1
|
Yuen GKW, Lin S, Dong TTX, Tsim KWK. Sophoricoside, a genistein glycoside from Fructus Sophorae, promotes hair growth via activation of M4 muscarinic AChR in dermal papilla cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118585. [PMID: 39019417 DOI: 10.1016/j.jep.2024.118585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alopecia, or hair loss, refers to ongoing decline of mature hair on the scalp or any other region of the body. Fructus Sophorae, a fruit from Sophora japonica L., contains various phytochemicals, e.g., sophoricoside, that exhibit a broad range of pharmacological effects. The potential functions of herbal extracts deriving from Fructus Sophorae and/or its major phytochemical, sophoricoside, in treating alopecia are probed here. AIM OF STUDY The objective was to determine the ability of Fructus Sophorae extract and sophoricoside in promoting hair growth and it signalling mechanism. METHODS Molecular docking studies were conducted to measure the binding affinities between sophoricoside and M4 mAChR in the allosteric binding site. The mechanism of Fructus Sophorae and sophoricoside in activating the signalling involving Wnt/β-catenin and muscarinic AChR was evaluated by using immortalized human dermal papilla cell line (DPC), as well as their roles in promoting hair growth. The activity of pTOPflash-luciferase in transfected DPCs was used to examine the transcriptional regulation of Wnt/β-catenin-mediated genes. RT-PCR was applied to quantify mRNA expressions of the biomarkers in DPCs responsible for hair growth. The phosphorylated protein levels of Wnt/β-catenin and PI3K/AKT in DPC were revealed by using Western blot analysis. The culture of ex vivo mouse vibrissae hair follicle was used to evaluate the hair growth after the treatments. RESULTS The ethanol extract of Fructus Sophorae and sophoricoside activated Wnt/β-catenin signalling. The result of molecular docking showed a high binding affinity between sophoricoside and M4 mAChR. The effect of sophoricoside was blocked by specific inhibitor of M4 mAChR, but not by other inhibitors of mAChRs. Sophoricoside promoted hair growth in cultured ex vivo mouse vibrissae hair follicle by acting through M4 mAChR. CONCLUSION The ethanol extract of Fructus Sophorae and sophoricoside activated Wnt/β-catenin signalling via activation of M4 mAChR. The results suggested beneficial functions of Fructus Sophorae and sophoricoside as a potential candidate in treating alopecia.
Collapse
Affiliation(s)
- Gary Ka-Wing Yuen
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Shengying Lin
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Tina Ting-Xia Dong
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Karl Wah-Keung Tsim
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
3
|
Feng Z, Qin Y, Jiang G. Reversing Gray Hair: Inspiring the Development of New Therapies Through Research on Hair Pigmentation and Repigmentation Progress. Int J Biol Sci 2023; 19:4588-4607. [PMID: 37781032 PMCID: PMC10535703 DOI: 10.7150/ijbs.86911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Hair graying is a common and visible sign of aging resulting from decreased or absence of melanogenesis. Although it has been established that gray hair greatly impacts people's mental health and social life, there is no effective countermeasure other than hair dyes. It has long been thought that reversal of gray hair on a large scale is rare. However, a recent study reported that individual gray hair darkening is a common phenomenon, suggesting the possibility of large-scale reversal of gray hair. In this article, we summarize the regulation mechanism of melanogenesis and review existing cases of hair repigmentation caused by several factors, including monoclonal antibodies drugs, tyrosine kinase inhibitors (TKIs), immunomodulators, other drugs, micro-injury, and tumors, and speculate on the mechanisms behind them. This review offers some insights for further research into the modulation of melanogenesis and presents a novel perspective on the development of clinical therapies, with emphasis on topical treatments.
Collapse
Affiliation(s)
- Zhaorui Feng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Yi Qin
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
5
|
The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Front Neuroendocrinol 2022; 66:101008. [PMID: 35660551 DOI: 10.1016/j.yfrne.2022.101008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.
Collapse
|
6
|
A network pharmacology-based approach to explore mechanism of action of medicinal herbs for alopecia treatment. Sci Rep 2022; 12:2852. [PMID: 35181715 PMCID: PMC8857194 DOI: 10.1038/s41598-022-06811-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Hair loss is one of the most common skin problems experienced by more than half of the world's population. In East Asia, medicinal herbs have been used widely in clinical practice to treat hair loss. Recent studies, including systematic literature reviews, indicate that medicinal herbs may demonstrate potential effects for hair loss treatment. In a previous study, we identified medical herbs used frequently for alopecia treatment. Herein, we explored the potential novel therapeutic mechanisms of 20 vital medicinal herbs for alopecia treatment that could distinguish them from known mechanisms of conventional drugs using network pharmacology analysis methods. We determined the herb-ingredient–target protein networks and ingredient-associated protein (gene)-associated pathway networks and calculated the weighted degree centrality to define the strength of the connections. Data showed that 20 vital medicinal herbs could exert therapeutic effects on alopecia mainly mediated via regulation of various target genes and proteins, including acetylcholinesterase (AChE), phospholipase A2 (PLA2) subtypes, ecto-5-nucleotidase (NTE5), folate receptor (FR), nicotinamide N-methyltransferase (NNMT), and quinolinate phosphoribosyltransferase (QPRT). Findings regarding target genes/proteins and pathways of medicinal herbs associated with alopecia treatment offer insights for further research to better understand the pathogenesis and therapeutic mechanism of medicinal herbs for alopecia treatment with traditional herbal medicine.
Collapse
|
7
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
8
|
Multiple Roles for Cholinergic Signaling from the Perspective of Stem Cell Function. Int J Mol Sci 2021; 22:ijms22020666. [PMID: 33440882 PMCID: PMC7827396 DOI: 10.3390/ijms22020666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/11/2023] Open
Abstract
Stem cells have extensive proliferative potential and the ability to differentiate into one or more mature cell types. The mechanisms by which stem cells accomplish self-renewal provide fundamental insight into the origin and design of multicellular organisms. These pathways allow the repair of damage and extend organismal life beyond that of component cells, and they probably preceded the evolution of complex metazoans. Understanding the true nature of stem cells can only come from discovering how they are regulated. The concept that stem cells are controlled by particular microenvironments, also known as niches, has been widely accepted. Technical advances now allow characterization of the zones that maintain and control stem cell activity in several organs, including the brain, skin, and gut. Cholinergic neurons release acetylcholine (ACh) that mediates chemical transmission via ACh receptors such as nicotinic and muscarinic receptors. Although the cholinergic system is composed of organized nerve cells, the system is also involved in mammalian non-neuronal cells, including stem cells, embryonic stem cells, epithelial cells, and endothelial cells. Thus, cholinergic signaling plays a pivotal role in controlling their behaviors. Studies regarding this signal are beginning to unify our understanding of stem cell regulation at the cellular and molecular levels, and they are expected to advance efforts to control stem cells therapeutically. The present article reviews recent findings about cholinergic signaling that is essential to control stem cell function in a cholinergic niche.
Collapse
|
9
|
Bolormaa S, Swan AA, Brown DJ, Hatcher S, Moghaddar N, van der Werf JH, Goddard ME, Daetwyler HD. Multiple-trait QTL mapping and genomic prediction for wool traits in sheep. Genet Sel Evol 2017; 49:62. [PMID: 28810834 PMCID: PMC5558709 DOI: 10.1186/s12711-017-0337-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism (SNP) data. Several key traits determine the value of wool and influence a sheep's susceptibility to fleece rot and fly strike. Our aim was to predict genomic estimated breeding values (GEBV) and to compare three methods of combining information across traits to map polymorphisms that affect these traits. METHODS GEBV for 5726 Merino and Merino crossbred sheep were calculated using BayesR and genomic best linear unbiased prediction (GBLUP) with real and imputed 510,174 SNPs for 22 traits (at yearling and adult ages) including wool production and quality, and breech conformation traits that are associated with susceptibility to fly strike. Accuracies of these GEBV were assessed using fivefold cross-validation. We also devised and compared three approximate multi-trait analyses to map pleiotropic quantitative trait loci (QTL): a multi-trait genome-wide association study and two multi-trait methods that use the output from BayesR analyses. One BayesR method used local GEBV for each trait, while the other used the posterior probabilities that a SNP had an effect on each trait. RESULTS BayesR and GBLUP resulted in similar average GEBV accuracies across traits (~0.22). BayesR accuracies were highest for wool yield and fibre diameter (>0.40) and lowest for skin quality and dag score (<0.10). Generally, accuracy was higher for traits with larger reference populations and higher heritability. In total, the three multi-trait analyses identified 206 putative QTL, of which 20 were common to the three analyses. The two BayesR multi-trait approaches mapped QTL in a more defined manner than the multi-trait GWAS. We identified genes with known effects on hair growth (i.e. FGF5, STAT3, KRT86, and ALX4) near SNPs with pleiotropic effects on wool traits. CONCLUSIONS The mean accuracy of genomic prediction across wool traits was around 0.22. The three multi-trait analyses identified 206 putative QTL across the ovine genome. Detailed phenotypic information helped to identify likely candidate genes.
Collapse
Affiliation(s)
- Sunduimijid Bolormaa
- Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC, 3083, Australia. .,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.
| | - Andrew A Swan
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Daniel J Brown
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Sue Hatcher
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, 2800, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Nasir Moghaddar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Julius H van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Michael E Goddard
- Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC, 3083, Australia.,School of Land and Environment, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hans D Daetwyler
- Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| |
Collapse
|
10
|
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 2014; 20:559-70. [DOI: 10.1016/j.molmed.2014.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
11
|
Meitei KV, Ali SA. Fig leaf extract and its bioactive compound psoralen induces skin darkening effect in reptilian melanophores via cholinergic receptor stimulation. In Vitro Cell Dev Biol Anim 2012; 48:335-9. [PMID: 22706602 DOI: 10.1007/s11626-012-9521-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/31/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Keisham V Meitei
- Department of Biotechnology, Saifia College of Science, Bhopal, India
| | | |
Collapse
|
12
|
Grando SA. Muscarinic receptor agonists and antagonists: effects on keratinocyte functions. Handb Exp Pharmacol 2012:429-50. [PMID: 22222709 DOI: 10.1007/978-3-642-23274-9_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stratified epithelium enveloping the skin and lining the surfaces of oral and vaginal mucosa is comprised by keratinocytes that synthesize, secrete, degrade, and respond to acetylcholine via muscarinic and nicotinic receptors. The two pathways may compete or synergize with one another, so that net biologic effect represents the biologic sum of the effects of distinct acetylcholine receptors expressed by a keratinocyte at a particular stage of its development. Keratinocytes express a unique combination of muscarinic receptor subtypes at each stage of their development. Experimental results indicate that muscarinic receptors expressed in human keratinocytes regulate their viability, proliferation, migration, adhesion, and terminal differentiation, hair follicle cycling, and secretion of humectants, cytokines, and growth factors. Learning the muscarinic pharmacology of keratinocyte development and functions has salient clinical implications for patients with nonhealing wounds, mucocutaneous cancers, and various autoimmune and inflammatory diseases. Successful therapy of pemphigus lesions with topical pilocarpine and disappearance of psoriatic lesions due to systemic atropine therapy illustrate that such therapeutic approach is feasible.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, University of California, 134 Sprague Hall, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Ali SA, Meitei KV. On the action and mechanism of withaferin-A from Withania somnifera, a novel and potent melanin dispersing agent in frog melanophores. J Recept Signal Transduct Res 2011; 31:359-66. [PMID: 21848494 DOI: 10.3109/10799893.2011.602414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present work was carried out to determine the effects of lyophilized root extracts of Withania somnifera along with pure withaferin-A, on the isolated skin melanophores of frog, Rana tigerina which are disguised type of smooth muscle cells and offer excellent in vitro opportunities for studying the effects of pharmacological and pharmaceutical agents. The lyophilized extract of W. somnifera and its active ingredient withaferin-A induced powerful dose-dependent physiologically significant melanin dispersal effects in the isolated skin melanophores of R. tigerina, which were completely blocked by atropine as well as hyoscine. The per se melanin dispersal effects of lyophilized extracts of W. somnifera and its active ingredient withaferin-A got highly potentiated by neostigmine. It appears that the melanin dispersal effects of the extracts of W. somnifera and withaferin-A is mediated by cholino-muscarinic like receptors having similar properties.
Collapse
Affiliation(s)
- Sharique A Ali
- Department of Biotechnology, Saifia College of Science and Education, Bhopal, India.
| | | |
Collapse
|
14
|
Abstract
The role of neurohormones and neuropeptides in human hair follicle (HF) pigmentation extends far beyond the control of melanin synthesis by α-MSH and ACTH and includes melanoblast differentiation, reactive oxygen species scavenging, maintenance of HF immune privilege, and remodeling of the HF pigmentary unit (HFPU). It is now clear that human HFs are not only a target of multiple neuromediators, but also are a major non-classical production site for neurohormones such as CRH, proopiomelanocortin, ACTH, α-MSH, ß-endorphin, TRH, and melatonin. Moreover, human HFs have established a functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis. By charting the author's own meanderings through the jungle of hair pigmentation research, the current perspectives essay utilizes four clinical observations - hair repigmentation, canities, poliosis, and 'overnight greying'- as points of entry into the enigmas and challenges of .pigmentary HF neuroendocrinology. After synthesizing key principles and defining major open questions in the field, selected research avenues are delineated that appear clinically most promising. In this context, novel neuroendocrinological strategies to retard or reverse greying and to reduce damage to the HFPU are discussed.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
15
|
CHAICHALOTORNKUL S, UDOMPATAIKUL M, SHOWPITTAPORNCHAI U, PALUNGWACHIRA P, PRADIDARCHEEP W. Altered distribution of M2 and M4 muscarinic receptor expression in vitiligo. J Dermatol 2010; 38:493-7. [DOI: 10.1111/j.1346-8138.2010.00995.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 2008; 154:1558-71. [PMID: 18500366 PMCID: PMC2518461 DOI: 10.1038/bjp.2008.185] [Citation(s) in RCA: 614] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/27/2008] [Accepted: 04/09/2008] [Indexed: 12/13/2022] Open
Abstract
Animal life is controlled by neurons and in this setting cholinergic neurons play an important role. Cholinergic neurons release ACh, which via nicotinic and muscarinic receptors (n- and mAChRs) mediate chemical neurotransmission, a highly integrative process. Thus, the organism responds to external and internal stimuli to maintain and optimize survival and mood. Blockade of cholinergic neurotransmission is followed by immediate death. However, cholinergic communication has been established from the beginning of life in primitive organisms such as bacteria, algae, protozoa, sponge and primitive plants and fungi, irrespective of neurons. Tubocurarine- and atropine-sensitive effects are observed in plants indicating functional significance. All components of the cholinergic system (ChAT, ACh, n- and mAChRs, high-affinity choline uptake, esterase) have been demonstrated in mammalian non-neuronal cells, including those of humans. Embryonic stem cells (mice), epithelial, endothelial and immune cells synthesize ACh, which via differently expressed patterns of n- and mAChRs modulates cell activities to respond to internal or external stimuli. This helps to maintain and optimize cell function, such as proliferation, differentiation, formation of a physical barrier, migration, and ion and water movements. Blockade of n- and mACHRs on non-innervated cells causes cellular dysfunction and/or cell death. Thus, cholinergic signalling in non-neuronal cells is comparable to cholinergic neurotransmission. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis of diseases. Alterations have been detected in inflammatory processes and a pathobiologic role of non-neuronal ACh in different diseases is discussed. The present article reviews recent findings about the non-neuronal cholinergic system in humans.
Collapse
Affiliation(s)
- I Wessler
- Institute of Pathology, University Hospital, Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|
17
|
Paus R, Arck P, Tiede S. (Neuro-)endocrinology of epithelial hair follicle stem cells. Mol Cell Endocrinol 2008; 288:38-51. [PMID: 18423849 DOI: 10.1016/j.mce.2008.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 12/17/2022]
Abstract
The hair follicle is a repository of different types of somatic stem cells. However, even though the hair follicle is both a prominent target organ and a potent, non-classical site of production and/or metabolism of numerous polypetide- and steroid hormones, neuropeptides, neurotransmitters and neurotrophins, the (neuro-)endocrine controls of hair follicle epithelial stem cell (HFeSC) biology remain to be systematically explored. Focussing on HFeSCs, we attempt here to offer a "roadmap through terra incognita" by listing key open questions, by exploring endocrinologically relevant HFeSC gene profiling and mouse genomics data, and by sketching several clinically relevant pathways via which systemic and/or locally generated (neuro-)endocrine signals might impact on HFeSC. Exemplarily, we discuss, e.g. the potential roles of glucocorticoid and vitamin D receptors, the hairless gene product, thymic hormones, bone morphogenic proteins (BMPs) and their antagonists, and Skg-3 in HFeSC biology. Furthermore, we elaborate on the potential role of nerve growth factor (NGF) and substance P-dependent neurogenic inflammation in HFeSC damage, and explore how neuroendocrine signals may influence the balance between maintenance and destruction of hair follicle immune privilege, which protects these stem cells and their progeny. These considerations call for a concerted research effort to dissect the (neuro-)endocrinology of HFeSCs much more systematically than before.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|