1
|
Biswas B, Huang YH, Craik DJ, Wang CK. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem Sci 2024; 15:13130-13147. [PMID: 39183924 PMCID: PMC11339801 DOI: 10.1039/d4sc01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Human kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today. Targeting the substrate site of kinases can offer a more selective and resistance-resilient solution compared to ATP inhibition but has traditionally been challenging. However, emerging technologies for the discovery of drug leads using recombinant display and stabilization of lead compounds have increased interest in targeting the substrate site of kinases. This review discusses recent advances in the substrate-based inhibition of protein kinases and the potential of such approaches for overcoming the emergence of resistance.
Collapse
Affiliation(s)
- Biswajit Biswas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| |
Collapse
|
2
|
Kaehler M, von Bubnoff N, Cascorbi I, Gorantla SP. Molecular biomarkers of leukemia: convergence-based drug resistance mechanisms in chronic myeloid leukemia and myeloproliferative neoplasms. Front Pharmacol 2024; 15:1422565. [PMID: 39104388 PMCID: PMC11298451 DOI: 10.3389/fphar.2024.1422565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Leukemia represents a diverse group of hematopoietic neoplasms that can be classified into different subtypes based on the molecular aberration in the affected cell population. Identification of these molecular classification is required to identify specific targeted therapeutic approaches for each leukemic subtype. In general, targeted therapy approaches achieve good responses in some leukemia subgroups, however, resistance against these targeted therapies is common. In this review, we summarize molecular drug resistance biomarkers in targeted therapies in BCR::ABL1-driven chronic myeloid leukemia (CML) and JAK2-driven myeloproliferative neoplasms (MPNs). While acquisition of secondary mutations in the BCR::ABL1 kinase domain is the a common mechanism associated with TKI resistance in CML, in JAK2-driven MPNs secondary mutations in JAK2 are rare. Due to high prevalence and lack of specific therapy approaches in MPNs compared to CML, identification of crucial pathways leading to inhibitor persistence in MPN model is utterly important. In this review, we focus on different alternative signaling pathways activated in both, BCR::ABL1-mediated CML and JAK2-mediated MPNs, by combining data from in vitro and in vivo-studies that could be used as potential biomarkers of drug resistance. In a nutshell, some common similarities, especially activation of PDGFR, Ras, PI3K/Akt signaling pathways, have been demonstrated in both leukemias. In addition, induction of the nucleoprotein YBX1 was shown to be involved in TKI-resistant JAK2-mediated MPN, as well as TKI-resistant CML highlighting deubiquitinating enzymes as potential biomarkers of TKI resistance. Taken together, whole exome sequencing of cell-based or patients-derived samples are highly beneficial to define specific resistance markers. Additionally, this might be helpful for the development of novel diagnostic tools, e.g., liquid biopsy, and novel therapeutic agents, which could be used to overcome TKI resistance in molecularly distinct leukemia subtypes.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
3
|
Sun M, Li S, Liu Z, Ma S, Liu X, Meng Q, Zheng Y, Chen C. Efficacy and safety of flumatinib in the treatment of newly diagnosed chronic myeloid leukemia in the chronic phase: A real-world single-center retrospective study, with a focus on premature drug discontinuation. Leuk Res 2024; 142:107507. [PMID: 38692191 DOI: 10.1016/j.leukres.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE To assess the real-world efficacy and safety of flumatinib as first-line and post-line treatments for chronic myeloid leukemia in the chronic phase (CML-CP). RESULTS Among 141 patients receiving flumatinib as first-line and post-line treatment, the 12-month major molecular response (MMR) rates were 69.4% and 67.6%, respectively. The median time to response was 6 and 10.5 months, respectively. In post-line treatment, the early molecular response (EMR) of flumatinib as second-line is significantly superior to that of third-line treatment (3-month EMR rate: 79.2% vs. 39.3%, P<0.001; 3-month MMR rate: 45.8% vs. 21.4%, P=0.033). Contrastively, patients who switched to flumatinib due to intolerance had significantly higher MMR rates at 3, 6, and 12 months compared to patients who switched due to inadequate response (60.6% vs. 24.2%, P=0.003; 66.7% vs. 36.0%, P=0.027; 84.2% vs. 50.0%, P=0.038). Premature drug discontinuation was observed in 28.4% of the patients. Grades 3-4 hematologic adverse events (AEs) were identified as independent risk factors for premature drug discontinuation. Patients who discontinued treatment and those who previously received only imatinib therapy had a poorer molecular response and failure-free survival. CONCLUSIONS Flumatinib demonstrates favorable efficacy and safety. Treatment discontinuation can result in a poorer molecular response and long-term prognosis.
Collapse
Affiliation(s)
- Mingshan Sun
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China
| | - Shijie Li
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China
| | - Zhenyi Liu
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China
| | - Sai Ma
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China
| | - Xiaohan Liu
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China
| | - Qing Meng
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China
| | - Yueyue Zheng
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China
| | - Chunyan Chen
- Qilu Hospital of Shandong University, Department of Hematology, Jinan, Shandong, China.
| |
Collapse
|
4
|
Wang Y, Liang ZJ, Gale RP, Liao HZ, Ma J, Gong TJ, Shao YQ, Liang Y. Chronic myeloid leukaemia: Biology and therapy. Blood Rev 2024; 65:101196. [PMID: 38604819 DOI: 10.1016/j.blre.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Chronic myeloid leukaemia (CML) is caused by BCR::ABL1. Tyrosine kinase-inhibitors (TKIs) are the initial therapy. Several organizations have reported milestones to evaluate response to initial TKI-therapy and suggest when a change of TKI should be considered. Achieving treatment-free remission (TFR) is increasingly recognized as the optimal therapy goal. Which TKI is the best initial therapy for which persons and what depth and duration of molecular remission is needed to achieve TFR are controversial. In this review we discuss these issues and suggest future research directions.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Remission Induction
- Biology
Collapse
Affiliation(s)
- Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Jian Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Robert Peter Gale
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Hua-Ze Liao
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Ma
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China
| | - Tie-Jun Gong
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China.
| | - Ying-Qi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
5
|
Rafiq Mohammed A, Assad D, Rostami G, Hamid M. Frequency and prognostic influence of ASXL1 mutations and its potential association with BCR-ABL1 transcript type and smoke in chronic myeloid leukemia patients. Gene 2023; 886:147776. [PMID: 37689224 DOI: 10.1016/j.gene.2023.147776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Heterogeneous response to tyrosine kinase inhibitors (TKIs) and progress to advance phases, still is a significant clinical problem. These are attributed to additional mutations in mutated non-ABL1 genes. we aimed to determine prognostic effects of ASXL1 mutations as a biomarker for diverse treatment response and disease progression to aid clinical management. METHODS We performed ASXL1 gene mutational screening in 80 Ph+CML patients at different phases and 10 healthy control by direct sequencing method. Multiplex and qRT-PCR, standard chromosome banding analysis were used to determine BCR-ABL1 transcript type, molecular and cytogenetic responses respectively. RESULTS overall, four type mutations were identified in 11.25% of the patients. There was significant difference regarding mutation frequency between chronic and advance phases (P = 0.0002), sokal risk score (P = 0.0001), smoking (P = 0.02) and mean of during time of imatinib treatment (P = 0.009) between patients with and without ASXL1 mutations. ASXL1 mutations frequency had a bias toward younger than older and women than men, but no significant (P > 0.05). ASXL1 mutations were found more recurrently in patients carrying ABL1 KD mutations (P = 0.003). The risk of increasing resistance and disease progression in patients with ASXL1 mutations was 32 and 63 fold higher than those without mutations respectively (P = 0.01; P = 0.0002). The risk of ASXL1 mutations presence in patients with b2a2 transcript type was much higher than b3a2 type (P = 0.02, OR = 10). CONCLUSION Our findings suggest that ASXL1 mutations may be favorable predictive biomarkers to determine the best TKI for each patient, and to prevent CML progression.
Collapse
Affiliation(s)
- Aras Rafiq Mohammed
- Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq
| | - Dlnya Assad
- Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq
| | - Golale Rostami
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Oyogoa E, Streich L, Raess PW, Braun T. Case Report: ASXL1, RUNX1, and IDH1 mutation in tyrosine kinase-independent resistant chronic myeloid leukemia progressing to chronic myelomonocytic leukemia-like accelerated phase. Front Oncol 2023; 13:1217153. [PMID: 37746298 PMCID: PMC10513384 DOI: 10.3389/fonc.2023.1217153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Although the majority of patients with chronic myeloid leukemia (CML) enjoy an excellent prognosis tyrosine kinase inhibitor (TKI) therapy, resistance remains a significant clinical problem. Resistance can arise from mutations in the kinase domain of ABL preventing drug binding, or due to ill-defined kinase-independent mechanisms. In this case report, we describe the case of a 27-year-old woman with a long-standing history of chronic phase (CP) CML who developed kinase-independent resistance with mutations in ASXL1 and RUNX1. As a consequence of uncontrolled disease, she progressed to a chronic myelomonocytic leukemia-like (CMML) accelerated phase (AP) disease with the acquisition of a mutation in IDH1. This disease progression was associated with the development of an inflammatory serositis, a phenomenon that has been described in CMML but not in AP-CML. This case presents key features of kinase-independent resistance with insight into potential mechanisms, highlights management challenges, and describes a novel systemic inflammatory response that occurred in this patient upon disease progression.
Collapse
Affiliation(s)
- Emmanuella Oyogoa
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Lukas Streich
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Philipp W. Raess
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Theodore Braun
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
7
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
8
|
Limsuwanachot N, Rerkamnuaychoke B, Niparuck P, Singdong R, Kongruang A, Hirunpatrawong P, Siriyakorn T, Yenchitsomanus PT, Siriboonpiputtana T. A customized mass array panel for BCR:: ABL1 tyrosine kinase domain mutation screening in chronic myeloid leukemia. J Mass Spectrom Adv Clin Lab 2023; 28:122-132. [PMID: 37128502 PMCID: PMC10148036 DOI: 10.1016/j.jmsacl.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/25/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Introduction The therapeutic strategy and management of chronic myeloid leukemia (CML) have rapidly improved with the discovery of effective tyrosine kinase inhibitors (TKIs) to target BCR::ABL1 oncoprotein. However, nearly 30% of patients develop TKI resistance due to acquired mutations on the tyrosine kinase domain (TKD) of BCR::ABL1. Methods We customized a mass array panel initially intended to detect and monitor the mutational burden of hotspot BCR::ABL1 TKD mutations accumulated in our database, including key mutations recently recommended by European LeukemiaNet. Additionally, we extended the feasibility of using the assay panel for the molecular classification of myeloproliferative neoplasms (MPNs) by incorporating primer sets specific for analyzing JAK2 V617F, MPL 515 K/L, and CALR types 1 and 2. Results We found that the developed mass array panel was superior for detecting and monitoring clinically significant BCR::ABL1 TKD mutations, especially in cases with low mutational burden and harboring compound/polyclonal mutations, compared with direct sequencing. Moreover, our customized mass array panel detected common genetic alterations in MPNs, and the findings were consistent with those of other comparable assays available in our laboratory. Conclusions Our customized mass array panel was practicably used as a routine robust assay for screening and monitoring BCR::ABL1 TKD mutations in patients with CML undergoing TKI treatment and feasible for analyzing common genetic mutations in MPNs.
Collapse
Affiliation(s)
- Nittaya Limsuwanachot
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Roongrudee Singdong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adcharee Kongruang
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapong Siriboonpiputtana
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Corresponding author at: Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
9
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Braun TP, Estabrook J, Schonrock Z, Curtiss BM, Darmusey L, Macaraeg J, Enright T, Coblentz C, Callahan R, Yashar W, Taherinasab A, Mohammed H, Coleman DJ, Druker BJ, Demir E, Lusardi TA, Maxson JE. Asxl1 deletion disrupts MYC and RNA polymerase II function in granulocyte progenitors. Leukemia 2023; 37:478-487. [PMID: 36526735 PMCID: PMC9899319 DOI: 10.1038/s41375-022-01792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Mutations in the gene Additional Sex-Combs Like 1 (ASXL1) are recurrent in myeloid malignancies as well as the pre-malignant condition clonal hematopoiesis, where they are universally associated with poor prognosis. However, the role of ASXL1 in myeloid lineage maturation is incompletely described. To define the role of ASXL1 in myelopoiesis, we employed single cell RNA sequencing and a murine model of hematopoietic-specific Asxl1 deletion. In granulocyte progenitors, Asxl1 deletion leads to hyperactivation of MYC and a quantitative decrease in neutrophil production. This loss of granulocyte production was not accompanied by significant changes in the landscape of covalent histone modifications. However, Asxl1 deletion results in a decrease in RNAPII promoter-proximal pausing in granulocyte progenitors, indicative of a global increase in productive transcription. These results suggest that ASXL1 inhibits productive transcription in granulocyte progenitors, identifying a new role for this epigenetic regulator in myeloid development.
Collapse
Affiliation(s)
- Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,Division of Hematology & Medical Oncology, Oregon
Health & Science University, Portland, Oregon, 97239, USA.,CORRESPONDENCE: Theodore P. Braun,
Knight Cancer Institute, 3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon,
97239, , Julia E. Maxson, Knight Cancer Institute,
3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon, 97239,
, Theresa A. Lusardi, Cancer Early Detection
Advanced Research Center, 3181 SW Sam Jackson Pk. Rd., KR-CEDR, Portland,
Oregon, 97239,
| | - Joseph Estabrook
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Zachary Schonrock
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Brittany M. Curtiss
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Lucie Darmusey
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Jommel Macaraeg
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Trevor Enright
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Cody Coblentz
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Rowan Callahan
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - William Yashar
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Akram Taherinasab
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Hisham Mohammed
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Daniel J. Coleman
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,Division of Hematology & Medical Oncology, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA
| | - Theresa A. Lusardi
- Cancer Early Detection Advanced Research Center, Oregon
Health & Science University, Portland, Oregon, 97239, USA.,CORRESPONDENCE: Theodore P. Braun,
Knight Cancer Institute, 3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon,
97239, , Julia E. Maxson, Knight Cancer Institute,
3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon, 97239,
, Theresa A. Lusardi, Cancer Early Detection
Advanced Research Center, 3181 SW Sam Jackson Pk. Rd., KR-CEDR, Portland,
Oregon, 97239,
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science
University, Portland, Oregon, 97239, USA.,CORRESPONDENCE: Theodore P. Braun,
Knight Cancer Institute, 3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon,
97239, , Julia E. Maxson, Knight Cancer Institute,
3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, Oregon, 97239,
, Theresa A. Lusardi, Cancer Early Detection
Advanced Research Center, 3181 SW Sam Jackson Pk. Rd., KR-CEDR, Portland,
Oregon, 97239,
| |
Collapse
|
11
|
Kaehler M, Cascorbi I. Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Handb Exp Pharmacol 2023; 280:65-83. [PMID: 36882601 DOI: 10.1007/164_2023_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The hematopoietic neoplasm chronic myeloid leukemia (CML) is a rare disease caused by chromosomal reciprocal translocation t(9;22)(q34:q11) with subsequent formation of the BCR-ABL1 fusion gene. This fusion gene encodes a constitutively active tyrosine kinase, which results in malignant transformation of the cells. Since 2001, CML can be effectively treated using tyrosine kinase inhibitors (TKIs) such as imatinib, which prevent phosphorylation of downstream targets by blockade of the BCR-ABL kinase. Due to its tremendous success, this treatment became the role model of targeted therapy in precision oncology. Here, we review the mechanisms of TKI resistance focusing on BCR-ABL1-dependent and -independent mechanisms. These include the genomics of the BCR-ABL1, TKI metabolism and transport and alternative signaling pathways.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
12
|
Shanmuganathan N, Wadham C, Thomson D, Shahrin NH, Vignaud C, Obourn V, Chaturvedi S, Yang F, Feng J, Saunders V, Kok CH, Yeung D, King RM, Kenyon RR, Lin M, Wang P, Scott H, Hughes T, Schreiber AW, Branford S. RNA-Based Targeted Gene Sequencing Improves the Diagnostic Yield of Mutant Detection in Chronic Myeloid Leukemia. J Mol Diagn 2022; 24:803-822. [PMID: 35550185 DOI: 10.1016/j.jmoldx.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
Mutation detection is increasingly used for the management of hematological malignancies. Prior whole transcriptome and whole exome sequencing studies using total RNA and DNA identified diverse mutation types in cancer-related genes associated with treatment failure in patients with chronic myeloid leukemia. Variants included single-nucleotide variants and small insertions/deletions, plus fusion transcripts and partial or whole gene deletions. The hypothesis that all of these mutation types could be detected by a single cost-effective hybridization capture next-generation sequencing method using total RNA was assessed. A method was developed that targeted 130 genes relevant for myeloid and lymphoid leukemia. Retrospective samples with 121 precharacterized variants were tested using total RNA and/or DNA. Concordance of detection of precharacterized variants using RNA or DNA was 96%, whereas the enhanced sensitivity identified additional variants. Comparison between 24 matched DNA and RNA samples demonstrated 95.3% of 170 variants detectable using DNA were detected using RNA, including all but one variant predicted to activate nonsense-mediated decay. RNA identified an additional 10 variants, including fusion transcripts. Furthermore, the true effect of splice variants on RNA splicing was only evident using RNA. In conclusion, capture sequencing using total RNA alone is suitable for detecting a range of variants relevant in chronic myeloid leukemia and may be more broadly applied to other hematological malignancies where diverse variant types define risk groups.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Daniel Thomson
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Nur H Shahrin
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | - Vanessa Obourn
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Feng Yang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jinghua Feng
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Verity Saunders
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chung H Kok
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David Yeung
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Rob M King
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Rosalie R Kenyon
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Ming Lin
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Paul Wang
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Timothy Hughes
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas W Schreiber
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Yildirim MS, Şi̇mşek L, Zamani̇ AG, Çeneli̇ Ö, Demi̇rci̇oğlu S. Dynein axonemal heavy chain 9 M4374I variation may have an effect on imatinib mesylate resistance in CML. MEDICINE INTERNATIONAL 2022; 2:4. [PMID: 38938903 PMCID: PMC11208984 DOI: 10.3892/mi.2022.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 06/29/2024]
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm caused by a translocation between the breakpoint cluster region (BCR) and Abelson murine leukemia 1 (ABL1) genes. Tyrosine kinase inhibitors (TKIs) are used in the treatment of CML. TKIs, bind the ABL1 kinase domain of hybrid BCR-ABL1 protein and inhibit its function. However, resistance can occur due to the pathogenic variations in the ABL kinase domain or BCR-ABL1-independent mechanisms. In the present study, genetic variations possibly related to imatinib resistance in CML were explored. A total of five single nucleotide polymorphisms [SNPs; MORN2 rs3099950, PTCRA rs9471966, ANKRD35 rs11579366, dynein axonemal heavy chain 9 (DNAH9) rs1990236 and MAGEC1 rs176037] were investigated in imatinib sensitive and in resistant CML patients. Additionally, sequencing of the ABL1 kinase domain was also performed. The frequency of DNAH9 M4374I (NP_001363.2)/M686I (NP_004653.2) (rs1990236) was found to be significantly higher in the imatinib-resistant group. However, the other SNPs did not exhibit any statistically significant differences and no new variant was detected in the ABL1 kinase domain. Considering the frequency difference of the DNAH9 rs1990236 between imatinib-sensitive and imatinib-resistant groups, DNAH9 gene may play a role in TKI resistance. Due to the limited amounts of literature available on this subject, further studies on DNAH9 and related genes may prove to be beneficial for the elucidation of the association between DNAH9 and TKI resistance. Moreover, further larger studies are required to support the current findings. This may aid in the development of novel treatment protocols for patients with CML with DNAH9 genetic polymorphisms.
Collapse
Affiliation(s)
- Mahmut Selman Yildirim
- Department of Medical Genetics, Meram Medical School, Necmettin Erbakan University, Konya 42080, Turkey
| | - Levent Şi̇mşek
- Department of Medical Genetics, Meram Medical School, Necmettin Erbakan University, Konya 42080, Turkey
| | - Ayşe Gül Zamani̇
- Department of Medical Genetics, Meram Medical School, Necmettin Erbakan University, Konya 42080, Turkey
| | - Özcan Çeneli̇
- Department of Hematology, Meram Medical School, Necmettin Erbakan University, Konya 42080, Turkey
| | - Si̇nan Demi̇rci̇oğlu
- Department of Hematology, Meram Medical School, Necmettin Erbakan University, Konya 42080, Turkey
| |
Collapse
|
14
|
Zhang LQ, Liu JJ, Liu L, Fan GL, Li YN, Li QZ. The impact of gene-body H3K36me3 patterns on gene expression level changes in chronic myelogenous leukemia. Gene 2021; 802:145862. [PMID: 34352296 DOI: 10.1016/j.gene.2021.145862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Chronic myelogenous leukemia (CML) is a malignant clonal disease of hematopoietic stem cells. Researches have exhibited that the progression of CML is related to histone modifications. Here, we perform the systematic analyses of H3K36me3 patterns and gene expression level changes. We observe that the genes with higher gene-body H3K36me3 levels in normal cells show fewer expression changes during leukemogenesis, while the genes with lower gene-body H3K36me3 levels in normal cells yield obvious expression changes during leukemogenesis (ρ = -0.98, P = 9.30 × 10-8). These findings are conserved in human lung/breast cancers and mouse CML, regardless of gene expression levels and gene lengths. Regulatory element analysis and Random Forest regression display that Hoxd13, Rara, Scl, Smad3, Smad4 and Tgif1 induce the up-regulation of genes with lower H3K36me3 levels (ρ = 0.97, P = 2.35 × 10-56). Enrichment analysis shows that the differentially expressed genes with lower H3K36me3 levels are involved in leukemia-related pathways, such as leukocyte migration and regulation of leukocyte activation. Finally, six driver genes (Tp53, Wt1, Dnmt3a, Cacna1b, Phactr1 and Gbp4) with lower H3K36me3 levels are identified. Our analyses indicate that lower gene-body H3K36me3 levels may serve as a biomarker for the progression of CML.
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School oef Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | - Jun-Jie Liu
- Laboratory of Theoretical Biophysics, School oef Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Li Liu
- Laboratory of Theoretical Biophysics, School oef Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Guo-Liang Fan
- Laboratory of Theoretical Biophysics, School oef Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yan-Nan Li
- Laboratory of Theoretical Biophysics, School oef Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School oef Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
15
|
Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat Commun 2021; 12:2833. [PMID: 33990592 PMCID: PMC8121838 DOI: 10.1038/s41467-021-23097-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
Blast crisis (BC) predicts dismal outcomes in patients with chronic myeloid leukaemia (CML). Although additional genetic alterations play a central role in BC, the landscape and prognostic impact of these alterations remain elusive. Here, we comprehensively investigate genetic abnormalities in 136 BC and 148 chronic phase (CP) samples obtained from 216 CML patients using exome and targeted sequencing. One or more genetic abnormalities are found in 126 (92.6%) out of the 136 BC patients, including the RUNX1-ETS2 fusion and NBEAL2 mutations. The number of genetic alterations increase during the transition from CP to BC, which is markedly suppressed by tyrosine kinase inhibitors (TKIs). The lineage of the BC and prior use of TKIs correlate with distinct molecular profiles. Notably, genetic alterations, rather than clinical variables, contribute to a better prediction of BC prognosis. In conclusion, genetic abnormalities can help predict clinical outcomes and can guide clinical decisions in CML. In chronic myeloid leukaemia (CML), the drivers of blast crisis and resistance to tyrosine kinase inhibitors are not fully characterised. Here, the authors analyse a cohort of CML samples with genomic technologies and find that at least one driver alteration is associated with progression and worse prognosis.
Collapse
|
16
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
17
|
CML - Not only BCR-ABL1 matters. Best Pract Res Clin Haematol 2020; 33:101194. [PMID: 33038988 DOI: 10.1016/j.beha.2020.101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
BCR-ABL1 is in the center of chronic myeloid leukemia (CML) pathology, diagnosis and treatment, as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. However, additional mechanisms and events, many of which function independently of BCR-ABL1, play important roles, particularly in terms of leukemic stem cell (LSC) persistence, primary and secondary resistance, and disease progression. Promising therapeutic approaches aim to disrupt pathways which mediate LSC survival during successful TKI treatment, in the hope of improving long-term treatment-free-remission and perhaps provide a functional cure for some patients. Over the years through advances in sequencing technology frequent molecular aberrations in addition to BCR-ABL1 have been identified not only in advanced disease but also in chronic phase CML, often affecting epigenetic regulators such as ASXL1, DNMT3A and TET2. Analyses of serial samples have revealed various patterns of clonal evolution with some mutations preceding the BCR-ABL1 acquisition. Such mutations can be considered to be important co-factors in the pathogenesis of CML and could potentially influence therapeutic strategies in the future.
Collapse
|
18
|
Braun TP, Eide CA, Druker BJ. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell 2020; 37:530-542. [PMID: 32289275 PMCID: PMC7722523 DOI: 10.1016/j.ccell.2020.03.006] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Chronic myeloid leukemia (CML), caused by constitutively active BCR-ABL1 fusion tyrosine kinase, has served as a paradigm for successful application of molecularly targeted cancer therapy. The development of the tyrosine kinase inhibitor (TKI) imatinib allows patients with CML to experience near-normal life expectancy. Specific point mutations that decrease drug binding affinity can produce TKI resistance, and second- and third-generation TKIs largely mitigate this problem. Some patients develop TKI resistance without known resistance mutations, with significant heterogeneity in the underlying mechanism, but this is relatively uncommon, with the majority of patients with chronic phase CML achieving long-term disease control. In contrast, responses to TKI treatment are short lived in advanced phases of the disease or in BCR-ABL1-positive acute lymphoblastic leukemia, with relapse driven by both BCR-ABL1 kinase-dependent and -independent mechanisms. Additionally, the frontline CML treatment with second-generation TKIs produces deeper molecular responses, driving disease burden below the detection limit for a greater number of patients. For patients with deep molecular responses, up to half have been able to discontinue therapy. Current efforts are focused on identifying therapeutic strategies to drive deeper molecular responses, enabling more patients to attempt TKI discontinuation.
Collapse
MESH Headings
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Theodore P Braun
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA.
| | - Christopher A Eide
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
19
|
Zhou L, Shi H, Shi W, Yang L, Zhang Y, Xu M, Chen X, Zhu Y, Mu H, Wan X, Yang Z, Zeng Y, Liu H. Durable Molecular Remission in a Lymphoid BP-CML Patient Harboring T315I Mutation Treated with Anti-CD19 CAR-T Therapy. Onco Targets Ther 2019; 12:10989-10995. [PMID: 31997880 PMCID: PMC6917542 DOI: 10.2147/ott.s232102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Despite the prominent effects of BCR-ABL tyrosine kinase inhibitors (TKI) therapy in patients with chronic phase-chronic myeloid leukemia (CP-CML) and thus low incidence of blastic transformation, blast phase (BP)-CML remains a major therapeutic challenge in the TKI era. The "gatekeeper" mutation T315I in BCR-ABL1 kinase, which often coupled with a poor prognosis, is quite common and resistant to all TKIs except for ponatinib. The occurrence of T315I mutation in BP-CML makes the situation more complex. Anti-CD19 chimeric antigen receptor T cell (CAR-T) technology is a new immunotherapy which has significantly improved the efficacy of B cell hematologic malignances. Here we report a lymphoid BP-CML patient harboring T315I mutation who achieved complete molecular remission and returned to chronic phase by anti-CD19 CAR-T therapy. Our study provides a new therapeutic strategy for patients in BP-CML.
Collapse
Affiliation(s)
- Lu Zhou
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Wenyu Shi
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Li Yang
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yaping Zhang
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Mengqi Xu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiufang Chen
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yanv Zhu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hui Mu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiaochun Wan
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Zhonghua Yang
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Ying Zeng
- Shenzhen Bin De Bio Tech Co. Lid, Shenzhen, People's Republic of China
| | - Hong Liu
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
20
|
Low prevalence of the BCR-ABL1 fusion gene in a normal population in southern Sarawak. Int J Hematol 2019; 111:217-224. [PMID: 31707540 DOI: 10.1007/s12185-019-02768-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
The BCR-ABL1 fusion gene is the driver mutation of Philadelphia chromosome-positive chronic myeloid leukemia (CML). Its expression level in CML patients is monitored by a real-time quantitative polymerase chain reaction defined by the International Scale (qPCRIS). BCR-ABL1 has also been found in asymptomatic normal individuals using a non-qPCRIS method. In the present study, we examined the prevalence of BCR-ABL1 in a normal population in southern Sarawak by performing qPCRIS for BCR-ABL1 with ABL1 as an internal control on total white blood cells, using an unbiased sampling method. While 146 of 190 (76.8%) or 102 of 190 (53.7%) samples showed sufficient amplification of the ABL1 gene at > 20,000 or > 100,000 copy numbers, respectively, in qPCRIS, one of the 190 samples showed amplification of BCR-ABL1 with positive qPCRIS of 0.0023% and 0.0032% in two independent experiments, the sequence of which was the BCR-ABL1 e13a2 transcript. Thus, we herein demonstrated that the BCR-ABL1 fusion gene is expected to be present in approximately 0.5-1% of normal individuals in southern Sarawak.
Collapse
|
21
|
Zhao HF, Zhang Y, Lyu XD, Guo Z, Yang JY, Li Z, Zu YL, Zhou J, Yu FK, Song YP. [High throughput sequencing for detection of 82 kinds of hematologic malignancy related gene mutations in patients with chronic myeloid leukemia resistant to tyrosine kinase inhibitors]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:866-869. [PMID: 31775490 PMCID: PMC7364976 DOI: 10.3760/cma.j.issn.0253-2727.2019.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/05/2022]
Affiliation(s)
- H F Zhao
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Yanli Zhang
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - X D Lyu
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Z Guo
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - J Y Yang
- Beijing Institute of Genome, Chinese Academy of Sciences, Beijing 100101, China
| | - Z Li
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Y L Zu
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - J Zhou
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - F K Yu
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Y P Song
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
22
|
Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia 2019; 33:1835-1850. [PMID: 31209280 DOI: 10.1038/s41375-019-0512-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Outcomes for patients with chronic myeloid leukemia (CML) have substantially improved due to advances in drug development and rational treatment intervention strategies. Despite these significant advances there are still unanswered questions on patient management regarding how to more reliably predict treatment failure at the time of diagnosis and how to select frontline tyrosine kinase inhibitor (TKI) therapy for optimal outcome. The BCR-ABL1 transcript level at diagnosis has no established prognostic impact and cannot guide frontline TKI selection. BCR-ABL1 mutations are detected in ~50% of TKI resistant patients but are rarely responsible for primary resistance. Other resistance mechanisms are largely uncharacterized and there are no other routine molecular testing strategies to facilitate the evaluation and further stratification of TKI resistance. Advances in next-generation sequencing technology has aided the management of a growing number of other malignancies, enabling the incorporation of somatic mutation profiles in diagnosis, classification, and prognostication. A largely unexplored area in CML research is whether expanded genomic analysis at diagnosis, resistance, and disease transformation can enhance patient management decisions, as has occurred for other cancers. The aim of this article is to review publications that reported mutated cancer-associated genes in CML patients at various disease phases. We discuss the frequency and type of such variants at initial diagnosis and at the time of treatment failure and transformation. Current limitations in the evaluation of mutants and recommendations for future reporting are outlined. The collective evaluation of mutational studies over more than a decade suggests a limited set of cancer-associated genes are indeed recurrently mutated in CML and some at a relatively high frequency. Genomic studies have the potential to lay the foundation for improved diagnostic risk classification according to clinical and genomic risk, and to enable more precise early identification of TKI resistance.
Collapse
|
23
|
NGS in CML - New standard diagnostic procedure? Hemasphere 2019; 3:HemaSphere-2019-0037. [PMID: 35309784 PMCID: PMC8925682 DOI: 10.1097/hs9.0000000000000199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
|
24
|
Nteliopoulos G, Bazeos A, Claudiani S, Gerrard G, Curry E, Szydlo R, Alikian M, Foong HE, Nikolakopoulou Z, Loaiza S, Khorashad JS, Milojkovic D, Perrotti D, Gale RP, Foroni L, Apperley JF. Somatic variants in epigenetic modifiers can predict failure of response to imatinib but not to second-generation tyrosine kinase inhibitors. Haematologica 2019; 104:2400-2409. [PMID: 31073075 PMCID: PMC6959189 DOI: 10.3324/haematol.2018.200220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/06/2019] [Indexed: 11/09/2022] Open
Abstract
There are no validated molecular biomarkers to identify newly-diagnosed individuals with chronic-phase chronic myeloid leukemia likely to respond poorly to imatinib and who might benefit from first-line treatment with a more potent second-generation tyrosine kinase inhibitor. Our inability to predict these ‘high-risk’ individuals reflects the poorly understood heterogeneity of the disease. To investigate the potential of genetic variants in epigenetic modifiers as biomarkers at diagnosis, we used Ion Torrent next-generation sequencing of 71 candidate genes for predicting response to tyrosine kinase inhibitors and probability of disease progression. A total of 124 subjects with newly-diagnosed chronic-phase chronic myeloid leukemia began with imatinib (n=62) or second-generation tyrosine kinase inhibitors (n=62) and were classified as responders or non-responders based on the BCRABL1 transcript levels within the first year and the European LeukemiaNet criteria for failure. Somatic variants affecting 21 genes (e.g. ASXL1, IKZF1, DNMT3A, CREBBP) were detected in 30% of subjects, most of whom were non-responders (41% non-responders, 18% responders to imatinib, 38% non-responders, 25% responders to second-generation tyrosine kinase inhibitors). The presence of variants predicted the rate of achieving a major molecular response, event-free survival, progression-free survival and chronic myeloid leukemia-related survival in the imatinib but not the second-generation tyrosine kinase inhibitors cohort. Rare germline variants had no prognostic significance irrespective of treatment while some pre-leukemia variants suggest a multi-step development of chronic myeloid leukemia. Our data suggest that identification of somatic variants at diagnosis facilitates stratification into imatinib responders/non-responders, thereby allowing earlier use of second-generation tyrosine kinase inhibitors, which, in turn, may overcome the negative impact of such variants on disease progression.
Collapse
Affiliation(s)
| | - Alexandra Bazeos
- Centre for Haematology, Department of Medicine, Imperial College, London, UK
| | - Simone Claudiani
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Gareth Gerrard
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Sarah Cannon Molecular Diagnostics, HCA Healthcare UK, London, UK
| | - Edward Curry
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College, London, UK
| | - Richard Szydlo
- Centre for Haematology, Department of Medicine, Imperial College, London, UK
| | - Mary Alikian
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Hui En Foong
- Imperial College Healthcare NHS Trust, London, UK
| | - Zacharoula Nikolakopoulou
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sandra Loaiza
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Jamshid S Khorashad
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Dragana Milojkovic
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Danilo Perrotti
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore MD, USA
| | - Robert Peter Gale
- Centre for Haematology, Department of Medicine, Imperial College, London, UK
| | - Letizia Foroni
- Centre for Haematology, Department of Medicine, Imperial College, London, UK
| | - Jane F Apperley
- Centre for Haematology, Department of Medicine, Imperial College, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
25
|
Lavrov AV, Chelysheva EY, Adilgereeva EP, Shukhov OA, Smirnikhina SA, Kochergin-Nikitsky KS, Yakushina VD, Tsaur GA, Mordanov SV, Turkina AG, Kutsev SI. Exome, transcriptome and miRNA analysis don't reveal any molecular markers of TKI efficacy in primary CML patients. BMC Med Genomics 2019; 12:37. [PMID: 30871622 PMCID: PMC6416830 DOI: 10.1186/s12920-019-0481-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Approximately 5-20% of chronic myeloid leukemia (CML) patients demonstrate primary resistance or intolerance to imatinib. None of the existing predictive scores gives a good prognosis of TKI efficacy. Gene polymorphisms, expression and microRNAs are known to be involved in the pathogenesis of TKI resistance in CML. The aim of our study is to find new molecular markers of TKI therapy efficacy in CML patients. METHODS Newly diagnosed patients with Ph+ CML in chronic phase were included in this study. Optimal and non-optimal responses to TKI were estimated according to ELN 2013 recommendation. We performed genotyping of selected polymorphisms in 62 blood samples of CML patients, expression profiling of 33 RNA samples extracted from blood and miRNA profiling of 800 miRNA in 12 blood samples of CML patients. RESULTS The frequencies of genotypes at the studied loci did not differ between groups of patients with an optimal and non-optimal response to TKI therapy. Analysis of the expression of 34,681 genes revealed 26 differently expressed genes (p < 0.05) in groups of patients with different TKI responses, but differences were very small and were not confirmed by qPCR. Finally, we did not find difference in miRNA expression between the groups. CONCLUSIONS Using modern high-throughput methods such as whole-exome sequencing, transcriptome and miRNA analysis, we could not find reliable molecular markers for early prediction of TKI efficiency in Ph+ CML patients.
Collapse
Affiliation(s)
- Alexander V Lavrov
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522. .,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Ostrovityanova str., 1, Moscow, Russian Federation, 117997.
| | - Ekaterina Yu Chelysheva
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, Moscow, Russian Federation, 125167
| | - Elmira P Adilgereeva
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Oleg A Shukhov
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, Moscow, Russian Federation, 125167
| | - Svetlana A Smirnikhina
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Konstantin S Kochergin-Nikitsky
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Valentina D Yakushina
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Grigory A Tsaur
- Regional Children Hospital 1, S. Deryabinoy str., 32, Ekaterinburg, Russian Federation, 620149.,Research Institute of Medical Cell Technologies, Soboleva str., 25, Ekaterinburg, Russian Federation, 620905.,Federal State Budgetary Educational Institution of Higher Education, Urals State Medical University of the Ministry of Healthcare of the Russian Federation, Repina str., 3, Ekaterinburg, Russian Federation, 620028
| | - Sergey V Mordanov
- Laboratory of Medical Genetics, The Rostov State Medical University, Nahichevansky av., 29, Rostov-on-Don, Russian Federation, 344022
| | - Anna G Turkina
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, Moscow, Russian Federation, 125167
| | - Sergey I Kutsev
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522.,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Ostrovityanova str., 1, Moscow, Russian Federation, 117997
| |
Collapse
|