1
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
2
|
Ghadiri N, Javidan M, Sheikhi S, Taştan Ö, Parodi A, Liao Z, Tayybi Azar M, Ganjalıkhani-Hakemi M. Bioactive peptides: an alternative therapeutic approach for cancer management. Front Immunol 2024; 15:1310443. [PMID: 38327525 PMCID: PMC10847386 DOI: 10.3389/fimmu.2024.1310443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer is still considered a lethal disease worldwide and the patients' quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Moslem Javidan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Shima Sheikhi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Özge Taştan
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
| | - Ziwei Liao
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mehdi Tayybi Azar
- Department of Biophysics, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Mazdak Ganjalıkhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
3
|
Zhou Y, Ji X, Wang D, Guo Y, Zhao J, Yan W. Effect of silkworm pupae ( Bombyx mori) protein on colon cancer in nude mice: inhibition of tumor growth, oxidative stress and inflammatory response. Front Pharmacol 2023; 14:1138742. [PMID: 37538184 PMCID: PMC10394231 DOI: 10.3389/fphar.2023.1138742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Silkworm pupa (bombyx mori) protein (SPP) is a potential therapeutic bioactive substance that has anti-tumor activity against breast, liver, and gastric cancers. The aim of this study was to investigate the antitumor effect of SPP on colon cancer nude mice. Using a subcutaneous tumor formation method, we validated the therapeutic effect of SPP on colon cancer nude mice in vivo. Results showed that SPP was cytotoxic to tumor cells. SPP could protect the liver of the nude mice by lowering hepatic oxidative stress and regulating serum inflammation levels by decreasing TNF-α and IL-2 levels while in-creasing INF-γ levels. In addition, diminished Ki-67 protein, enhanced cleaved caspase-3 protein, di-minished Vimentin, enhanced E-cadherin. These findings suggested that SPP's antitumor activity may be achieved by reducing inflammation, inhibiting tumor proliferation and metastasis, and inducing apoptosis in cancer cells. In the future, SPP could be used as an anticancer drug, potentially providing a new source of drugs for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xiaojiao Ji
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
4
|
Tanga CM, Mokaya HO, Kasiera W, Subramanian S. Potential of Insect Life Stages as Functional Ingredients for Improved Nutrition and Health. INSECTS 2023; 14:136. [PMID: 36835705 PMCID: PMC9959540 DOI: 10.3390/insects14020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to provide information on the nutrients of the edible larval stage of Gonimbrasia cocaulti (GC) for the first time, while exploring the potential nutrient content of the pupal life stages of the domestic silkworm (Bombyx mori; BM) and the Eri silkworm (Samia Cynthia ricini; SC). The three insects were analyzed for fatty acids, minerals, proximate composition and vitamins. Among the fatty acids, linoleic, a polyunsaturated fatty acid, was approximately threefold higher in GC than in the silkworms. The Ca, Fe and K contents were highest in GC. However, the Zn and Na contents were highest in BM, while Mg content was predominant in SC. The crude protein content of the various developmental life stages of the edible caterpillars and pupae ranged between 50 and 62%. Further, the fiber content of GC was substantially higher compared to the pupal stages of the two silkworm species. The vitamin (B6, B9, B12 and α-tocopherol) levels of the two insect life stages were considerably high. These insects are comparably rich in nutrients with potential suitability to be utilized in food fortification and thus ease pressure on the over-reliance on animal and plant-based sources, which are becoming unsustainable.
Collapse
|
5
|
Mahanta DK, Komal J, Samal I, Bhoi TK, Dubey VK, Pradhan K, Nekkanti A, Gouda MNR, Saini V, Negi N, Bhateja S, Jat HK, Jeengar D. Nutritional aspects and dietary benefits of "Silkworms": Current scenario and future outlook. Front Nutr 2023; 10:1121508. [PMID: 36742434 PMCID: PMC9892554 DOI: 10.3389/fnut.2023.1121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
In the current scenario, it is estimated that by 2050, there will be an additional 2.5 billion people and a 70% increase in food demand. Crop yields are not increasing fast enough to support global needs, and world agriculture is facing several serious challenges. Therefore, insects can be a nutritious alternative to meet the ever-increasing food demand in the present and future. The majority of insect consumption occurs in developing countries, with approximately 1,900 insect species consumed worldwide. Food and feed derived from them are of high quality, have a high feed conversion ratio and emit a low level of greenhouse gases. Among insects silkworms are beneficial to humans, not only because of their high nutritional value, but also because of their several pharmacological properties. Silkworm eggs, larvae, and pupae contains high amount of proteins, oils, minerals, vitamins, and several other beneficial components which are nutritious as well as have positive effect on human health. Studies have shown that silkworm pupae protect the liver, enhance immunity, inhibit apoptosis, inhibit cancer, inhibit tumor growth, inhibit microbial growth, regulate blood glucose and blood lipids, and lower blood pressure. This review paper summerized the nutritional value of different life stages of silkworm, nutritional comparison of silkworm with the major human foods, and the effects of silkworm consumption on human health, thus ittargets to generate interest toward in sericulture and improve human health by using silkworm as a nutritious food and attain sustainability in food and nutritional security.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE – Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Vinod Kumar Dubey
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Kiranamaya Pradhan
- Department of Entomology, University of Agricultural Sciences, Dharwad, India
| | - Aarthi Nekkanti
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - M. N. Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Varun Saini
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nikita Negi
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Sheenam Bhateja
- Department of Entomology, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Hansa Kumari Jat
- Department of Entomology, Rajasthan Agricultural Research Institute, Durgapur, Jaipur, Rajasthan, India
| | - Deepika Jeengar
- Department of Entomology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
6
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
7
|
Pan J, Xu H, Cheng Y, Mintah BK, Dabbour M, Yang F, Chen W, Zhang Z, Dai C, He R, Ma H. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022; 11:foods11192931. [PMID: 36230006 PMCID: PMC9562009 DOI: 10.3390/foods11192931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the recent increase in the human population and the associated shortage of protein resources, it is necessary to find new, sustainable, and natural protein resources from invertebrates (such as insects) and underutilized plants. In most cases, compared to plants (e.g., grains and legumes) and animals (e.g., fish, beef, chicken, lamb, and pork), insect proteins are high in quality in terms of their nutritional value, total protein content, and essential amino acid composition. This review evaluates the recent state of insects as an alternative protein source from production to application; more specifically, it introduces in detail the latest advances in the protein extraction process. As an alternative source of protein in food formulations, the functional characteristics of edible insect protein are comprehensively presented, and the risk of allergy associated with insect protein is also discussed. The biological activity of protein hydrolyzates from different species of insects (Bombyx mori, Hermetia illucens, Acheta domesticus, Tenebrio molitor) are also reviewed, and the hydrolysates (bioactive peptides) are found to have either antihypertensive, antioxidant, antidiabetic, and antimicrobial activity. Finally, the use of edible insect protein in various food applications is presented.
Collapse
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Qaluobia P.O. Box 13736, Egypt
| | - Fan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhaoli Zhang
- School of Food Science and Engineering, Yangzhou University, 196 Huayang West Road, Yangzhou 225127, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: or ; Tel./Fax: +86-(511)-8878-0201
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
8
|
Silkworm Pupae: A Functional Food with Health Benefits for Humans. Foods 2022; 11:foods11111594. [PMID: 35681343 PMCID: PMC9180533 DOI: 10.3390/foods11111594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Silkworm pupae are insects that are beneficial to human health, not only for their high nutritional value but, more importantly, for the variety of pharmacological functions they can perform when consumed. Currently, there is a lot of interest in the pharmaceutical applications of silkworm pupae. In recent years, the biological functions of domestic silkworm pupae have gradually been identified and confirmed, especially for their beneficial effects on human health. Studies have found that silkworm pupae have positive effects on liver protection, immune enhancement, antiapoptosis, antitumour, antibacterial, regulation of blood glucose and blood lipids, and lowering of blood pressure. However, the pharmacological mechanisms and systemic safety of silkworm pupae have not been systematically evaluated. In this paper, the nutritional composition of the pupae of the domestic silkworm is first summarised. The pharmacological functions of silkworm pupae and their components are then classified, and their mechanisms of occurrence are described. In addition, we provide a preliminary evaluation of the safety of silkworm pupae, analyse their application prospects, and suggest future directions for further pharmacological function studies. The aim is to generate interest in the promotion of human health through the use of silkworm pupae.
Collapse
|
9
|
A novel therapeutic strategy for hepatocellular carcinoma: Immunomodulatory mechanisms of selenium and/or selenoproteins on a shift towards anti-cancer. Int Immunopharmacol 2021; 96:107790. [PMID: 34162153 DOI: 10.1016/j.intimp.2021.107790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is an essential trace chemical element that is widely distributed worldwide. Se exerts its immunomodulatory and nutritional activities in the human body in the form of selenoproteins. Se has increasingly appeared as a potential trace element associated with many human diseases, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that Se and selenoproteins exert their immunomodulatory effects on HCC by regulating the molecules of oxidative stress, inflammation, immune response, cell proliferation and growth, angiogenesis, signaling pathways, apoptosis, and other processes in vitro cell studies and in vivo animal studies. Se concentrations are generally low in tissues of patients with HCC, such as blood, serum, scalp hair, and toenail. However, Se concentrations were higher in HCC patient tissues after Se supplementation than before supplementation. This review summarizes the significant relationship between Se and HCC, and details the role of Se as a novel immunomodulatory or immunotherapeutic approach against HCC.
Collapse
|
10
|
El-Dakar MA, Ramzy RR, Wang D, Ji H. Sustainable management of Se-rich silkworm residuals by black soldier flies larvae to produce a high nutritional value and accumulate ω-3 PUFA. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:72-81. [PMID: 33610113 DOI: 10.1016/j.wasman.2021.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Waste disposal and utilisation of its important components are pioneering goals for achieving sustainable development and a clean environment. Silkworm pupae (SWP) are considered a by-product of the sericulture industry and may contain a high concentration of selenium (Se) in some regions, making them a potentially hazardous waste posing health risks. This study examined six treatments of Se-rich SWP (0-100%) as a substrate for black soldier fly (BSF) larvae. Growth performance and protein content of BSF larvae were not affected by increasing SWP content. The total fat, mono-, and poly-unsaturated fatty acids in BSF pre-pupae increased with increasing SWP inclusion in the substrate, from P0 (pre-pupae fed control treatment) through P100 (pre-pupae fed 100% SWP treatment), by 18.83, 61.14, and 62.42%, respectively. The results of significance were: (1) BSF pre-pupae did not accumulate Se, maintaining the same amount of Se in their bodies (~0.18 mg/kg); (2) omega-3 fatty acids represented by linolenic acid in BSF increased by 1,223.35% from P0 to P100, with 70.65% recovered from the SWP; (3) valine percentage increased in BSF compared with the percentage of SWP by 25.30%; and (4) BSF larvae were observed reducing SWP waste by more than one-third. BSF larvae can reduce the waste from sericulture industry and exploit the beneficial properties and components of SWP, converting them into safe and highly nutritious products.
Collapse
Affiliation(s)
- Marco A El-Dakar
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Remondah R Ramzy
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dun Wang
- Institute of Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
11
|
Long X, Zhao X, Wang W, Zhang Y, Wang H, Liu X, Suo H. Protective effect of silkworm pupa oil on hydrochloric acid/ethanol-induced gastric ulcers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2974-2986. [PMID: 30479041 DOI: 10.1002/jsfa.9511] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Silkworm pupae are a traditional Chinese food, rich in various saturated and unsaturated fatty acids. Unsaturated fatty acids have a certain protective effect against oxidative damage. The present study used an animal model to determine the protective effect of silkworm pupa oil on hydrochloric acid / ethanol-induced gastric ulcer. RESULTS Silkworm pupa oil is rich in unsaturated fatty acids, including palmitoleic acid 63.4 g kg-1 , oleic acid 249.1 g kg-1 , linoleic acid 47.0 g kg-1 , and linolenic acid 337.8 g kg-1 , whereas its unsaturated fatty acid content is 700 g kg-1 . Compared to a gastric ulcer control group, high and low doses of pupa oil reduced gastric ulcer area and gastric secretion, whereas gastric pH increased. It also increased serum antioxidant superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) levels, somatostatin (SST), and vasoactive intestinal peptide (VIP) levels, and reduced serum interleukin-6 (IL-6), interleukin-12 (IL-12), tumor necrosis factor (TNF-α), and interferon-γ (IFN-γ), motilin (MTL), and gastrin (GT) levels. RT-qPCR and western blot analyses indicated that silkworm pupa oil significantly increased CAT, GSH-Px, epidermal growth factor (EGF), Epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), Cu/Zn-SOD, Mn-SOD, and NF-kappa-B inhibitor-α (IκB-α) expression and lowered nuclear factor-kappa B (NF-κB), B-cell lymphoma-2 (Bcl-2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) expression. CONCLUSION Silkworm pupa oil treatment reduced oxidative damage and inflammation in mice, and high-dose silkworm pupa oil was superior to low-dose silkworm pupa oil, following ranitidine. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingyao Long
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Wei Wang
- Qinghai University, Xining, P.R. China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing, P.R. China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing, P.R. China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
| | - Huayi Suo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China
| |
Collapse
|
12
|
Rathore H, Sharma A, Prasad S, Sharma S. Selenium bioaccumulation and associated nutraceutical properties in Calocybe indica mushroom cultivated on Se-enriched wheat straw. J Biosci Bioeng 2018; 126:482-487. [DOI: 10.1016/j.jbiosc.2018.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/10/2023]
|
13
|
Yu Z, Jiang H, Guo R, Yang B, You G, Zhao M, Liu X. Taste, umami-enhance effect and amino acid sequence of peptides separated from silkworm pupa hydrolysate. Food Res Int 2018; 108:144-150. [DOI: 10.1016/j.foodres.2018.02.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 11/15/2022]
|
14
|
Li X, Xie H, Chen Y, Lang M, Chen Y, Shi L. Silkworm Pupa Protein Hydrolysate Induces Mitochondria-Dependent Apoptosis and S Phase Cell Cycle Arrest in Human Gastric Cancer SGC-7901 Cells. Int J Mol Sci 2018; 19:ijms19041013. [PMID: 29597296 PMCID: PMC5979490 DOI: 10.3390/ijms19041013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
Silkworm pupae (Bombyx mori) are a high-protein nutrition source consumed in China since more than 2 thousand years ago. Recent studies revealed that silkworm pupae have therapeutic benefits to treat many diseases. However, the ability of the compounds of silkworm pupae to inhibit tumourigenesis remains to be elucidated. Here, we separated the protein of silkworm pupae and performed alcalase hydrolysis. Silkworm pupa protein hydrolysate (SPPH) can specifically inhibit the proliferation and provoke abnormal morphologic features of human gastric cancer cells SGC-7901 in a dose- and time-dependent manner. Moreover, flow cytometry indicated that SPPH can induce apoptosis and arrest the cell-cycle in S phase. Furthermore, SPPH was shown to provoke accumulation of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential. Western blotting analysis indicated that SPPH inhibited Bcl-2 expression and promoted Bax expression, and subsequently induced apoptosis-inducing factor and cytochrome C release, which led to the activation of initiator caspase-9 and executioner caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), eventually caused cell apoptosis. Moreover, SPPH-induced S-phase arrest was mediated by up-regulating the expression of E2F1 and down-regulating those of cyclin E, CDK2 and cyclin A2. Transcriptome sequencing and gene set enrichment analysis (GSEA) also revealed that SPPH treatment could affect gene expression and pathway regulation related to tumourigenesis, apoptosis and cell cycle. In summary, our results suggest that SPPH could specifically suppress cell growth of SGC-7901 through an intrinsic apoptotic pathway, ROS accumulation and cell cycle arrest, and silkworm pupae have a potential to become a source of anticancer agents in the future.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yajie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Mingzi Lang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Tao M, Wang C, Liao D, Liu H, Zhao Z, Zhao Z. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Ezoe K, Ohyama S, Hashem MA, Ohira SI, Toda K. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection. Talanta 2016; 148:609-16. [DOI: 10.1016/j.talanta.2015.06.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 11/26/2022]
|
17
|
Wang X, Wang N, Cheung F, Lao L, Li C, Feng Y. Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2015; 13:142-64. [PMID: 26006028 DOI: 10.1016/s2095-4964(15)60171-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of leading causes of death in the world. Although various treatments have been developed, the therapeutic side effects are far from desirable. Chinese medicines (CMs, including plants, animal parts and minerals) have drawn a great deal of attention in recent years for their potential in the treatment of HCC. Most studies have shown that CMs may be able to retard HCC progression with multiple actions, either alone or in combination with other conventional therapies to improve quality of life in HCC patients. Additionally, CMs are used for preventing HCC occurrence. The aim of this study is to review the potential prophylactic and curative effects of CMs on human HCC and the possible mechanisms that underlie these pharmacological actions. Publications were collected and reviewed from PubMed and China National Knowledge Infrastructure from 2000 to 2014. Keywords for literature searches include "Chinese medicine", "Chinese herb", "traditional Chinese Medicine", "hepatocellular carcinoma" and "liver cancer". CMs in forms of pure compounds, isolated fractions, and composite formulas are included. Combination therapies are also considered. Both in vitro and in vivo efficacies of CMs are being discussed and the translational potential to bedside is to be discussed with clinical cases, which show the actions of CMs on HCC may include tumor growth inhibition, antimetastatic activities, anti-inflammation, anti-liver cancer stem cells, reversal on multi-drug resistance and induction/reduction of oxidative stress. Multiple types of molecules are found to contribute in the above actions. The review paper indicated that CMs might have potential to both prevent HCC occurrence and retard HCC progression with several molecular targets involved.
Collapse
Affiliation(s)
- Xuanbin Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Charlie Li
- California Department of Public Health, Richmond, CA 94804, USA
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Chinese medicines induce cell death: the molecular and cellular mechanisms for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:530342. [PMID: 25379508 PMCID: PMC4212527 DOI: 10.1155/2014/530342] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals) were used in the study. The key words including “cancer”, “cell death”, “apoptosis”, “autophagy,” “necrosis,” and “Chinese medicine” were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.
Collapse
|
19
|
Hou Q, Qiu S, Liu Q, Tian J, Hu Z, Ni J. Selenoprotein-transgenic Chlamydomonas reinhardtii. Nutrients 2013; 5:624-36. [PMID: 23443677 PMCID: PMC3705309 DOI: 10.3390/nu5030624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) deficiency is associated with the occurrence of many diseases. However, excessive Se supplementation, especially with inorganic Se, can result in toxicity. Selenoproteins are the major forms of Se in vivo to exert its biological function. Expression of those selenoproteins, especially with the application of a newly developed system, is thus very important for studying the mechanism of Se in nutrition. The use of Chlamydomonas reinhardtii (C. reinhardtii) as a biological vector to express an heterogeneous protein is still at the initial stages of development. In order to investigate the possibility of using this system to express selenoproteins, human 15-KDa selenoprotein (Sep15), a small but widely distributed selenoprotein in mammals, was chosen for the expression platform test. Apart from the wild-type human Sep15 gene fragment, two Sep15 recombinants were constructed containing Sep15 open reading frame (ORF) and the selenocysteine insertion sequence (SECIS) element from either human Sep15 or C. reinhardtii selenoprotein W1, a highly expressed selenoprotein in this alga. Those Sep15-containing plasmids were transformed into C. reinhardtii CC-849 cells. Results showed that Sep15 fragments were successfully inserted into the nuclear genome and expressed Sep15 protein in the cells. The transgenic and wild-type algae demonstrated similar growth curves in low Se culture medium. To our knowledge, this is the first report on expressing human selenoprotein in green alga.
Collapse
Affiliation(s)
- Qintang Hou
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
| | - Shi Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
| | - Qiong Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.N.); Tel.: +86-755-26535432; Fax: +86-755-26534274
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.N.); Tel.: +86-755-26535432; Fax: +86-755-26534274
| |
Collapse
|
20
|
Shen K, Shen C, Chen L, Chen X, Chen Y. Morphological alterations of Vero cell exposed to coplanar PCB 126 and noncoplanar PCB 153. ENVIRONMENTAL TOXICOLOGY 2012; 27:26-31. [PMID: 20549637 DOI: 10.1002/tox.20608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/08/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread, persistent environmental contaminants that display a complex spectrum of toxicological properties. Exposure to PCBs has been associated with morphological anomalies in cell cultures. However, most mechanistic studies of PCBs' toxic activity have been focused on coplanar congeners. It is of importance to determine whether PCB treatment would influence cell configuration and whether these changes would depend on the structural characteristics of PCBs. In this study, we investigated cell morphological alteration in Vero cell cultures after exposure to coplanar PCB 126 and noncoplanar PCB 153. The survival of Vero cells was measured through the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. Cytotoxicity results suggested that PCB congeners had a toxic, antiproliferative effect on Vero cells. Morphological studies described structural modifications and provided evidence that apoptosis might be the main cell death pathway in PCB 153-treated cells. The comparison between PCB 126 and PCB 153 indicated that the cell death mechanisms involved in coplanar or noncoplanar PCB congener exposure were different in Vero cells.
Collapse
Affiliation(s)
- Kaili Shen
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
21
|
Shen K, Shen C, Yu J, Yu C, Chen L, Shi D, Chen Y. PCB congeners induced mitochondrial dysfunction in Vero cells. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:24-28. [PMID: 20940083 DOI: 10.1016/j.jhazmat.2010.08.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/06/2010] [Accepted: 08/12/2010] [Indexed: 05/30/2023]
Abstract
Two PCB congeners were assessed for their cytotoxicity on Vero cells, in the attempt to compare their structure-activity relationship and to investigate the role of mitochondria involved in toxicity. Flow cytometry was used to monitor the changes of mitochondrial membrane potential (Δψ(m)), cell size and apoptosis rate. Treatments of Vero cell cultures with both PCB 126 and PCB 153 resulted in loss of cell viability in our experimental conditions. In ortho-substituted PCB 153 treated cells, loss of cell viability was accompanied by decreased Δψ(m) and cell shrinkage. The coplanar congener, PCB 126, had no significant effects on Δψ(m) or cell size in this time period of exposure. These studies showed that PCB 153 is more toxic than coplanar PCB 126 to Vero cells within 24h exposure. The cytotoxicity mechanism caused by coplanar or non-coplanar PCB congener was different, and apoptosis might be the main cell death pathway in PCB 153 treated cells.
Collapse
Affiliation(s)
- Kaili Shen
- Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Rapamycin suppresses ROS-dependent apoptosis caused by selenomethionine in A549 lung carcinoma cells. Cancer Chemother Pharmacol 2010; 67:1129-36. [PMID: 20680277 DOI: 10.1007/s00280-010-1417-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/19/2010] [Indexed: 02/08/2023]
Abstract
PURPOSE Although selenium compounds possess chemotherapeutic features by inducing apoptosis in cancer cells with trivial side effects on normal cells, the mechanisms underlying its anti-cancer activity are insufficiently understood at the present. In this study, we investigated the effects of rapamycin on apoptosis induced by seleno-L-methionine (SeMet) or selenite in A549 cells. METHODS The effects of Se compounds, SeMet and selenite, on cell proliferation, apoptosis and its signaling pathway were investigated in established human adenocarcinoma cell line (A549). Cancer cells were treated with each Se during different periods. Cell apoptosis and signaling molecules were analyzed by flow cytometry (TUNEL method) or immunoblotting, respectively. RESULTS SeMet induces reactive oxygen species generation associated with the induction of apoptosis, because pretreatment of cells with N-acetyl-L-cysteine completely blocked SeMet-induced apoptosis. We also found that rapamycin completely suppressed the apoptosis of cells treated by SeMet, but not selenite. SeMet-induced apoptosis is significantly downregulated in combination with PI3 K family inhibitors (LY294002, wortmannin, PI-103, and 3-methyladenine). In addition, ROS generation was included in downstream signaling events associated with the phosphorylation of mTOR, because pretreatment of cells with rapamycin inhibited ROS generation. CONCLUSION These results suggest that SeMet-induced apoptosis is affected by the Akt/mTOR/ROS pathway in A549 cells. Akt serves an anti-survival function in the system of SeMet-treated lung cancer cells, but autophagic signaling remained unsolved.
Collapse
|
23
|
Yang HJ, Lee JW, Lee SH, Ryu JS, Kwak DH, Nam KS, Park YI, Lee YC, Jung KY, Choo YK. Estrogenic activity produced by aqueous extracts of silkworm (Bombyx mori) pupae in ovariectomized rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 38:89-97. [PMID: 20128047 DOI: 10.1142/s0192415x10007683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined the estrogenic activity produced by aqueous extracts of silkworm (Bombyx mori) pupae in ovariectomized (OVX) rats. The components of silkworm pupae were extracted in distilled water at room temperature for 6 hours. The ovaries of six-week old female rats were then bilaterally removed. One week after OVX, the animals were treated with 200, 400 or 600 mg/kg/day of silkworm pupae extracts. The body weights of the OVX rats increased remarkably compared to the control rats, however their relative uterus weights to body weights decreased significantly. Treatment with the aqueous extracts of silkworm pupae dramatically improved the decreased uterus weights of OVX rats, with the highest increase observed in treatment with 200 mg/kg/day of the aqueous extracts. Additionally, treatment with aqueous extracts (200 mg/kg/day) of silkworm pupae significantly elevated the serum 17beta-estradiol contents of OVX rats when compared to the control animals. To examine the toxic effects of silkworm pupae on the hepatic functions of OVX rats, the levels of serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) were measured. The serum GOT and GPT levels did not change in response to the administration of aqueous extracts (200, 400 and 600 mg/kg/day) for 4-weeks. Taken together, these results suggest that the aqueous extracts of silkworm pupae may have estrogenic activity, which suggests that silkworm pupae may be useful in the prevention and/or treatment of menopausal disorders caused by deficiencies in female sexual hormones, including estrogen.
Collapse
Affiliation(s)
- Hyo-Jung Yang
- Department of Biological Science, Wonkwang University, Iksan, Jeonbuk, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu Q, Liang X, Hu D, Chen P, Tian J, Zhang H. Purification and characterization of two major selenium-containing proteins in selenium-rich silkworm pupas. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11458-009-0109-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Hu XZ, Hu DC. Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch Toxicol 2009; 83:851-61. [DOI: 10.1007/s00204-009-0441-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 05/12/2009] [Indexed: 01/19/2023]
|
26
|
Hu X, Hu D, Xu Y. Effects of tetrabrominated diphenyl ether and hexabromocyclododecanes in single and complex exposure to hepatoma HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:327-337. [PMID: 21783961 DOI: 10.1016/j.etap.2008.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 11/27/2008] [Accepted: 11/28/2008] [Indexed: 05/31/2023]
Abstract
This study was designed to determine cytotoxic effects of PBDE-47 and HBCDs individually or with a mixture of both compounds exposure to Hep G2 cells. The results showed PBDE-47 and HBCDs induced increase of nitric oxide synthase (NOS) activity, release of NO, dissipation of mitochondria membrane potential and cell apoptosis. Exposure to HBCDs induced ROS formation. Moreover, preincubation with PTIO (NO scavanger) and N-acetylcysteine (ROS scavanger) partially reversed cytotoxic effects of these compounds. The possible mechanism is that PBDE-47 and HBCDs could boost generation of NO and/or ROS, impact mitochondria, and result in start-ups of apoptosis program. Cells exposed to mixture of both compounds and each of them showed non-apoptotic rate significant difference, but the combination of them caused more adverse effects on cells. These results suggest that PBDE-47 and HBCDs in single and complex exposure have the cytotoxic activity of anti-proliferation and induction of apoptosis in tumor cells in vitro.
Collapse
Affiliation(s)
- Xiaozhong Hu
- Technology Center of Hubei Entry-Exit Inspection and Quarantine Bureau of P.R.C, Wuhan 430022, PR China
| | | | | |
Collapse
|
27
|
Zou Y, Niu P, Gong Z, Yang J, Yuan J, Wu T, Chen X. Relationship between reactive oxygen species and sodium-selenite-induced DNA damage in HepG2 cells. ACTA ACUST UNITED AC 2007; 1:327-32. [DOI: 10.1007/s11684-007-0063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/30/2007] [Indexed: 10/22/2022]
|
28
|
Hu XZ, Xu Y, Hu DC, Hui Y, Yang FX. Apoptosis induction on human hepatoma cells Hep G2 of decabrominated diphenyl ether (PBDE-209). Toxicol Lett 2007; 171:19-28. [PMID: 17509781 DOI: 10.1016/j.toxlet.2007.04.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 12/21/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are an important class of halogenated organic brominated flame retardants. Because of their presence in abiotic and biotic environments widely and their structural similarity to polychlorinated biphenyls (PCBs), concern has been raised on their possible adverse health effects to humans. This study was designed to determine the anti-proliferative, apoptotic properties of decabrominated diphenyl ether (PBDE-209), using a human hepatoma Hep G2 line as a model system. Hep G2 cells were cultured in the presence of PBDE-209 at various concentrations (1.0-100.0 micromol/L) for 72 h and the percentage of cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that PBDE-209 inhibited the cells viability in time and concentration-dependent characteristics at concentrations (10.0-100.0 micromol/L). We found that anti-proliferative effect of PBDE-209 was associated with apoptosis on Hep G2 cells by determinations of morphological changes, cell cycle and apoptosis. Mechanism study showed that PBDE-209 could increase the generation of intracellular reactive oxygen species (ROS) concentration-dependently. Antioxidant N-acetylcyteine partially inhibited the increase of ROS. The mechanism for its hepatoma-inhibitory effects was the induction of cellular apoptosis through ROS generation. In addition, activity of lactate dehydrogenase (LDH) release increased when the cells incubated with PBDE-209 at various concentrations and times. These results suggested that PBDE-209 had the toxicity activity of anti-proliferation and induction of apoptosis in tumor cells in vitro.
Collapse
Affiliation(s)
- Xiao-Zhong Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
29
|
Jiang L, Liu Q, Hu D, Jiang L, Xu H, Wang H. Identification of a new protein from silkworm pupas by biological mass spectrometry. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:5709-11. [PMID: 17281553 DOI: 10.1109/iembs.2005.1615783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To find out the efficient peptide of selenium-rich silkworm pupas in inducing the apoptosis of hepatoma cells, selenium-containing proteins were isolated and characterized. One of the two major proteins in selenium-rich silkworm pupas was identified to be a new protein by peptide mass fingerprinting on matrix assisted laser desorption ionization - time of flight - mass spectrometry. Amino acid sequences of peptides digested by trypsin from the new protein were determined by capillary liquid chromatography - electrospray ionization - quadrupole/time of flight - mass spectrometry and searched with Mascot in NCBI database. Results showed that the six major peptides from the protein were also new peptides that could not be found in the database up to date.
Collapse
Affiliation(s)
- Liang Jiang
- Chemistry Department of Huazhong University of Science and Technology, Wuhan Hubei , China;
| | | | | | | | | | | |
Collapse
|
30
|
In silico identification of silkworm selenoproteomes. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-006-2206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|