1
|
Sergi CM. Pediatric cancer-pathology and microenvironment influence: a perspective into osteosarcoma and non-osteogenic mesenchymal malignant neoplasms. Discov Oncol 2024; 15:358. [PMID: 39154307 PMCID: PMC11330953 DOI: 10.1007/s12672-024-01240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Pediatric cancer remains the leading cause of disease-related death among children aged 1-14 years. A few risk factors have been conclusively identified, including exposure to pesticides, high-dose radiation, and specific genetic syndromes, but the etiology underlying most events remains unknown. The tumor microenvironment (TME) includes stromal cells, vasculature, fibroblasts, adipocytes, and different subsets of immunological cells. TME plays a crucial role in carcinogenesis, cancer formation, progression, dissemination, and resistance to therapy. Moreover, autophagy seems to be a vital regulator of the TME and controls tumor immunity. Autophagy is an evolutionarily conserved intracellular process. It enables the degradation and recycling of long-lived large molecules or damaged organelles using the lysosomal-mediated pathway. The multifaceted role of autophagy in the complicated neoplastic TME may depend on a specific context. Autophagy may function as a tumor-suppressive mechanism during early tumorigenesis by eliminating unhealthy intracellular components and proteins, regulating antigen presentation to and by immune cells, and supporting anti-cancer immune response. On the other hand, dysregulation of autophagy may contribute to tumor progression by promoting genome damage and instability. This perspective provides an assortment of regulatory substances that influence the features of the TME and the metastasis process. Mesenchymal cells in bone and soft-tissue sarcomas and their signaling pathways play a more critical role than epithelial cells in childhood and youth. The investigation of the TME in pediatric malignancies remains uncharted primarily, and this unique collection may help to include novel advances in this setting.
Collapse
Affiliation(s)
- Consolato M Sergi
- Division of Anatomic Pathology, Department of Laboratory Medicine, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Laboratory Medicine, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada.
- University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
The Tumor Microenvironment of Pediatric Sarcoma: Mesenchymal Mechanisms Regulating Cell Migration and Metastasis. Curr Oncol Rep 2019; 21:90. [PMID: 31418125 PMCID: PMC6695368 DOI: 10.1007/s11912-019-0839-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents a selection of regulatory molecules of tumor microenvironmental properties and metastasis. Signaling pathways controlling mesenchymal biology in bone and soft-tissue sarcomas found in children and adolescents are prioritized. RECENT FINDINGS The tumor microenvironment of pediatric tumors is still relatively unexplored. Highlighted findings are mainly on deregulated genes associated with cell adhesion, migration, and tumor cell dissemination. How these processes are involved in a mesenchymal phenotype and metastasis is further discussed in relation to the epithelial to mesenchymal transition (EMT) in epithelial tumors. Cell plasticity is emerging as a concept with impact on tumor behavior. Sarcomas belong to a heterogeneous group of tumors where local recurrence and tumor spread pose major challenges despite intense multimodal treatments. Molecular pathways involved in the metastatic process are currently being characterized, and tumor-regulatory properties of structural components, and infiltrating, non-malignant cell types should be further investigated.
Collapse
|
3
|
Ruehl M, Muche M, Freise C, Erben U, Neumann U, Schuppan D, Popov Y, Dieterich W, Zeitz M, Farndale RW, Somasundaram R. Hydroxyproline-containing collagen analogs trigger the release and activation of collagen-sequestered proMMP-2 by competition with prodomain-derived peptide P33-42. FIBROGENESIS & TISSUE REPAIR 2011; 4:1. [PMID: 21211003 PMCID: PMC3024946 DOI: 10.1186/1755-1536-4-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/06/2011] [Indexed: 11/14/2022]
Abstract
Background Fibrolytic and profibrotic activities of the matrix metalloproteinases (MMPs)-2 and -9 play a central role in liver fibrosis. Since binding to the extracellular matrix influences the activity of both gelatinases, here the role of fibrillar collagens as the most abundant matrix components in fibrotic tissue was investigated. Results In situ zymography and immunohistology showed association of enzymatically inactive prodomain-containing proMMP-2 and proMMP-9 but not of their activated forms to fibrillar collagen structures, which are not substrates of these gelatinases. In solid-phase binding studies with human collagens and collagen fragments, up to 45% of [125I]-labeled proMMP-2 and proMMP-9 but not of active (act)MMP-2 and actMMP-9 were retained by natural collagenous molecules and by synthetic analogs containing repeated Gly-Pro-Hyp triplets (GPO). Surface plasmon resonance yielded binding constants for the interaction of collagen type I (CI) with proMMP-2 and proMMP-9 in a nanomolar range. Values for actMMP-2 and actMMP-9 were 30-40 times higher. Tenfold molar excesses of (GPO)10 reduced the interaction of CI with pro- and actMMP-2 by 22- or 380-fold and resulted in prodomain release accompanied by high enzymatic activation and activity. Pointing to gelatine substrate displacement, higher (GPO)10 concentrations blocked the enzymatic activity. The MMP-2 prodomain-derived collagen-binding domain peptide (P33-42) binds to the collagen-binding domain of MMP-2, thereby preserving enzymatic inactivity. Synthetic P33-42 peptide competed with proMMP-2 binding to CI and prevented (GPO)10-mediated proMMP-2 activation. In contrast to (GPO)10, P33-42 did not activate proMMP-2, making triple helical and hydroxyproline-containing (GPO)10 unique in modulating gelatinase availability and activity. Conclusions These findings suggest novel strategies using collagen analogs for the resolution of liver fibrosis via fibrotic matrix-sequestered gelatinases.
Collapse
Affiliation(s)
- Martin Ruehl
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Marion Muche
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Christian Freise
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Ulrike Erben
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Ulf Neumann
- Department of Surgery, Charité Campus Virchow, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Detlef Schuppan
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Yury Popov
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Walburga Dieterich
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nuernberg, Glücksstrasse 10, D-91054 Erlangen, Germany
| | - Martin Zeitz
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Rajan Somasundaram
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| |
Collapse
|
4
|
Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals (Basel) 2010; 3:1241-1278. [PMID: 27713299 PMCID: PMC4034032 DOI: 10.3390/ph3041241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents.
Collapse
|
5
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
6
|
Tan K, Lawler J. The interaction of Thrombospondins with extracellular matrix proteins. J Cell Commun Signal 2009; 3:177-87. [PMID: 19830595 PMCID: PMC2778591 DOI: 10.1007/s12079-009-0074-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/30/2009] [Indexed: 02/06/2023] Open
Abstract
The thrombospondins (TSPs) are a family of five matricellular proteins that appear to function as adapter molecules to guide extracellular matrix synthesis and tissue remodeling in a variety of normal and disease settings. Various TSPs have been shown to bind to fibronectin, laminin, matrilins, collagens and other extracellular matrix (ECM) proteins. The importance of TSP-1 in this context is underscored by the fact that it is rapidly deposited at the sites of tissue damage by platelets. An association of TSPs with collagens has been known for over 25 years. The observation that the disruption of the TSP-2 gene in mice leads to collagen fibril abnormalities provided important in vivo evidence that these interactions are physiologically important. Recent biochemical studies have shown that TSP-5 promotes collagen fibril assembly and structural studies suggest that TSPs may interact with collagens through a highly conserved potential metal ion dependent adhesion site (MIDAS). These interactions are critical for normal tissue homeostasis, tumor progression and the etiology of skeletal dysplasias.
Collapse
Affiliation(s)
- Kemin Tan
- The Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL USA
| | - Jack Lawler
- Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., EC/CLS-503, Boston, MA 02215 USA
- Harvard Medical School, Boston, MA USA
| |
Collapse
|