1
|
Suhail H, Peng H, Matrougui K, Rhaleb NE. Ac-SDKP attenuates ER stress-stimulated collagen production in cardiac fibroblasts by inhibiting CHOP-mediated NF-κB expression. Front Pharmacol 2024; 15:1352222. [PMID: 38495093 PMCID: PMC10940518 DOI: 10.3389/fphar.2024.1352222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Inflammation and cardiac fibrosis are prevalent pathophysiologic conditions associated with hypertension, cardiac remodeling, and heart failure. Endoplasmic reticulum (ER) stress triggers the cells to activate unfolded protein responses (UPRs) and upregulate the ER stress chaperon, enzymes, and downstream transcription factors to restore normal ER function. The mechanisms that link ER stress-induced UPRs upregulation and NF-κB activation that results in cardiac inflammation and collagen production remain elusive. N-Acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a natural tetrapeptide that negatively regulates inflammation and fibrosis, has been reported. Whether it can inhibit ER stress-induced collagen production in cardiac fibroblasts remains unclear. Thus, we hypothesized that Ac-SDKP attenuates ER stress-stimulated collagen production in cardiac fibroblasts by inhibiting CHOP-mediated NF-κB expression. We aimed to study whether Ac-SDKP inhibits tunicamycin (TM)-induced ER stress signaling, NF-κB signaling, the release of inflammatory cytokine interleukin-6, and collagen production in human cardiac fibroblasts (HCFs). HCFs were pre-treated with Ac-SDKP (10 nM) and then stimulated with TM (0.25 μg/mL). We found that Ac-SDKP inhibits TM-induced collagen production by attenuating ER stress-induced UPRs upregulation and CHOP/NF-κB transcriptional signaling pathways. CHOP deletion by specific shRNA maintains the inhibitory effect of Ac-SDKP on NF-κB and type-1 collagen (Col-1) expression at both protein and mRNA levels. Attenuating ER stress-induced UPR sensor signaling by Ac-SDKP seems a promising therapeutic strategy to combat detrimental cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, United States
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, United States
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, United States
- Department of Physiology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Wang W, Jia W, Zhang C. The Role of Tβ4-POP-Ac-SDKP Axis in Organ Fibrosis. Int J Mol Sci 2022; 23:13282. [PMID: 36362069 PMCID: PMC9655242 DOI: 10.3390/ijms232113282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/02/2023] Open
Abstract
Fibrosis is a pathological process in which parenchymal cells are necrotic and excess extracellular matrix (ECM) is accumulated due to dysregulation of tissue injury repair. Thymosin β4 (Tβ4) is a 43 amino acid multifunctional polypeptide that is involved in wound healing. Prolyl oligopeptidase (POP) is the main enzyme that hydrolyzes Tβ4 to produce its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) which is found to play a role in the regulation of fibrosis. Accumulating evidence suggests that the Tβ4-POP-Ac-SDKP axis widely exists in various tissues and organs including the liver, kidney, heart, and lung, and participates in the process of fibrogenesis. Herein, we aim to elucidate the role of Tβ4-POP-Ac-SDKP axis in hepatic fibrosis, renal fibrosis, cardiac fibrosis, and pulmonary fibrosis, as well as the underlying mechanisms. Based on this, we attempted to provide novel therapeutic strategies for the regulation of tissue damage repair and anti-fibrosis therapy. The Tβ4-POP-Ac-SDKP axis exerts protective effects against organ fibrosis. It is promising that appropriate dosing regimens that rely on this axis could serve as a new therapeutic strategy for alleviating organ fibrosis in the early and late stages.
Collapse
Affiliation(s)
- Wei Wang
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Wenning Jia
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Ramasamy V, Ntsekhe M, Sturrock E. Investigating the antifibrotic potential of N-acetyl seryl-aspartyl-lysyl-proline sequence peptides. Clin Exp Pharmacol Physiol 2021; 48:1558-1565. [PMID: 34347311 DOI: 10.1111/1440-1681.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/01/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a physiological antifibrotic peptide that is hydrolysed by angiotensin I-converting enzyme (ACE). The beneficial antifibrotic effects of ACE inhibitors have been attributed, in part, to its inhibition of Ac-SDKP cleavage. There is indirect evidence that the SDK fragment of Ac-SDKP is the main component required for its antiproliferative action. However, the exact component of the physiological peptide that is responsible for its antifibrotic effect has yet to be determined. Ac-SDKP-derived analogues that are resistant to ACE degradation may provide a new avenue for fibrosis therapy. We tested the antifibrotic potential of various Ac-SDKP peptide sequences and an analogue resistant to ACE degradation in lung fibroblasts. We investigated the contribution and molecular mechanism of action of the amino acid residues in the Ac-SDKP sequence to its antifibrotic effects, and the effects of Ac-SDKP peptides in the prevention of collagen deposition in cells. The Ac-DKP fragment moderately inhibited endothelin-1 (ET-1) mediated transforming growth factor-β (TGF- β) expression, and could be slowly cleaved by ACE, revealing a different sequence requirement for the antifibrotic action of Ac-SDKP. The Ac-SDψKP analogue (where the peptide bond between the aspartate and lysine is reduced) inhibited TGF-β/small mother against decapentaplegic (Smad)-3 signalling and collagen deposition. The Ac-SDKP peptide, in combination with ACEi, demonstrated a greater inhibition of hydroxyproline as compared to Ac-SDKP alone.
Collapse
Affiliation(s)
- Vinasha Ramasamy
- Institute of Infectious Disease & Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Edward Sturrock
- Institute of Infectious Disease & Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Nie W, Lan T, Yuan X, Luo M, Shen G, Yu J, Wei X. Crystalline silica induces macrophage necrosis and causes subsequent acute pulmonary neutrophilic inflammation. Cell Biol Toxicol 2021; 38:591-609. [PMID: 34170461 DOI: 10.1007/s10565-021-09620-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.
Collapse
Affiliation(s)
- Wen Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayun Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
5
|
Han J, Jia Y, Wang S, Gan X. The Improvement Effect of Sodium Ferulate on the Formation of Pulmonary Fibrosis in Silicosis Mice Through the Neutrophil Alkaline Phosphatase 3 (NALP3)/Transforming Growth Factor-β1 (TGF-β1)/α-Smooth Muscle Actin (α-SMA) Pathway. Med Sci Monit 2021; 27:e927978. [PMID: 34127642 PMCID: PMC8214818 DOI: 10.12659/msm.927978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Pneumoconiosis is a chronic progressive fibrotic interstitial pneumonia for which the pathogenesis and treatment remain unclear. Previous studies showed that sodium ferulate (SF) may have a therapeutic effect, and this study explored the mechanism underlying SF-related improvement. Material/Methods In this study, a silicosis mouse model and primary cultured mouse lung fibroblasts were established. Hematoxylin-eosin staining, western blot analysis, quantitative real-time polymerase chain reaction, and Masson staining were used to observe the lung injury, expression of vimentin, and the degree of pulmonary fibrosis. The extracted lung fibroblasts were identified by immunofluorescence. The expression of fibrosis-related genes encoding transforming growth factor-β1 (TGF-β1), neutrophil alkaline phosphatase 3 (NALP3), collagen-1, α-smooth muscle actin (α-SMA), and phosphorylated p38 (p-p38) and p38 proteins were detected by western blot. The effects of SF and the TGF-β pathway agonist SRI-011381 on cell proliferation and the expression of fibrosis-related protein in mouse lung fibroblasts were measured by Cell Counting Kit-8, immunofluorescence, and western blot as needed. Results SF reduced the lung lesions in silicosis mice and inhibited the expression of vimentin and fibrosis-related genes, while having no effect on body weight. Vimentin expression was positive in the extracted cells. In vitro experiments showed that SF inhibited the proliferation of lung fibroblasts and the expression of fibrosis-related proteins. In addition, SF partly reversed the opposite regulatory effect of SRI-011381 on lung fibroblasts. Conclusions SF inhibited lung injury and fibrosis in silicosis mice through the NALP3/TGF-β1/α-SMA pathway.
Collapse
Affiliation(s)
- Jingyin Han
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yangmin Jia
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shujuan Wang
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoyu Gan
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
6
|
Qiu Y, Wang Z, Zhang X, Huang P, Zhang W, Zhang K, Wang S, He L, Guo Y, Xiang A, Zhang C, Hao Q, Li M, Li W, Zhang Y. A long-acting isomer of Ac-SDKP attenuates pulmonary fibrosis through SRPK1-mediated PI3K/AKT and Smad2 pathway inhibition. IUBMB Life 2020; 72:2611-2626. [PMID: 33135306 DOI: 10.1002/iub.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening lung disease with a poor prognosis. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a critical negative regulator of fibrosis development. However, it's extremely short half-life greatly limits its applications. Previously, we reported an Ac-SDKP analog peptide in which Asp and Lys residues were replaced with D-amino acids (Ac-SDD KD P). Ac-SDD KD P exhibits better resistance to angiotensin-1-converting enzyme (ACE)-mediated degradation and a longer half-life than Ac-SDKP in rat and human sera. The objective of this study was to explore the potential application of Ac-SDD KD P for the treatment of IPF and to clarify the underlying mechanisms. We found that Ac-SDD KD P exerted similar antifibrotic effects as Ac-SDKP on human fetal lung fibroblast-1 (HFL-1) proliferation, α-smooth muscle actin (α-SMA), collagen I and collagen III expression, and Smad-2 phosphorylation in vitro. In vivo, Ac-SDD KD P exhibited significantly greater protective effects against bleomycin-induced pulmonary fibrosis than Ac-SDKP in mice. α-SMA, CD45, collagen I and collagen III expression, and Smad-2 phosphorylation were significantly decreased in the lungs of Ac-SDD KD P-treated but not Ac-SDKP-treated mice. Furthermore, a pull-down experiment was used to screen for molecules that interact with Ac-SDKP. Co-immunoprecipitation (Co-IP) and computer-based molecular docking experiments demonstrated an interaction between Ac-SDKP or Ac-SDD KD P (Ac-SDKP/Ac-SDD KD P) and serine/arginine-rich protein-specific kinase 1 (SRPK1) that caused inhibition SRPK1-mediated phosphatidylinositol-3 kinase/ serine/threonine kinase (PIK3/AKT) signaling pathway activation and Smad2 phosphorylation and thereby attenuated lung fibrosis. Our data suggest that long-acting Ac-SDD KD P may potentially be an effective drug for the treatment of pulmonary fibrosis. The interacting molecule and antifibrotic mechanism of Ac-SDKP/Ac-SDD KD P were also identified, providing an experimental and theoretical foundation for the clinical application of the drug.
Collapse
Affiliation(s)
- Yueyuan Qiu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xutao Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ping Huang
- The Brigade of Undergraduates, The Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yanhai Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Zhang ZQ, Shao B, Han GZ, Liu GY, Zhang CZ, Lin L. Location and dynamic changes of inflammation, fibrosis, and expression levels of related genes in SiO 2-induced pulmonary fibrosis in rats in vivo. J Toxicol Pathol 2019; 32:253-260. [PMID: 31719752 PMCID: PMC6831492 DOI: 10.1293/tox.2019-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Silicosis is a serious occupational disease characterized by pulmonary fibrosis, and its mechanism and progression have not been fully elucidated yet. In this study, silicosis models of rat were established by a one-time dusting method, and the rats were sacrificed after 30, 60, and 120 days (herein referred to as the 30, 60, and 120 days groups, respectively). The rats without dust exposure were used as the control. The lungs were removed to observe pathological changes using hematoxylin and eosin and Masson’s trichrome staining and transmission electron microscopy, and the degree of collagen type I and III deposition in the lung was evaluated by enzyme‐linked immunosorbent assay. The levels of malondialdehyde and superoxide dismutase were measured by spectrophotometry, and the expression levels of fibrosis-related genes (transforming growth factor beta 1, type I collagen, type III collagen) were assessed by real-time quantitative polymerase chain reaction. The results suggested that the rats in the model groups exhibited obvious collagen fibrosis and that the severity of the lung injury increased as the time after exposure to SiO2 increased. There was a significant response to lung inflammation in the model rats, especially in the 30 days group. The degree of lipid peroxidation in bronchoalveolar lavage fluid cells and lung tissues in experiment group rats significantly increased. Among the three fibrosis-related genes, transforming growth factor beta 1was elevated in both bronchoalveolar lavage fluid cells and lung tissues of the experiment group rats, while collagen type I and III were only elevated in lung tissues. Hence, we concluded that as silicosis progressed, inflammation, fibrosis, and the expression of fibrosis-related genes showed different time-dependent changes and that a number of causal relationships existed among them.
Collapse
Affiliation(s)
- Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Bo Shao
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Gui-Zhi Han
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Gen-Yi Liu
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Chun-Zhi Zhang
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Li Lin
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| |
Collapse
|
8
|
Pirfenidone inhibits epithelial-mesenchymal transition and pulmonary fibrosis in the rat silicosis model. Toxicol Lett 2019; 300:59-66. [DOI: 10.1016/j.toxlet.2018.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/04/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
|
9
|
Zhang L, Xu D, Li Q, Yang Y, Xu H, Wei Z, Wang R, Zhang W, Liu Y, Geng Y, Li S, Gao X, Yang F. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) attenuates silicotic fibrosis by suppressing apoptosis of alveolar type II epithelial cells via mediation of endoplasmic reticulum stress. Toxicol Appl Pharmacol 2018; 350:1-10. [PMID: 29684394 DOI: 10.1016/j.taap.2018.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023]
Abstract
Damage to alveolar epithelial cells (AECs) caused by long-term inhalation of large amounts of silica dust plays a significant role in the pathology of silicosis. The present study was undertaken to investigate the regulatory mechanism(s) involved in type II AEC damage from silicon dioxide (SiO2) as well as the mechanism(s) related to the prevention of silicosis by the antifibrotic tetra peptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). The 2-DE results showed that SiO2 induced endoplasmic reticulum (ER) stress in A549 cells. In addition, typical apoptotic characteristics were observed using a transmission electron microscope (TEM) in A549 cells stimulated by SiO2 and in type II AECs from silicotic rats. Mechanistic study showed that both Ac-SDKP and 4-phenylbutyrate (4-PBA), an inhibiter of ER stress, attenuated GRP78, phosphor-PERK, phosphor-eIF2α, CHOP and Caspase-12 protein expression in A549 cells stimulated by SiO2 and in type II AECs from silicotic rats. Treatment with Ac-SDKP and 4-PBA in vivo effectively inhibited collagen deposition in the lungs of silicotic rats. In summary, ER stress is involved in the apoptosis of type II AECs both in vitro and in vivo. Ac-SDKP effectively suppresses SiO2-induced apoptosis in type II AECs by attenuating the Caspase-12 and PERK/eIF2α/CHOP pathway activation caused by ER stress, thus preventing silicotic fibrosis.
Collapse
Affiliation(s)
- Lijuan Zhang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Dingjie Xu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Qian Li
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yi Yang
- Department of educational affairs, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongqiu Wei
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Ruimin Wang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Wenli Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yan Liu
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yucong Geng
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shifeng Li
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xuemin Gao
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fang Yang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
10
|
Conte E, Fagone E, Gili E, Fruciano M, Iemmolo M, Pistorio MP, Impellizzeri D, Cordaro M, Cuzzocrea S, Vancheri C. Preventive and therapeutic effects of thymosin β4 N-terminal fragment Ac-SDKP in the bleomycin model of pulmonary fibrosis. Oncotarget 2017; 7:33841-54. [PMID: 27029074 PMCID: PMC5085123 DOI: 10.18632/oncotarget.8409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, the bleomycin model of pulmonary fibrosis was utilized to investigate putative anti-fibrotic activity of Ac-SDKP in vivo. Male CD-1 mice received intra-tracheal bleomycin (BLEO, 1 mg/kg) instillation in the absence or presence of Ac-SDKP (a dose of 0.6 mg/kg delivered intra-peritoneally on the day of BLEO treatment, d0, followed by bi-weekly additional doses). To evaluate therapeutic effects in a subset of mice, Ac-SDKP was administered one week after BLEO instillation (d7). Animals were sacrificed at one, two, or three weeks later. Measurement of fluid and collagen content in the lung, Broncho Alveolar Lavage Fluid (BALF) analysis, lung histology, immunohistochemistry (IHC), and molecular analysis were performed. Compared to BLEO-treated mice, animals that received also Ac-SDKP (at both d0 and d7) had significantly decreased mortality, weight loss, inflammation (edema, and leukocyte lung infiltration), lung damage (histological evidence of lung injury), and fibrosis (collagen histological staining and soluble collagen content in the lung) at up to 21 days. Moreover, IHC and quantitative RT-PCR results demonstrated a significant decrease in BLEO-induced IL-17 and TGF-β expression in lung tissue. Importantly, α-SMA expression, the hallmark of myofibroblast differentiation, was also decreased. This is the first report showing not only a preventive protective role of Ac-SDKP but also its significant therapeutic effects in the bleomycin model of pulmonary fibrosis, thus supporting further preclinical and clinical studies.
Collapse
Affiliation(s)
- Enrico Conte
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Evelina Fagone
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Maria Iemmolo
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | | | - Daniela Impellizzeri
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98166 Messina, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| |
Collapse
|
11
|
Peng HB, Wang RX, Deng HJ, Wang YH, Tang JD, Cao FY, Wang JH. Protective effects of oleanolic acid on oxidative stress and the expression of cytokines and collagen by the AKT/NF-κB pathway in silicotic rats. Mol Med Rep 2017; 15:3121-3128. [DOI: 10.3892/mmr.2017.6402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
|
12
|
Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep 2016; 6:32257. [PMID: 27577858 PMCID: PMC5006047 DOI: 10.1038/srep32257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism.
Collapse
|
13
|
Deng H, Xu H, Zhang X, Sun Y, Wang R, Brann D, Yang F. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat. Toxicol Appl Pharmacol 2016; 294:1-10. [PMID: 26785300 DOI: 10.1016/j.taap.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.
Collapse
Affiliation(s)
- Haijing Deng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Xianghong Zhang
- Pathology Department, Hebei Medical University, Shi Jiazhuang, China
| | - Yue Sun
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Ruimin Wang
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Fang Yang
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
14
|
Conte E, Iemmolo M, Fruciano M, Fagone E, Gili E, Genovese T, Esposito E, Cuzzocrea S, Vancheri C. Effects of thymosin β4 and its N-terminal fragment Ac-SDKP on TGF-β-treated human lung fibroblasts and in the mouse model of bleomycin-induced lung fibrosis. Expert Opin Biol Ther 2015; 15 Suppl 1:S211-21. [PMID: 26098610 DOI: 10.1517/14712598.2015.1026804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Thymosin β4 (Tβ4) and its amino-terminal fragment comprising N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) have been reported to act as anti-inflammatory and anti-fibrotic agents in vitro and in vivo. In recent papers, we have shown that Tβ4 exerts a widely protective role in mice treated with bleomycin, and in particular, we have demonstrated its inhibitory effects on both inflammation and early fibrosis. OBJECTIVES In this study, the putative anti-proliferative and anti-fibrogenic effects of Tβ4 and Ac-SDKP were evaluated in vitro. In addition, the effects of Tβ4 up to 21 days were evaluated in the bleomycin mouse model of lung fibrosis. METHODS We utilized both control and TGF-β-stimulated primary human lung fibroblasts isolated from both idiopathic pulmonary fibrosis (IPF) and control tissues. The in vivo effects of Tβ4 were assessed in CD1 mice treated with bleomycin. RESULTS In the in vitro experiments, we observed significant anti-proliferative effects of Ac-SDKP in IPF fibroblasts. In those cells, Ac-SDKP significantly inhibited TGF-β-induced α-SMA and collagen expression, hallmarks of fibroblast differentiation into myofibroblasts triggered by TGF-β. In vivo, despite its previously described protective role in mice treated with bleomycin at 7 days, Tβ4 failed to prevent fibrosis induced by the drug at 14 and 21 days. CONCLUSION We conclude that, compared to Tβ4, Ac-SDKP may have greater potential as an anti-fibrotic agent in the lung. Further in vivo experiments are warranted.
Collapse
Affiliation(s)
- Enrico Conte
- University of Catania, Department of Clinical and Experimental Medicine , Via Santa Sofia 78, 95123 Catania , Italy +39 095 378 1254 ; +39 095 378 1427 ;
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tamoxifen citrate: a glimmer of hope for silicosis. J Surg Res 2015; 193:429-34. [DOI: 10.1016/j.jss.2014.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
|
16
|
Deng H, Yang F, Xu H, Sun Y, Xue X, Du S, Wang X, Li S, Liu Y, Wang R. Ac-SDKP suppresses epithelial–mesenchymal transition in A549 cells via HSP27 signaling. Exp Mol Pathol 2014; 97:176-83. [DOI: 10.1016/j.yexmp.2014.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 02/01/2023]
|
17
|
Conte E, Iemmolo M, Fagone E, Gili E, Fruciano M, Genovese T, Esposito E, Cuzzocrea S, Vancheri C. Thymosin β4 reduces IL-17-producing cells and IL-17 expression, and protects lungs from damage in bleomycin-treated mice. Immunobiology 2014; 219:425-31. [PMID: 24613476 DOI: 10.1016/j.imbio.2014.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/28/2013] [Accepted: 02/04/2014] [Indexed: 11/16/2022]
Abstract
Thymosin β4 (Tβ4) is a highly conserved peptide with immunomodulatory properties. In this research we investigated the effects of Tβ4 on the bleomycin-induced lung damage in CD-1 mice and the changes in the number of IL-17-producing cells as well as the IL-17 expression in the lung. Male CD-1 mice were treated with bleomycin (1mg/kg) in the absence or the presence of Tβ4 (6mg/kg delivered intra-peritoneally on the day of bleomycin treatment and for 2 additional doses). After sacrifice one week later, lung histology, measurement of collagen content of the lung, Broncho Alveolar Lavage Fluid (BALF) analysis, evaluation of IL17-producing cells in the blood as well as RT-PCR and IHC in the lung tissue were performed. As expected, bleomycin-induced inflammation and lung damage were substantially reduced by Tβ4 treatment in CD-1 mice, as shown by the significant reduction of (i) leukocytes in BALF, (ii) histological evidence of the lung damage, and (iii) total collagen content in the lung. Importantly, the bleomycin-induced increase in the number of IL17-producing cells in the blood was significantly blocked by Tβ4. Accordingly, IHC and RT-PCR results demonstrated that Tβ4 substantially inhibited bleomycin-induced IL-17 over-expression in the lung tissue. This is the first report showing that a decreased amount of IL17-producing cells and inhibited IL-17 expression in the lung with Tβ4 treatment correlate with its anti-inflammatory and anti-fibrotic effects.
Collapse
Affiliation(s)
- Enrico Conte
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy.
| | - Maria Iemmolo
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Evelina Fagone
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Elisa Gili
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Carlo Vancheri
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| |
Collapse
|
18
|
Fragment-based design for the development of N-domain-selective angiotensin-1-converting enzyme inhibitors. Clin Sci (Lond) 2013; 126:305-13. [PMID: 24015848 PMCID: PMC3875237 DOI: 10.1042/cs20130403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ACE (angiotensin-1-converting enzyme) is a zinc metallopeptidase that plays a prominent role in blood pressure regulation and electrolyte homeostasis. ACE consists of two homologous domains that despite similarities of sequence and topology display differences in substrate processing and inhibitor binding. The design of inhibitors that selectively inhibit the N-domain (N-selective) could be useful in treating conditions of tissue injury and fibrosis due to build-up of N-domain-specific substrate Ac-SDKP (N-acetyl-Ser-Asp-Lys-Pro). Using a receptor-based SHOP (scaffold hopping) approach with N-selective inhibitor RXP407, a shortlist of scaffolds that consisted of modified RXP407 backbones with novel chemotypes was generated. These scaffolds were selected on the basis of enhanced predicted interaction energies with N-domain residues that differed from their C-domain counterparts. One scaffold was synthesized and inhibitory binding tested using a fluorogenic ACE assay. A molecule incorporating a tetrazole moiety in the P2 position (compound 33RE) displayed potent inhibition (K(i)=11.21±0.74 nM) and was 927-fold more selective for the N-domain than the C-domain. A crystal structure of compound 33RE in complex with the N-domain revealed its mode of binding through aromatic stacking with His388 and a direct hydrogen bond with the hydroxy group of the N-domain specific Tyr369. This work further elucidates the molecular basis for N-domain-selective inhibition and assists in the design of novel N-selective ACE inhibitors that could be employed in treatment of fibrosis disorders.
Collapse
|
19
|
Antifibrotic peptideN-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP): Opportunities for angiotensin-converting enzyme inhibitor design. Clin Exp Pharmacol Physiol 2013; 40:535-41. [DOI: 10.1111/1440-1681.12062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/20/2013] [Accepted: 01/21/2013] [Indexed: 12/01/2022]
|
20
|
Ac-SDKP ameliorates the progression of lupus nephritis in MRL/lpr mice. Int Immunopharmacol 2012; 14:401-9. [DOI: 10.1016/j.intimp.2012.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 01/03/2023]
|
21
|
Okada H. Angiotensin converting enzyme inhibitor-modulated microRNAs targeting renal fibrosis. J Am Soc Nephrol 2012; 23:1441-3. [PMID: 22878962 DOI: 10.1681/asn.2012070692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Xu H, Yang F, Sun Y, Yuan Y, Cheng H, Wei Z, Li S, Cheng T, Brann D, Wang R. A new antifibrotic target of Ac-SDKP: inhibition of myofibroblast differentiation in rat lung with silicosis. PLoS One 2012; 7:e40301. [PMID: 22802960 PMCID: PMC3389005 DOI: 10.1371/journal.pone.0040301] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 06/04/2012] [Indexed: 02/06/2023] Open
Abstract
Background Myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, is a key process in organ fibrosis, and is induced by TGF-β. Here we examined whether an anti-fibrotic agent, N-acetyl-seryl-aspartyl-lysylproline (Ac-SDKP), can regulate induction of TGF-β signaling and myofibroblast differentiation as a potential key component of its anti-fibrotic mechanism in vivo and in vitro. Methodology/Principal Findings Rat pulmonary fibroblasts were cultured in vitro and divided to 4 groups 1) control; 2) TGF-β1; 3) TGF-β1+ LY364947; 4) TGF-β1+Ac-SDKP. For in vivo studies, six groups of animals were utilized 1) control 4w; 2) silicotic 4w; 3) control 8w; 4) silicotic 8w; 5) Ac-SDKP post-treatment; 6)Ac-SDKP pre-treatment. SiO2 powders were douched in the trachea of rat to make the silicotic model. Myofibroblast differentiation was measured by examining expression of α-SMA, as well as expression of serum response factor (SRF), a key regulator of myofibroblast differentiation. The expressions of collagen, TGF-β1 and RAS signaling were also assessed. The results revealed that TGF-β1 strongly induced myofibroblast differentiation and collagen synthesis in vitro, and that pre-treatment with Ac-SDKP markedly attenuated myofibroblast activation, as well as induction of TGF-β1 and its receptor. Similar results were observed in vivo in the pathologically relevant rat model of silicosis. Ac-SDKP treatment in vivo strongly attenuated 1) silicosis-induced increased expressions of TGF-β1 and RAS signaling, 2) myofibroblast differentiation as indicated by a robust decrease of SRF and α-SMA-positive myofibroblast localization in siliconic nodules in the lung, 3) collagen deposition. Conclusion/Significance The results of the present study suggest a novel mechanism of action for Ac-SDKP’s beneficial effect in silicosis, which involves attenuation of TGF-β1 and its receptors, SRF and Ang II type 1 receptor (AT1) expression, collagen deposition and myofibroblast differentiation. The results further suggest that therapies targeting myofibroblast differentiation may have therapeutic efficacy in treatment of silicosis of the lung.
Collapse
Affiliation(s)
- Hong Xu
- Department of Pathology, Hebei Medical University, Shi Jiazhuang, China
| | - Fang Yang
- Department of Pathology, Hebei Medical University, Shi Jiazhuang, China
- Medical Research Center, Hebei United University, Tangshan, China
- * E-mail:
| | - Ying Sun
- Medical Research Center, Hebei United University, Tangshan, China
| | - Yuan Yuan
- Medical Research Center, Hebei United University, Tangshan, China
| | - Hua Cheng
- Medical Research Center, Hebei United University, Tangshan, China
| | - Zhongqiu Wei
- Medical Research Center, Hebei United University, Tangshan, China
| | - Shuyu Li
- Medical Research Center, Hebei United University, Tangshan, China
| | - Tan Cheng
- Department of Pathology, Hebei Medical University, Shi Jiazhuang, China
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Ruimin Wang
- Medical Research Center, Hebei United University, Tangshan, China
| |
Collapse
|
23
|
Abstract
Silicosis is a fibrotic lung disease caused by inhalation of free crystalline silicon dioxide or silica. Occupational exposure to respirable crystalline silica dust particles occurs in many industries. Phagocytosis of crystalline silica in the lung causes lysosomal damage, activating the NALP3 inflammasome and triggering the inflammatory cascade with subsequent fibrosis. Impairment of lung function increases with disease progression, even after the patient is no longer exposed. Diagnosis of silicosis needs carefully documented records of occupational exposure and radiological features, with exclusion of other competing diagnoses. Mycobacterial diseases, airway obstruction, and lung cancer are associated with silica dust exposure. As yet, no curative treatment exists, but comprehensive management strategies help to improve quality of life and slow deterioration. Further efforts are needed for recognition and control of silica hazards, especially in developing countries.
Collapse
Affiliation(s)
- Chi Chiu Leung
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, China.
| | | | | |
Collapse
|
24
|
Liu T, Li L, Fu C, Liu H, Chen D, Tang F. Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 2011; 33:2399-407. [PMID: 22182752 DOI: 10.1016/j.biomaterials.2011.12.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 12/03/2011] [Indexed: 01/29/2023]
Abstract
Crystalline silica is well known to induce chronic lung inflammation by inhalation that can progress to silicosis. Recently, we reported that silica nanoparticles (SN) cause more damage to liver instead of lung when they enter the body by intravenous injection. However, this mechanism is still unclear. In the present study, liver damages caused by mesoporous hollow silica nanoparticles (MHSNs) were demonstrated after continuous intraperitoneal injection into mice twice a week for 6 weeks. The administration of MHSNs at 50 mg/kg increased liver injury markers in serum, such as alanine aminotransferase (ALT), inflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Histological analysis revealed lymphocytic infiltration and silicotic nodular like lesions in liver. Collagen fibers were observed around the silicotic nodular like lesion, and hydroxyproline level in liver was also increased dramatically. We also found that activated kupffer cells (KCs) played a key role in the liver damage caused by SNs similar to alveolar macrophage in the process of silicosis. These suggest that the mechanism of liver damage caused by SNs is in consonance with the occurrence of silicosis. These findings may provide useful information for the further toxicity and bioapplication research of nanoparticles.
Collapse
Affiliation(s)
- Tianlong Liu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29, East Road, Zhongguancun, Beijing 100190, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Kanasaki M, Nagai T, Kitada M, Koya D, Kanasaki K. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. FIBROGENESIS & TISSUE REPAIR 2011; 4:25. [PMID: 22126210 PMCID: PMC3253677 DOI: 10.1186/1755-1536-4-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP).
Collapse
Affiliation(s)
- Megumi Kanasaki
- Division of Diabetes & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|