1
|
Yang X, Lu W, Hopper CP, Ke B, Wang B. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles. Acta Pharm Sin B 2021; 11:1434-1445. [PMID: 34221861 PMCID: PMC8245769 DOI: 10.1016/j.apsb.2020.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Nature has endowed gaseous molecules such as O2, CO2, CO, NO, H2S, and N2 with critical and diverse roles in sustaining life, from supplying energy needed to power life and building blocks for life's physical structure to mediating and coordinating cellular functions. In this article, we give a brief introduction of the complex functions of the various gaseous molecules in life and then focus on carbon monoxide as a specific example of an endogenously produced signaling molecule to highlight the importance of this class of molecules. The past twenty years have seen much progress in understanding CO's mechanism(s) of action and pharmacological effects as well as in developing delivery methods for easy administration. One remarkable trait of CO is its pleiotropic effects that have few parallels, except perhaps its sister gaseous signaling molecules such as nitric oxide and hydrogen sulfide. This review will delve into the sophistication of CO-mediated signaling as well as its validated pharmacological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Christopher P. Hopper
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Würzburg, Bavaria 97080, Germany
| | - Bowen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610041, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Vanova K, Suk J, Petr T, Cerny D, Slanar O, Vreman HJ, Wong RJ, Zima T, Vitek L, Muchova L. Protective effects of inhaled carbon monoxide in endotoxin-induced cholestasis is dependent on its kinetics. Biochimie 2013; 97:173-80. [PMID: 24148277 DOI: 10.1016/j.biochi.2013.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
Carbon monoxide (CO), a product of heme oxygenase (HMOX), has many beneficial biological functions and is a promising therapeutic agent for many pathological conditions. However, the kinetics of inhaled CO and its protective role in endotoxin-induced cholestasis is not fully known. Thus, our objective was to characterize the kinetics of inhaled CO and then investigate its use in early phase experimental endotoxin-induced cholestasis. Female Wistar rats were randomly divided into 4 groups: CON (control), LPS (lipopolysaccharide, 6 mg/kg), CO (250 ppm COx1h), and CO + LPS. Rats were sacrificed at 0-12 h after LPS administration. Tissues and blood were collected for liver injury markers and tissue CO distribution measurements. Livers were harvested for measurements of Hmox activity, Hmox1 mRNA expression, cytokines (IL10, IL6, TNF), and bile lipid and pigment transporters. Half-lives of CO in spleen, blood, heart, brain, kidney, liver, and lungs were 2.4 ± 1.5, 2.3 ± 0.8, 1.8 ± 1.6, 1.5 ± 1.2, 1.1 ± 1.1, 0.6 ± 0.3, 0.6 ± 0.2 h, respectively. CO treatment increased liver IL10 mRNA and decreased TNF expression 1 h after LPS treatment and prevented the down-regulation of bile acid and bilirubin hepatic transporters (Slc10a1, Abcb11, and Abcc2, p < 0.05), an effect closely related to the kinetics. The protective effect of CO against cholestatic liver injury persisted even 12 h after CO exposure, as shown by attenuation of serum cholestatic markers in CO-treated animals. CO exposure substantially attenuated endotoxin-induced cholestatic liver injury and was directly related to the kinetics of inhaled CO. This data underscores the importance of the kinetics of inhaled CO for the proper design of experimental and clinical studies of using CO as a treatment strategy.
Collapse
Affiliation(s)
- K Vanova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - J Suk
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - T Petr
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - D Cerny
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - O Slanar
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - H J Vreman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - R J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - T Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - L Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - L Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
3
|
Exogenous carbon monoxide does not affect cell membrane energy availability assessed by sarcolemmal calcium fluxes during myocardial ischaemia-reperfusion in the pig. Eur J Anaesthesiol 2011; 28:356-62. [PMID: 20811288 DOI: 10.1097/eja.0b013e32833eab96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carbon monoxide is thought to be cytoprotective and may hold therapeutic promise for mitigating ischaemic injury. The purpose of this study was to test low-dose carbon monoxide for protective effects in a porcine model of acute myocardial ischaemia and reperfusion. In acute open-thorax experiments in anaesthetised pigs, pretreatment with low-dose carbon monoxide (5% increase in carboxyhaemoglobin) was conducted for 120 min before localised ischaemia (45 min) and reperfusion (60 min) was performed using a coronary snare. Metabolic and injury markers were collected by microdialysis sampling in the ventricular wall. Recovery of radio-marked calcium delivered locally by microperfusate was measured to assess carbon monoxide treatment effects during ischaemia/reperfusion on the intracellular calcium pool. Coronary occlusion and ischaemia/reperfusion were analysed for 16 animals (eight in each group). Changes in glucose, lactate and pyruvate from the ischaemic area were observed during ischaemia and reperfusion interventions, though there was no difference between carbon monoxide-treated and control groups during ischaemia or reperfusion. Similar results were observed for glycerol and microdialysate ⁴⁵Ca(2+) recovery. These findings show that a relatively low and clinically relevant dose of carbon monoxide did not seem to provide acute protection as indicated by metabolic, energy-related and injury markers in a porcine myocardial ischaemia/reperfusion experimental model. We conclude that protective effects of carbon monoxide related to ischaemia/reperfusion either require higher doses of carbon monoxide or occur later after reperfusion than the immediate time frame studied here. More study is needed to characterise the mechanism and time frame of carbon monoxide-related cytoprotection.
Collapse
|
4
|
Ahlström K, Biber B, Aberg A, Waldenström A, Ronquist G, Abrahamsson P, Strandén P, Johansson G, Haney MF. Metabolic responses in ischemic myocardium after inhalation of carbon monoxide. Acta Anaesthesiol Scand 2009; 53:1036-42. [PMID: 19426237 DOI: 10.1111/j.1399-6576.2009.01992.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND To clarify the mechanisms of carbon monoxide (CO) tissue-protective effects, we studied energy metabolism in an animal model of acute coronary occlusion and pre-treatment with CO. METHODS In anesthetized pigs, a coronary snare and microdialysis probes were placed. CO (carboxyhemoglobin 5%) was inhaled for 200 min in test animals, followed by 40 min of coronary occlusion. Microdialysate was analyzed for lactate and glucose, and myocardial tissue samples were analyzed for adenosine tri-phosphate, adenosine di-phosphate, and adenosine mono-phosphate. RESULTS Lactate during coronary occlusion was approximately half as high in CO pre-treated animals and glucose levels decreased to a much lesser degree during ischemia. Energy charge was no different between groups. CONCLUSIONS CO in the low-doses tested in this model results in a more favorable energy metabolic condition in that glycolysis is decreased in spite of maintained energy charge. Further work is warranted to clarify the possible mechanistic role of energy metabolism for CO protection.
Collapse
|
5
|
Li X, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G. Amino acids and gaseous signaling. Amino Acids 2009; 37:65-78. [DOI: 10.1007/s00726-009-0264-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 02/12/2009] [Indexed: 01/08/2023]
|
6
|
Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, Botchkarev A, Krause HM, Edwards A. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol 2009; 7:e43. [PMID: 19243223 PMCID: PMC2652392 DOI: 10.1371/journal.pbio.1000043] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 01/12/2009] [Indexed: 01/07/2023] Open
Abstract
Heme is a ligand for the human nuclear receptors (NR) REV-ERBalpha and REV-ERBbeta, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 A crystal structure of the REV-ERBbeta LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBbeta complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions.
Collapse
Affiliation(s)
- Keith I Pardee
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Xiaohui Xu
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada
| | - Jeff Reinking
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Biology, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Anja Schuetz
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Suya Liu
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Rongguang Zhang
- Midwest Center for Structural Genomics, Argonne National Lab, Argonne, Illinois, United States of America
| | - Jens Tiefenbach
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Gilles Lajoie
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | - Alexey Botchkarev
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Henry M Krause
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (AE); (HMK)
| | - Aled Edwards
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (AE); (HMK)
| |
Collapse
|
7
|
Åberg AM, Sojka BN, Winsö O, Abrahamsson P, Johansson G, Larsson JE. Carbon monoxide concentration in donated blood: relation to cigarette smoking and other sources. Transfusion 2009; 49:347-53. [DOI: 10.1111/j.1537-2995.2008.01951.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Howey R, Quan M, Savill NJ, Matthews L, Alexandersen S, Woolhouse M. Effect of the initial dose of foot-and-mouth disease virus on the early viral dynamics within pigs. J R Soc Interface 2008; 6:835-47. [PMID: 19019816 DOI: 10.1098/rsif.2008.0434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper investigates the early viral dynamics of foot-and-mouth disease (FMD) within infected pigs. Using an existing within-host model, we investigate whether individual variation can be explained by the effect of the initial dose of FMD virus. To do this, we consider the experimental data on the concentration of FMD virus genomes in the blood (viral load). In this experiment, 12 pigs were inoculated with one of three different doses of FMD virus: low; medium; or high. Measurements of the viral load were recorded over a time course of approximately 11 days for every 8 hours. The model is a set of deterministic differential equations with the following variables: viral load; virus in the interstitial space; and the proportion of epithelial cells available for infection, infected and uninfected. The model was fitted to the data for each animal individually and also simultaneously over all animals varying only the initial dose. We show that the general trend in the data can be explained by varying only the initial dose. The higher the initial dose the earlier the development of a detectable viral load.
Collapse
Affiliation(s)
- Richard Howey
- Epidemiology Group, Centre for Infectious Diseases, Ashworth Laboratories, Kings Buildings, Mains Road, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Aberg AM, Abrahamsson P, Johansson G, Haney M, Winsö O, Larsson JE. Does carbon monoxide treatment alter cytokine levels after endotoxin infusion in pigs? A randomized controlled study. JOURNAL OF INFLAMMATION-LONDON 2008; 5:13. [PMID: 18687112 PMCID: PMC2518540 DOI: 10.1186/1476-9255-5-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 08/07/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Carbon monoxide (CO) has recently been suggested to have anti-inflammatory properties, but data seem to be contradictory and species-specific. Thus, in studies on macrophages and mice, pretreatment with CO attenuated the inflammatory response after endotoxin exposure. On the other hand, human studies showed no effect of CO on the inflammatory response. Anti-inflammatory efficacy of CO has been shown at concentrations above 10% carboxyhaemoglobin. This study was undertaken to elucidate the possible anti-inflammatory effects of CO at lower CO concentrations. METHODS Effects of CO administration on cytokine (TNF-alpha, IL-6, IL-1beta and IL-10) release were investigated in a porcine model in which a systemic inflammatory response syndrome was induced by endotoxin infusion. Endotoxin was infused in 20 anaesthetized and normoventilated pigs. Ten animals were targeted with inhaled CO to maintain 5% COHb, and 10 animals were controls. RESULTS In the control group, mean pulmonary artery pressure increased from a baseline value of 17 mmHg (mean, n = 10) to 42 mmHg (mean, n = 10) following 1 hour of endotoxin infusion. Similar mean pulmonary artery pressure values were found in animals exposed to carbon monoxide. Plasma levels of all of the measured cytokines increased in response to the endotoxin infusion. The largest increase was observed in TNF-alpha, which peaked after 1.5 hours at 9398 pg/ml in the control group and at 13395 pg/ml in the carbon monoxide-exposed group. A similar peak was found for IL-10 while the IL-6 concentration was maximal after 2.5 hours. IL-1beta concentrations increased continuously during the experiment. There were no significant differences between carbon monoxide-exposed animals and controls in any of the measured cytokines. CONCLUSION Our conclusion is that 5% COHb does not modify the cytokine response following endotoxin infusion in pigs.
Collapse
Affiliation(s)
- Anna-Maja Aberg
- Division of Anaesthesiology and Intensive Care Medicine, Department of Surgical and Perioperative Sciences, Umeå University Hospital, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
10
|
Gómez-Ochoa P, Miana-Mena FJ, Muñoz MJ, Gascón M, Castillo JA, Cativiela E, Gómez F. Isolation and development of haematopoietic progenitor cells from peripheral blood of adult and newborn pigs. Acta Vet Hung 2007; 55:171-80. [PMID: 17555281 DOI: 10.1556/avet.55.2007.2.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pluripotent stem cells (PSCs), already described in human beings, are fibroblast-like cells that exhibit a CD34 marker specific for haematopoietic stem cells. In this work we have demonstrated the presence of PSCs in the peripheral blood of pigs, a species frequently used in transplantation studies as an animal model for human diseases. Differentiation into haematopoietic colonies (granulomacrophagic colonies, erythroid colonies and mixed colonies) has been carried out with the peripheral blood of adult and newborn pigs, using solely human commercial media. Peripheral blood mononuclear cells (PBMNCs) were cultured in semisolid methylcellulose based media enriched with recombinant human cytokines, achieving granulomacrophagic-colony forming unit (GM-CFU) and mixed-colony forming unit (Mix-CFU) growth with erythroblastic lineage proliferation in the presence of erythropoietin (Epo). In all the samples CFU growth was associated with the presence of recombinant human cytokine. No evidence of proliferation in control plates without cytokines was found. From liquid medium culture, a population of macrophages and CD34+ fibroblast like cells were retrieved 21 days after sowing. These findings allow us to think about the direct application of this simple and standardised method in several work fields such as the study of pharmacological effects of many drugs over the haematopoietic line and in the study of new strategies in cellular therapy for some human diseases.
Collapse
Affiliation(s)
- P Gómez-Ochoa
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, C/ Miguel Servet, 177 CP 50013, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|