1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Yu J. Research journey into multiple-sensor theory. J Neurophysiol 2023; 130:128-138. [PMID: 37341418 DOI: 10.1152/jn.00062.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
In 1998, I was asked by the American Physiological Society to review a book written by Dr. Michael de Burgh Daly, Peripheral Arterial Chemoreceptors and Respiratory-Cardiovascular Integration. Inspired by this work, I came to appreciate how researchers in the later stages of their careers and who provide a detailed review of their experimental approach might effectively contribute to science, especially to the benefit of young scientists (Yu J. The Physiologist 41: 231, 1998.). This article is written in that vein. Over several decades of intensive investigation of cardiopulmonary reflexes, focused on the sensory receptors, my colleagues and I advanced a novel multiple-sensor theory (MST) to explain the role of the vagal mechanosensory system. Described here is our research journey through various stages of developing MST and the process of how the problem was identified, approached, and tackled. MST redefines conventional mechanosensor doctrines and is supported by new studies that clarify a century of research data. It entails reinterpretation of many established findings. Hopefully, this article will benefit young scientists, such as graduate and postdoctoral students in the cardiopulmonary sensory research field.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Pulmonary Medicine, University of Louisville, Louisville, Kentucky, United States
- Robley Rex VA Medical Center, Louisville, Kentucky, United States
| |
Collapse
|
3
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
4
|
Walker JF, Yu J. A direct injection technique for investigation of lung sensory properties and reflex functions. Exp Physiol 2021; 106:1449-1459. [PMID: 33719104 DOI: 10.1113/ep089261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS This article reviews a unique direct injection technique that complements the more conventional right atrial injection and aerosol delivery methods to study sensory and reflex effects of the lung sensors. Used in combination with other methods, this technique should contribute to the pulmonary sensory research. ABSTRACT The lungs house sensory receptors (sensors) that mediate a variety of sensory and reflex responses to mechanical or chemical changes. These reflexes are mainly carried through pulmonary sympathetic and vagal afferent pathways. The chemosensors in the lung periphery are especially important in pulmonary diseases and their reflex responses have traditionally been studied either by aerosol delivery, which also activates receptors in the central airways, or by right atrial injection, which also activates receptors lying outside the lung. Thus, these techniques may confound the interpretation of sensory function. Our laboratory has developed a direct injection technique to deliver agents into the lung parenchyma, which complements the conventional techniques with some important advantages. This article reviews the technique.
Collapse
Affiliation(s)
- Jerome F Walker
- Department of Respiratory Therapy, Bellarmine University, Louisville, KY, USA.,Robley Rex VA Medical Center, Louisville, KY, USA
| | - Jerry Yu
- Robley Rex VA Medical Center, Louisville, KY, USA.,Pulmonary Division, Department of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Shanks J, Xia Z, Lisco SJ, Rozanski GJ, Schultz HD, Zucker IH, Wang HJ. Sympatho-excitatory response to pulmonary chemosensitive spinal afferent activation in anesthetized, vagotomized rats. Physiol Rep 2019; 6:e13742. [PMID: 29906340 PMCID: PMC6003656 DOI: 10.14814/phy2.13742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/16/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022] Open
Abstract
The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1‐sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague‐Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1‐expressing afferent soma at the level of T1–T4 dorsal root ganglia pleura. This treatment abolished all sympatho‐excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9–10 weeks post‐RTX. These data suggest the presence of an excitatory pulmonary chemosensitive sympathetic afferent reflex. This finding may have important clinical implications in pulmonary conditions inducing sensory nerve activation such as pulmonary inflammation and inhalation of chemical stimuli.
Collapse
Affiliation(s)
- Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Zhiqiu Xia
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven J Lisco
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - George J Rozanski
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
6
|
Shanks J, de Morais SDB, Gao L, Zucker IH, Wang HJ. TRPV1 (Transient Receptor Potential Vanilloid 1) Cardiac Spinal Afferents Contribute to Hypertension in Spontaneous Hypertensive Rat. Hypertension 2019; 74:910-920. [PMID: 31422690 DOI: 10.1161/hypertensionaha.119.13285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension is associated with increased sympathetic activity. A component of this sympathoexcitation may be driven by increased signaling from sensory endings from the heart to the autonomic control areas in the brain. This pathway mediates the so-called cardiac sympathetic afferent reflex, which is also activated by coronary ischemia or other nociceptive stimuli in the heart. The cardiac sympathetic afferent reflex has been shown to be enhanced in the heart failure state and in renal hypertension. However, little is known about its role in the development or progression of hypertension or the phenotype of the sensory endings involved. To investigate this, we used the selective afferent neurotoxin, resiniferatoxin (RTX) to chronically abolish the cardiac sympathetic afferent reflex in 2 models of hypertension; the spontaneous hypertensive rats (SHRs) and AngII (angiotensin II) infusion (240 ng/kg per min). Blood pressure (BP) was measured in conscious animals for 2 to 8 weeks post-RTX. Epidural application of RTX to the T1-T4 spinal segments prevented the further BP increase in 8-week-old SHR and lowered BP in 16-week-old SHR. RTX did not affect BP in Wistar-Kyoto normotensive rats nor in AngII-infused rats. Epicardial application of RTX (50 µg/mL) in 4-week-old SHR prevented the BP increase whereas this treatment does not lower BP in 16-week-old SHR. When RTX was administered into the L2-L5 spinal segments of 16-week-old SHR, no change in BP was observed. These findings indicate that signaling via thoracic afferent nerve fibers may contribute to the hypertension phenotype in the SHR but not in the Ang II infusion model of hypertension.
Collapse
Affiliation(s)
- Julia Shanks
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Sharon D B de Morais
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Lie Gao
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Han-Jun Wang
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE.,Department of Anesthesiology (H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
7
|
Choi SI, Hwang SW. Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception. Biomol Ther (Seoul) 2018; 26:255-267. [PMID: 29378387 PMCID: PMC5933892 DOI: 10.4062/biomolther.2017.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.
Collapse
Affiliation(s)
- Seung-In Choi
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
9
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
10
|
Neural control of airway to deep inhalation in rabbits. Respir Physiol Neurobiol 2011; 177:169-75. [DOI: 10.1016/j.resp.2011.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/21/2022]
|
11
|
Kanoo S, Alex AB, Tiwari AK, Deshpande SB. B(2) kinin receptors mediate the Indian red scorpion venom-induced augmentation of visceral reflexes via the nitric oxide cyclic guanosine monophosphate pathway. Acta Physiol (Oxf) 2009; 196:365-73. [PMID: 19133874 DOI: 10.1111/j.1748-1716.2008.01953.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study was performed to delineate the kinin (receptor)-dependent pathways in the Indian red scorpion (Mesobuthus tamulus; MBT) venom-induced pulmonary oedema as well as the augmentation of cardio-pulmonary reflexes evoked by phenyldiguanide (PDG). METHODS In urethane-anaesthetized adult rats, the effect of venom on the PDG reflex responses (blood pressure, heart rate and respiration rate) and the pulmonary water content was ascertained using various antagonists(des- Arg, B(1) receptor antagonist; Hoe 140, B(2) receptor antagonist; N(omega)-nitro-l-arginine methyl ester (l-NAME), nitric oxide (NO) synthase inhibitor; methylene blue, soluble guanylate cyclase inhibitor; and glibenclamide, K(+)(ATP) channel blocker). The effect of phosphodiesterase V inhibitor (sildenafil citrate) on the reflex response and the pulmonary water content was also examined and compared with venom-induced responses. RESULTS Intravenous injection of PDG (10 microg kg(-1)) evoked apnoea, bradycardia and hypotension lasting >60 s. Exposure to MBT venom (100 microg kg(-1)) for 30 min augmented the PDG reflex responses by two times and increased the pulmonary water content, significantly. Hoe 140 blocked the venom-induced responses (augmentation of PDG reflex and increased pulmonary water content) whereas des-Arg did not. l-NAME, methylene blue or glibenclamide also blocked the venom-induced responses. Furthermore, sildenafil citrate (that increases cGMP levels) produced augmentation of PDG reflex response and increased the pulmonary water content as seen with venom. CONCLUSION The results indicate that venom-induced responses involve B(2) kinin receptors via the NO-dependent guanylate cyclase-cGMP pathway involving K(+)(ATP) channels.
Collapse
Affiliation(s)
- S Kanoo
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| | | | | | | |
Collapse
|
12
|
Tang M, Cui M, Dong Q, Ren HM, Xiao BG, Luo BY, Shao Y, Liu L, Zhou HG. The bradykinin B2 receptor mediates hypoxia/reoxygenation induced neuronal cell apoptosis through the ERK1/2 pathway. Neurosci Lett 2009; 450:40-4. [DOI: 10.1016/j.neulet.2008.10.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 10/19/2008] [Accepted: 10/31/2008] [Indexed: 11/30/2022]
|
13
|
Pethő G, Reeh PW. Effects of Bradykinin on Nociceptors. NEUROGENIC INFLAMMATION IN HEALTH AND DISEASE 2009. [DOI: 10.1016/s1567-7443(08)10407-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Kanoo S, Deshpande SB. Involvement of phospholipase A2 pathway for the Indian red scorpion venom-induced augmentation of cardiopulmonary reflexes elicited by phenyldiguanide. Neurosci Lett 2008; 440:242-5. [DOI: 10.1016/j.neulet.2008.05.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
|
15
|
Pintelon I, Brouns I, De Proost I, Van Meir F, Timmermans JP, Adriaensen D. Sensory Receptors in the Visceral Pleura. Am J Respir Cell Mol Biol 2007; 36:541-51. [PMID: 17170382 DOI: 10.1165/rcmb.2006-0256oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Today, diagnosis and treatment of chest pain related to pathologic changes in the visceral pleura are often difficult. Data in the literature on the sensory innervation of the visceral pleura are sparse. The present study aimed at identifying sensory end-organs in the visceral pleura, and at obtaining more information about neurochemical coding. The immunocytochemcial data are mainly based on whole mounts of the visceral pleura of control and vagally denervated rats. It was shown that innervation of the rat visceral pleura is characterized by nerve bundles that enter in the hilus region and gradually split into slender bundles with a few nerve fibers. Separate nerve fibers regularly give rise to characteristic laminar terminals. Because of their unique association with the elastic fibers of the visceral pleura, we decided to refer to them as "visceral pleura receptors" (VPRs). Cryostat sections of rat lungs confirmed a predominant location on mediastinal and interlobar lung surfaces. VPRs can specifically be visualized by protein gene product 9.5 immunostaining, and were shown to express vesicular glutamate transporters, calbindin D28K, Na+/K+-ATPase, and P2X3 ATP-receptors. The sensory nerve fibers giving rise to VPRs appeared to be myelinated and to have a spinal origin. Because several of the investigated proteins have been reported as markers for sensory terminals in other organs, the present study revealed that VPRs display the neurochemical characteristics of mechanosensory and/or nociceptive terminals. The development of a live staining method, using AM1-43, showed that VPRs can be visualized in living tissue, offering an interesting model for future physiologic studies.
Collapse
Affiliation(s)
- Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Qin C, Foreman RD, Farber JP. Afferent pathway and neuromodulation of superficial and deeper thoracic spinal neurons receiving noxious pulmonary inputs in rats. Auton Neurosci 2006; 131:77-86. [PMID: 16935568 DOI: 10.1016/j.autneu.2006.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/18/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The occurrence of vagally mediated afferent signaling by lung irritants is well known. However, spinal visceral afferent pathways also might be relevant to pulmonary irritation. In the present study, responses and modulation of superficial and deep T3 spinal neurons were examined using inhaled ammonia, and the peripheral afferent fibers were also characterized in part. Extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. Ammonia vapor (0.5, 1.0, 2.0 ml) was injected into the inspiratory line of the ventilator for 20 s. Inhaled ammonia (IA, 1.0 ml) excited 5/6 neurons and inhibited one spinal neuron recorded in superficial laminae, whereas deeper neurons responded with excitatory (E, n = 20), inhibitory (I, n = 4) or biphasic patterns (6 E-I, 3 I-E). Electrical and chemical stimulation of C1-C2 spinal neurons primarily suppressed T3 neuronal responses to IA. Resiniferatoxin (2 microg/kg, i.v.), which desensitizes afferent fibers containing transient receptor potential vanilloid receptor-1 (TRPV-1), abolished excitatory responses of 8/8 neurons to IA. Bilateral cervical vagotomy did not affect IA responses in 5 superficial neurons while 7 deeper neurons showed variable responses. 82% (32/39) of the spinal neurons responding to IA also received convergent noxious inputs from somatic fields in the chest and back areas. These results suggested that superficial and deeper spinal neuronal activation by inhaled ammonia mainly depended upon pulmonary sympathetic afferent fibers expressing TRPV-1. Additionally, C1-C2 spinal neurons, supraspinal sites and vagal afferents modulated the thoracic spinal neuronal responses to lower airway irritation.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
17
|
Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans JP. Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol (1985) 2006; 101:960-70. [PMID: 16741263 DOI: 10.1152/japplphysiol.00267.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelium of intrapulmonary airways in many species harbors diffusely spread innervated groups of neuroendocrine cells, called neuroepithelial bodies (NEBs). Data on the location, morphology, and chemical coding of NEBs in mammalian lungs are abundant, but none of the proposed functions has so far been fully established. Besides C-fiber afferents, slowly adapting stretch receptors, and rapidly adapting stretch receptors, recent reviews have added NEBs to the list of presumed sensory receptors in intrapulmonary airways. Physiologically, the innervation of NEBs, however, remains enigmatic. This short overview summarizes our present understanding of the chemical coding and exact location of the receptor end organs of myelinated vagal airway afferents in intrapulmonary airways. The profuse populations that selectively contact complex pulmonary NEB receptors are compared with the much smaller group of smooth muscle-associated airway receptors. The main objective of our contribution was to stimulate the idea that the different populations of myelinated vagal afferents that selectively innervate intraepithelial pulmonary NEBs may represent subpopulations of the extensive group of known electrophysiologically characterized myelinated vagal airway receptors. Future efforts should be directed toward finding out which airway receptor groups are selectively coupled to the complex NEB receptors.
Collapse
Affiliation(s)
- Dirk Adriaensen
- Laboratory of Cell Biology & Histology, Dept. of Veterinary Sciences, University of Antwerp, BE-2020 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|