMC9435438 DOI: 10.3389/fonc.2022.973978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
To cope with hypoxic stress, ancient organisms have developed evolutionally conserved programs centered on hypoxia-inducible transcriptional factors (HIFs). HIFs and their regulatory proteins have evolved as rheostats to adapt cellular metabolism to atmospheric oxygen fluctuations, but the amplitude of their transcriptional programs has tremendously increased along evolution to include a wide spectrum of physiological and pathological processes. The bone marrow represents a notable example of an organ that is physiologically exposed to low oxygen levels and where basal activation of hypoxia signaling appears to be intrinsically wired within normal and neoplastic hematopoietic cells. HIF-mediated responses are mainly piloted by the oxygen-labile α subunits HIF1α and HIF2α, and current literature suggests that these genes have a functional specification that remains to be fully defined. Since their identification in the mid 90s, HIF factors have been extensively studied in solid tumors, while their implication in leukemia has lagged behind. In the last decades however, many laboratories have addressed the function of hypoxia signaling in leukemia and obtained somewhat contradictory results. Suppression of HIFs expression in different types of leukemia has unveiled common leukemia-promoting functions such as stimulation of bone marrow neoangiogenesis, maintenance of leukemia stem cells and chemoresistance. However, genetic studies are revealing that a definition of HIF factors as bona fide tumor promoters is overly simplistic, and, depending on the leukemia subtype, the specific oncogenic event, or the stage of leukemia development, activation of hypoxia-inducible genes may lead to opposite consequences. With this article we will provide an updated summary of the studies describing the regulation and function of HIF1α and HIF2α in blood malignancies, spanning from acute to chronic, lymphoid to myeloid leukemias. In discussing these data, we will attempt to provide plausible explanations to contradictory findings and point at what we believe are areas of weakness in which further investigations are urgently needed. Gaining additional knowledge into the role of hypoxia signaling in leukemia appears especially timely nowadays, as new inhibitors of HIF factors are entering the clinical arena for specific types of solid tumors but their utility for patients with leukemia is yet to be determined.
Collapse
Affiliation(s)
| | - Rosa Bernardi
- Laboratory of Preclinical Models of Cancer, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Combined Effects of 2-Methoxyestradiol (Hypoxia-Inducible Factor 1α Inhibitor) and Dasatinib (A Second-Generation Tyrosine Kinase Inhibitor) on Chronic Myelocytic Leukemia Cells. J Immunol Res 2022; 2022:6324326. [PMID: 35528614 PMCID: PMC9071866 DOI: 10.1155/2022/6324326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic myelocytic leukemia (CML) is a frequently encountered type of leukemia in China. Hypoxia-inducible factor 1 (HIF-1) serves as one of the most important factors of oxygen balance transcription. The activation of this gene mostly marks a poor outlook for cancer patients. To clarify the therapeutic effect of inhibiting this gene on CML, the present study is aimed at exploring the treatment effects of 2-methoxyestradiol (2-ME2), dasatinib alone, and combined both on K-562 cells and the possible mechanism of 2-ME2 in treating the disorder. The levels of HIF-1α, vascular endothelial growth factor (VEGF), and glutamate synthase 1 (GLU1) genes in K-562 cells were affected dose-dependently after 2-ME2 administration. 2-ME2 induced cell apoptosis by downregulating antiapoptotic protein expressions of Bcl-xl and Bcl-2. The therapeutic effect of single 2-ME2 was superior to single dasatinib, and the effect of combined therapy of both drugs produced better effectiveness than either of the single drug. Once the concentration of 2-ME2 exceeded 0.5 μM, downregulated C-myc gene expression could exert roles in anti-CML cell proliferation and inducing apoptosis. Dasatinib might participate in the inhibition of the C-myc pathway during this process whereas its effect remained not clear. Taken together, abnormal high expression of HIF-1α exerted an essential role in CML occurrence and development. Inhibition of this gene could markedly increase cell apoptosis in a dose-dependent fashion. Moreover, 2-ME2 could induce cell apoptosis by downregulating the C-myc gene and exert an apoptotic effect by downregulating Bcl-xl and Bcl-2 which act as antiapoptotic proteins.
Collapse
|
8
|
Wang S, Li J, Wang Y. M2PP: a novel computational model for predicting drug-targeted pathogenic proteins. BMC Bioinformatics 2022; 23:7. [PMID: 34983358 PMCID: PMC8728953 DOI: 10.1186/s12859-021-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detecting pathogenic proteins is the origin way to understand the mechanism and resist the invasion of diseases, making pathogenic protein prediction develop into an urgent problem to be solved. Prediction for genome-wide proteins may be not necessarily conducive to rapidly cure diseases as developing new drugs specifically for the predicted pathogenic protein always need major expenditures on time and cost. In order to facilitate disease treatment, computational method to predict pathogenic proteins which are targeted by existing drugs should be exploited. RESULTS In this study, we proposed a novel computational model to predict drug-targeted pathogenic proteins, named as M2PP. Three types of features were presented on our constructed heterogeneous network (including target proteins, diseases and drugs), which were based on the neighborhood similarity information, drug-inferred information and path information. Then, a random forest regression model was trained to score unconfirmed target-disease pairs. Five-fold cross-validation experiment was implemented to evaluate model's prediction performance, where M2PP achieved advantageous results compared with other state-of-the-art methods. In addition, M2PP accurately predicted high ranked pathogenic proteins for common diseases with public biomedical literature as supporting evidence, indicating its excellent ability. CONCLUSIONS M2PP is an effective and accurate model to predict drug-targeted pathogenic proteins, which could provide convenience for the future biological researches.
Collapse
Affiliation(s)
- Shiming Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
9
|
The Tumor Microenvironment-Dependent Transcription Factors AHR and HIF-1α Are Dispensable for Leukemogenesis in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13184518. [PMID: 34572746 PMCID: PMC8466120 DOI: 10.3390/cancers13184518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, mostly affecting the elderly. The survival of leukemic cells depends on multiple soluble factors and on the stimulation of the BCR signaling pathway. Microenvironment-dependent transcription factors also contribute to CLL biology. Here, we generated new transgenic murine conditional knock-out models of CLL to study the role of the two transcription factors HIF-1α and AHR. Unexpectedly, we observed that both factors are dispensable for leukemia development in these models. Abstract Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in the elderly and is characterized by the accumulation of mature B lymphocytes in peripheral blood and primary lymphoid organs. In order to proliferate, leukemic cells are highly dependent on complex interactions with their microenvironment in proliferative niches. Not only soluble factors and BCR stimulation are important for their survival and proliferation, but also the activation of transcription factors through different signaling pathways. The aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF)-1α are two transcription factors crucial for cancer development, whose activities are dependent on tumor microenvironment conditions, such as the presence of metabolites from the tryptophan pathway and hypoxia, respectively. In this study, we addressed the potential role of AHR and HIF-1α in chronic lymphocytic leukemia (CLL) development in vivo. To this end, we crossed the CLL mouse model Eµ-TCL1 with the corresponding transcription factor-conditional knock-out mice to delete one or both transcription factors in CD19+ B cells only. Despite AHR and HIF-1α being activated in CLL cells, deletion of either or both of them had no impact on CLL progression or survival in vivo, suggesting that these transcription factors are not crucial for leukemogenesis in CLL.
Collapse
|
10
|
Breakthrough Science: Hypoxia-Inducible Factors, Oxygen Sensing, and Disorders of Hematopoiesis. Blood 2021; 139:2441-2449. [PMID: 34411243 DOI: 10.1182/blood.2021011043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Hypoxia-inducible factors (HIF) were discovered as activators of erythropoietin gene transcription in response to reduced O2 availability. O2-dependent hydroxylation of HIFs on proline and asparagine residues regulates protein stability and transcription activity, respectively. Mutations in genes encoding components of the oxygen sensing pathway cause familial erythrocytosis. Several small molecule inhibitors of HIF prolyl hydroxylases are currently in clinical trials as erythropoiesis stimulating agents. HIFs are overexpressed in bone marrow neoplasms, and the development of HIF inhibitors may improve outcome in these disorders.
Collapse
|
11
|
Katsaraki K, Adamopoulos PG, Papageorgiou SG, Pappa V, Scorilas A, Kontos CK. A 3' tRNA-derived fragment produced by tRNA LeuAAG and tRNA LeuTAG is associated with poor prognosis in B-cell chronic lymphocytic leukemia, independently of classical prognostic factors. Eur J Haematol 2021; 106:821-830. [PMID: 33660275 DOI: 10.1111/ejh.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE 3' tRNA-derived fragments (3' tRFs) are important epigenetic regulators in normal and pathological conditions. In this study, we aimed to explore the potential value of a 3' tRF as a prognostic and/or screening biomarker for B-cell chronic lymphocytic leukemia (B-CLL). METHODS Publicly available next-generation sequencing data from 20 B-CLL cases were analyzed, followed by prediction of targets of the most abundantly and ubiquitously expressed 3' tRFs, leading to selection of tRF-LeuAAG/TAG . PBMCs were isolated from blood samples of 91 B-CLL patients and 43 non-leukemic donors, followed by total RNA extraction, in-vitro polyadenylation, and first-strand cDNA synthesis. Next, a real-time quantitative PCR (qPCR) assay was developed for the accurate quantification of tRF-LeuAAG/TAG and applied in all samples, prior to biostatistical analysis. RESULTS High tRF-LeuAAG/TAG levels are associated with inferior overall survival (OS) of B-CLL patients. The unfavorable significance of tRF-LeuAAG/TAG was independent of established prognostic factors in B-CLL. Stratified Kaplan-Meier OS analysis uncovered the unfavorable prognostic role of high tRF-LeuAAG/TAG levels for patients in Binet A or Rai I stage, negative CD38 expression, mutated, or unmutated IGHV genomic locus. CONCLUSION Our approach revealed the independent prognostic value of a particular 3' tRF, derived from tRNALeuAAG and tRNALeuTAG (tRF-LeuAAG/TAG ) in B-CLL.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital Attikon, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital Attikon, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| |
Collapse
|
12
|
Yu S, Li Y, Ren H, Zhou H, Ning Q, Chen X, Hu T, Yang L. PDK4 promotes tumorigenesis and cisplatin resistance in lung adenocarcinoma via transcriptional regulation of EPAS1. Cancer Chemother Pharmacol 2020; 87:207-215. [PMID: 33221963 DOI: 10.1007/s00280-020-04188-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
The use of cisplatin for the treatment of non-small cell lung cancer has long been constrained by the rapid acquisition of tumor cell chemoresistance. In the present study, we sought to better elucidate the molecular mechanisms underlying this resistance phenotype. To that end, we assessed gene expression patterns in cisplatin-resistant lung adenocarcinoma cells, revealing pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4) to be the most up-regulated kinase in resistant cells. We further found PDK4 upregulation to be directly linked with the acquisition of chemoresistance, driving enhanced tumor cell growth in vitro and in vivo. In clinical samples, we also found that PDK4 upregulation was detectable in patients with lung adenocarcinoma and that it was correlated with a poorer prognosis for these patients. From a mechanistic perspective, we further determined that PDK4 was able to promote lung adenocarcinoma cell growth and cisplatin resistance at least in part via regulating endothelial PAS domain-containing protein 1 (EPAS1) expression, thus highlighting PDK4 as a potentially viable therapeutic target in efforts to treat lung adenocarcinoma patients that have become resistant to cisplatin.
Collapse
Affiliation(s)
- Shuo Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Hong Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Qian Ning
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Tinghua Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
13
|
Pantazis TL, Giotakis AI, Karamagkiolas S, Giotakis I, Konstantoulakis M, Liakea A, Misiakos EP. Low expression of miR-20b-5p indicates favorable prognosis in laryngeal squamous cell carcinoma, especially in patients with non-infiltrated regional lymph nodes. Am J Otolaryngol 2020; 41:102563. [PMID: 32521298 DOI: 10.1016/j.amjoto.2020.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Tumor recurrence and distant metastasis are very common in laryngeal squamous cell carcinoma (LSCC). In this study, we examined the potential prognostic value of microRNA-20b-5p (miR-20b-5p), a component of the tumor-related miR-106a/363 cluster. MATERIALS AND METHODS Total RNA was purified from 105 tissue specimens resected from patients having undergone surgical treatment for primary LSCC. After in vitro polyadenylation and reverse transcription, a sensitive real-time quantitative polymerase chain reaction (qPCR) methodology was applied for the relative quantification of miR-20b-5p levels. Then, we proceeded with biostatistical analysis, seeking to assess the prognostic value of miR-20b-5p expression in LSCC. RESULTS miR-20b-5p positivity constitutes a predictor of inferior DFS and OS in LSCC (P < 0.001 and P = 0.002, respectively). The significant prognostic value of miR-20b-5p expression status seems to be independent of tumor size, histological grade, and TNM stage, as revealed by the multivariate bootstrap Cox regression analysis. Kaplan-Meier survival analysis showed also that miR-20b-5p expression status can stratify LSCC patients with non-infiltrated regional lymph nodes (N0) into two subgroups with distinct prognosis (P = 0.004 and P = 0.004, respectively). CONCLUSIONS The miR-20b-5p expression status is a promising molecular tissue biomarker in LSCC, with an independent prognostic value, and thus merits further validation in larger cohorts of patients.
Collapse
Affiliation(s)
- Theodwros-Leonidas Pantazis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Aris I Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Karamagkiolas
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manousos Konstantoulakis
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aliki Liakea
- First Department of Pathology, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Evangelos P Misiakos
- Third Department of Surgery, University General Hospital "Attikon", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Identification of a novel, internal tRNA-derived RNA fragment as a new prognostic and screening biomarker in chronic lymphocytic leukemia, using an innovative quantitative real-time PCR assay. Leuk Res 2019; 87:106234. [PMID: 31669784 DOI: 10.1016/j.leukres.2019.106234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 10/05/2019] [Indexed: 01/17/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia in adults. Several studies have identified various prognostic biomarkers in CLL. In this study, we investigated the potential value of an internal fragment of the tRNAs bearing the Glycine anticodon CCC (i-tRF-GlyCCC), which is a small non-coding RNA, as a prognostic and screening biomarker in CLL. For this purpose, blood samples were collected from 90 CLL patients and 43 non-leukemic blood donors. Peripheral blood mononuclear cells (PBMCs) were isolated, total RNA was extracted and in-vitro polyadenylated, and first-strand cDNA was synthesized using an oligo-dT-adaptor primer. A real-time quantitative PCR assay was developed and applied for the quantification of i-tRF-GlyCCC in our samples. The biostatistical analysis revealed that i-tRF-GlyCCC levels are significantly lower in PBMCs of CLL patients, compared to PBMCs of non-leukemic controls, and that i-tRF-GlyCCC could be considered as a screening biomarker. Kaplan-Meier overall survival (OS) analysis revealed reduced OS for CLL patients with positive i-tRF-GlyCCC expression (P = 0.001). Multivariate Cox regression confirmed its independent unfavorable prognostic power with regard to OS. In conclusion, i-tRF-GlyCCC may constitute a promising molecular biomarker in CLL, for screening and prognostic purposes.
Collapse
|
15
|
Griggio V, Vitale C, Todaro M, Riganti C, Kopecka J, Salvetti C, Bomben R, Bo MD, Magliulo D, Rossi D, Pozzato G, Bonello L, Marchetti M, Omedè P, Kodipad AA, Laurenti L, Del Poeta G, Mauro FR, Bernardi R, Zenz T, Gattei V, Gaidano G, Foà R, Massaia M, Boccadoro M, Coscia M. HIF-1α is over-expressed in leukemic cells from TP53-disrupted patients and is a promising therapeutic target in chronic lymphocytic leukemia. Haematologica 2019; 105:1042-1054. [PMID: 31289209 PMCID: PMC7109756 DOI: 10.3324/haematol.2019.217430] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), the hypoxia-inducible factor 1 (HIF-1) regulates the response of tumor cells to hypoxia and their protective interactions with the leukemic microenvironment. In this study, we demonstrate that CLL cells from TP53-disrupted (TP53dis) patients have constitutively higher expression levels of the α-subunit of HIF-1 (HIF-1α) and increased HIF-1 transcriptional activity compared to the wild-type counterpart. In the TP53dis subset, HIF-1α upregulation is due to reduced expression of the HIF-1α ubiquitin ligase von Hippel-Lindau protein (pVHL). Hypoxia and stromal cells further enhance HIF-1α accumulation, independently of TP53 status. Hypoxia acts through the downmodulation of pVHL and the activation of the PI3K/AKT and RAS/ERK1-2 pathways, whereas stromal cells induce an increased activity of the RAS/ERK1-2, RHOA/RHOA kinase and PI3K/AKT pathways, without affecting pVHL expression. Interestingly, we observed that higher levels of HIF-1A mRNA correlate with a lower susceptibility of leukemic cells to spontaneous apoptosis, and associate with the fludarabine resistance that mainly characterizes TP53dis tumor cells. The HIF-1α inhibitor BAY87-2243 exerts cytotoxic effects toward leukemic cells, regardless of the TP53 status, and has anti-tumor activity in Em-TCL1 mice. BAY87-2243 also overcomes the constitutive fludarabine resistance of TP53dis leukemic cells and elicits a strongly synergistic cytotoxic effect in combination with ibrutinib, thus providing preclinical evidence to stimulate further investigation into use as a potential new drug in CLL.
Collapse
Affiliation(s)
- Valentina Griggio
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Candida Vitale
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maria Todaro
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Turin, Italy
| | - Chiara Salvetti
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Michele Dal Bo
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Daniela Magliulo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Rossi
- Department of Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Gabriele Pozzato
- Department of Internal Medicine and Hematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | - Lisa Bonello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Monia Marchetti
- Hematology Day Service, Oncology SOC, Hospital Cardinal Massaia, Asti, Italy
| | - Paola Omedè
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Ahad Ahmed Kodipad
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Luca Laurenti
- Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giovanni Del Poeta
- Division of Hematology, S. Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Policlinico Umberto I, Rome, Italy
| | - Rosa Bernardi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Policlinico Umberto I, Rome, Italy
| | | | - Mario Boccadoro
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Coscia
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy .,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Karamagkiolas S, Giotakis I, Kyrodimos E, Giotakis EI, Kataki A, Karagianni F, Lazaris AM. Expression of vimentin (VIM) and metastasis-associated 1 (MTA1) protein in laryngeal squamous cell carcinoma are associated with prognostic outcome of patients. Am J Otolaryngol 2019; 40:487-493. [PMID: 30979652 DOI: 10.1016/j.amjoto.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Laryngeal squamous cell carcinoma (LSCC), a common type of head and neck cancer, is associated with high rates of metastasis and recurrence. In this study, we investigated the potential combinatorial prognostic value of NOTCH1, Vimentin (VIM), and Metastasis-associated 1 (MTA1) protein in LSCC, using immunohistochemistry. MATERIALS AND METHODS Tissue specimens from 69 patients with LSCC were immunohistochemically evaluated for the protein expression of NOTCH1, VIM, and MTA1. Then, biostatistical analysis was performed, in order to assess the prognostic value of the expression of each one of these proteins. RESULTS NOTCH1 expression status was not a significant prognosticator in LSCC, as shown in Kaplan-Meier survival analysis. On the contrary, both VIM and MTA1 seem to have an important prognostic potential, independently of TNM staging and histological grade of the tumor. In fact, positive VIM expression was shown to predict patients' relapse and poor outcome regarding patients' overall survival, in contrast with MTA1, the positive expression of which predicts higher disease-free survival (DFS) and overall survival (OS) rates in LSCC. CONCLUSIONS VIM and MTA1 constitute potential tumor biomarkers in LSCC and could be integrated into a multiparametric prognostic model. Undoubtedly, their prognostic value needs further validation in larger cohorts of LSCC patients.
Collapse
Affiliation(s)
- Sotirios Karamagkiolas
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimios Kyrodimos
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos I Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Agapi Kataki
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fani Karagianni
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas M Lazaris
- Department of Vascular Surgery, University General Hospital "Attikon", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Nemkov T, D'Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken) 2019; 2:e1139. [PMID: 32721091 DOI: 10.1002/cnr2.1139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Carcinogenic transformation of white blood cells during hematopoiesis leads to the development of leukemia, a cancer characterized by incompetent immune cells and a disruption of normal bone marrow function. Leukemias are diverse in type, affected population, prognosis, and treatment regimen, yet a common theme in leukemia is the dysregulated metabolism of leukemic cells and leukemic stem cells with respect to their noncancerous counterparts. RECENT FINDINGS In this review, we highlight current findings that elucidate metabolic traits unique to the four major types of leukemia, which confer carcinogenic survival but can be potentially exploited for therapeutic intervention. These metabolic features can work in conjunction with or be independent of unique aspects of the bone marrow microenvironment that can also influence cell survival and proliferation, thus sustaining carcinogenesis. CONCLUSION Deepening our understanding of the interactions of leukemias with their niche environments in vivo will inform future treatments for leukemia, particularly for those that are refractive to tyrosine kinase inhibitors and other therapeutic mainstays.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Abstract
INTRODUCTION Hypoxia-inducible transcription factors have been identified as regulators of adaptive responses to hypoxia. Over the past 20 years, more than 8000 papers have described their increasingly complex role and regulation in cancer. Presently, it is recognized that hypoxia-inducible factors (HIFs) are regulated by oxygen-dependent and oxygen-independent mechanisms in cancer development; the list of their targets has increased to include more than 500 genes involved in most hallmarks of cancer. Areas covered: Most literature describes the function of HIF factors in solid tumors; however, in the past 10 years, evidence has steadily accumulated to indicate that HIFs are implicated in hematological malignancies. This review summarizes our current understanding of the function and regulation of HIF factors in hematopoiesis and leukemia. Moreover, we provide an update on pharmacological inhibitors of this pathway that have shown promising therapeutic effects in clinical trials or leukemia pre-clinical models. Expert opinion: The inhibition of the function of HIF factors may provide an interesting approach for treating leukemia. We posit that before moving into the clinic, we should (i) fully characterize the outcome of HIF inhibition in specific leukemia contexts (ii) test the possibility of combining HIF-targeting strategies with cytotoxic compounds and (iii) consider patient selection to increase therapeutic efficacy.
Collapse
Affiliation(s)
- Daniela Magliulo
- a Vita-Salute San Raffaele University , Milan , Italy.,b Preclinical Models of Cancer Laboratory, Division of Experimental Oncology , San Raffaele Scientific Institute , Milan , Italy
| | - Rosa Bernardi
- b Preclinical Models of Cancer Laboratory, Division of Experimental Oncology , San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
19
|
Papageorgiou SG, Diamantopoulos MA, Kontos CK, Bouchla A, Vasilatou D, Bazani E, Scorilas A, Pappa V. MicroRNA-92a-3p overexpression in peripheral blood mononuclear cells is an independent predictor of prolonged overall survival of patients with chronic lymphocytic leukemia. Leuk Lymphoma 2018; 60:658-667. [PMID: 29911923 DOI: 10.1080/10428194.2018.1461861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MicroRNA-92a-3p (miR-92a-3p) derives from the oncogenic miR-17/92 cluster and its highly homologous miR-106a/363 cluster. miR-92a-3p regulates the expression of key transcription factors such as HIF1 and inhibits SOCS1 to enhance the anti-apoptotic STAT3/IL6 signaling pathway. In this study, we assessed the putative usefulness of miR-92a-3p as a prognostic and/or diagnostic biomarker in chronic lymphocytic leukemia (CLL). For this purpose, total RNA was extracted from mononuclear cells isolated from the peripheral blood of 88 CLL patients and 36 non-leukemic blood donors, was polyadenylated and reversely transcribed. miR-92a-3p expression was quantified using an accurate qPCR method. miR-92a-3p levels were significantly lower in peripheral blood mononuclear cells of CLL patients. Overall survival (OS) analysis revealed that high miR-92a-3p expression predicts significantly prolonged OS of CLL patients. Interestingly, miR-92a-3p overexpression remains a significant prognosticator in subgroups of CLL patients with distinct prognosis. In conclusion, miR-92a-3p overexpression is a potential surrogate biomarker of favorable outcome of CLL patients.
Collapse
Affiliation(s)
- Sotirios G Papageorgiou
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Marios A Diamantopoulos
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Christos K Kontos
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Anthi Bouchla
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Diamantina Vasilatou
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Efthymia Bazani
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Andreas Scorilas
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Vasiliki Pappa
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| |
Collapse
|
20
|
Kourtis A, Adamopoulos PG, Papalois A, Iliopoulos DC, Babis GC, Scorilas A. Quantitative analysis and study of the mRNA expression levels of apoptotic genes BCL2, BAX and BCL2L12 in the articular cartilage of an animal model of osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:243. [PMID: 30069445 DOI: 10.21037/atm.2018.05.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Given that apoptosis of chondrocytes is one of the most important factors related to the pathogenesis of osteoarthritis (OA), the recent research interest adds progress not only to the knowledge of the molecular signals that mediate apoptosis but also to find new therapeutic targets. This study attempts to investigate the differential expression of BCL2 family genes in the articular cartilage of an experimental animal model of OA. Methods In total, 26 New Zealand white rabbits underwent an anterior cruciate ligament transaction, 26 more were subjected to a placebo surgery and 18 specimens constituted the control non-operated group. Thirteen weeks later, samples of cartilage from the osteoarthritic and non-osteoarthritic knees were collected and subjected to analysis of the BCL2, BAX and BCL2L12 gene expression at the mRNA level. Results Installed osteoarthritic alterations of varied intensity and of grade 1 up to grade 5, were confirmed according to the OARSI system. Contrary to the physiologically healthy samples, in the osteoarthritic samples the mRNA expression levels of BAX and BCL2L12 genes were found significantly upregulated by signals which can activate apoptosis. However, the difference between BCL2 mRNA expression levels in healthy and osteoarthritic samples was not supported statistically. Conclusions Since apoptosis is the main feature of the cartilage degeneration in OA, the effective inhibition of apoptosis of chondrocytes can provide novel and interesting therapeutic strategies for the treatment of OA. Therefore, BAX and BCL2L12 are highlighted as potential therapeutic targets in OA.
Collapse
Affiliation(s)
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - George C Babis
- Second Orthopaedic Department, National and Kapodistrian University of Athens Medical School, Konstantopouleio General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Adamopoulos PG, Theodoropoulou MC, Scorilas A. Alternative Splicing Detection Tool-a novel PERL algorithm for sensitive detection of splicing events, based on next-generation sequencing data analysis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:244. [PMID: 30069446 DOI: 10.21037/atm.2018.06.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Next-generation sequencing (NGS) can provide researchers with high impact information regarding alternative splice variants or transcript identifications. However, the enormous amount of data acquired from NGS platforms make the analysis of alternative splicing events hard to accomplish. For this reason, we designed the "Alternative Splicing Detection Tool" (ASDT), an algorithm that is capable of identifying alternative splicing events, including novel ones from high-throughput NGS data. ASDT is available as a PERL script at http://aias.biol.uoa.gr/~mtheo and can be executed on any system with PERL installed. In addition to the detection of annotated and novel alternative splicing events from high-throughput NGS data, ASDT can also analyze the intronic regions of genes, thus enabling the detection of novel cryptic exons residing in annotated introns, extensions of previously annotated exons, or even intron retentions. Consequently, ASDT demonstrates many innovative and unique features that can efficiently contribute to alternative splicing analysis of NGS data.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Margarita C Theodoropoulou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou, Lamia, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|
22
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Elevated miR-20b-5p expression in peripheral blood mononuclear cells: A novel, independent molecular biomarker of favorable prognosis in chronic lymphocytic leukemia. Leuk Res 2018; 70:1-7. [PMID: 29715621 DOI: 10.1016/j.leukres.2018.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA-20b-5p (miR-20b-5p) is part of the miR-106a/363 cluster and a member of the cancer-related miR-17 family. miR-20b-5p regulates important transcription factors, including hypoxia-inducible factor 1 (HIF1) and signal transducer and activator of transcription 3 (STAT3). Recently, the dysregulation of miR-20b-5p expression has been observed in many B-cell lymphomas and T-cell leukemias. In this research study, we examined the putative prognostic value of miR-20b-5p in CLL. Therefore, total RNA was isolated from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients; next, total RNA was polyadenylated and first-strand cDNA was synthesized, using an oligo-dT-adapter primer. miR-20b-5p expression was quantified using an in-house-developed real-time quantitative PCR assay. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-20b-5p expression predicts better OS for CLL patients (p < 0.001). Interestingly, miR-20b-5p overexpression retains its favorable prognostic role in CLL patients of intermediate risk or stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable (IGHV) region]. In conclusion, miR-20b-5p is a potential independent molecular biomarker of favorable prognosis in CLL.
Collapse
|
24
|
Vaisitti T, Arruga F, Deaglio S. Targeting the Adenosinergic Axis in Chronic Lymphocytic Leukemia: A Way to Disrupt the Tumor Niche? Int J Mol Sci 2018; 19:ijms19041167. [PMID: 29649100 PMCID: PMC5979564 DOI: 10.3390/ijms19041167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Targeting adenosine triphosphate (ATP) metabolism and adenosinergic signaling in cancer is gaining momentum, as increasing evidence is showing their relevance in tumor immunology and biology. Chronic lymphocytic leukemia (CLL) results from the expansion of a population of mature B cells that progressively occupies the bone marrow (BM), the blood, and peripheral lymphoid organs. Notwithstanding significant progress in the treatment of these patients, the cure remains an unmet clinical need, suggesting that novel drugs or drug combinations are needed. A unique feature of CLL is its reliance on micro-environmental signals for proliferation and cell survival. We and others have shown that the lymphoid niche, an area of intense interactions between leukemic and bystander non-tumor cells, is a typically hypoxic environment. Here adenosine is generated by leukemic cells, as well as by cells of myeloid origin, acting through autocrine and paracrine mechanisms, ultimately affecting tumor growth, limiting drug responses, and skewing the immune cells towards a tolerant phenotype. Hence, understanding the mechanisms through which this complex network of enzymes, receptors, and metabolites functions in CLL, will pave the way to the use of pharmacological agents targeting the system, which, in combination with drugs targeting leukemic cells, may get us one step closer to curing these patients.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Regulatory Networks/drug effects
- Humans
- Hypoxia
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy/methods
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
25
|
Papageorgiou SG, Kontos CK, Diamantopoulos MA, Bouchla A, Glezou E, Bazani E, Pappa V, Scorilas A. MicroRNA-155-5p Overexpression in Peripheral Blood Mononuclear Cells of Chronic Lymphocytic Leukemia Patients Is a Novel, Independent Molecular Biomarker of Poor Prognosis. DISEASE MARKERS 2017; 2017:2046545. [PMID: 29463948 PMCID: PMC5804407 DOI: 10.1155/2017/2046545] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022]
Abstract
MicroRNA-155-5p (miR-155-5p) is a proinflammatory, oncogenic miRNA, involved in various physiological processes, including hematopoiesis, immunity, inflammation, and cell lineage differentiation. It regulates important transcription factors, such as E2F2, hypoxia-inducible factor 1 (HIF1), and FOXO3. Recently, the dysregulation of miR-155-5p expression has been linked to chronic lymphocytic leukemia (CLL) pathogenesis. In this research study, we investigated the potential diagnostic and prognostic value of miR-155-5p in CLL. To achieve our goal, we isolated total RNA from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients and 36 nonleukemic blood donors and performed polyadenylation of total RNA and reverse transcription. Next, we quantified miR-155-5p levels using an in-house-developed real-time quantitative PCR method, before proceeding to extensive biostatistical analysis. Thus, it appears that miR-155-5p is significantly overexpressed in PBMCs of CLL patients and can distinguish them from nonleukemic population. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-155-5p expression predicts inferior OS for CLL patients (p < 0.001). Interestingly, miR-155-5p overexpression retains its unfavorable prognostic role in CLL patients stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable region (IGHV)]. Thus, miR-155-5p appears as a promising, independent molecular biomarker of unfavorable prognosis in CLL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Prognosis
- Survival Analysis
- Up-Regulation
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Marios A. Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Eirini Glezou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Efthymia Bazani
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|