1
|
Ni C, Chen L, Hua B, Han Z, Xu L, Zhou Q, Yao M, Ni H. Epigenetic mechanisms of bone cancer pain. Neuropharmacology 2024; 261:110164. [PMID: 39307393 DOI: 10.1016/j.neuropharm.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The management and treatment of bone cancer pain (BCP) remain significant clinical challenges, imposing substantial economic burdens on patients and society. Extensive research has demonstrated that BCP induces changes in the gene expression of peripheral sensory nerves and neurons, which play crucial roles in the onset and maintenance of BCP. However, our understanding of the epigenetic mechanisms of BCP underlying the transcriptional regulation of pro-nociceptive (such as inflammatory factors and the transient receptor potential family) and anti-nociceptive (such as potassium channels and opioid receptors) genes remains limited. This article reviews the epigenetic regulatory mechanisms in BCP, analyzing the roles of histone modifications, DNA methylation, and noncoding RNAs (ncRNAs) in the expression of pro-nociceptive and anti-nociceptive genes. Finally, we provide a comprehensive view of the functional mechanisms of epigenetic regulation in BCP and explore the potential of these epigenetic molecules as therapeutic targets for BCP.
Collapse
Affiliation(s)
- Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Liping Chen
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Bohan Hua
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zixin Han
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| |
Collapse
|
2
|
Lin M, Lee Y, Liao J, Chou C, Yang Y. PTGES is involved in myofibroblast differentiation via HIF-1α-dependent glycolysis pathway. J Cell Mol Med 2024; 28:e70157. [PMID: 39417702 PMCID: PMC11484478 DOI: 10.1111/jcmm.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Patients with lung cancer usually exhibit poor prognoses and low 5-year survival rates. Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both chronic lung dysfunctions resulting in lung fibrosis and increased risk of lung cancer. Myofibroblasts contribute to the progression of asthma, COPD and IPF, leading to fibrosis in the airway and lungs. A growing body of evidence demonstrates that metabolic reprogramming is a major hallmark of fibrosis, being important in the progression of fibrosis. Using gene expression microarray, we identified and validated that the lipid metabolic pathway was upregulated in lung fibroblasts upon interleukin (IL)-4, IL-13 and tumour necrosis factor (TNF)-α treatment. In this study, we described that prostaglandin E synthase (PTGES) was upregulated in lung fibroblasts after IL-4, IL-13 and TNF-α treatments. PTGES increased α-SMA levels and promoted lung fibroblast cell migration and invasion abilities. Furthermore, PTGES was upregulated in a lung fibrosis rat model in vivo. PTGES increased AKT phosphorylation, leading to activation of the HIF-1α-glycolysis pathway in lung fibroblast cells. HIF-1α inhibitor or 2-DG treatments reduced α-SMA expression in recombinant PTGES (rPTGES)-treated lung fibroblast cells. Targeting PGE2 signalling in PTGES-overexpressing cells by a PTGES inhibitor reduced α-SMA expression. In conclusion, the results of this study demonstrate that PTGES increases the expression of myofibroblast marker via HIF-1α-dependent glycolysis and contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Min‐Hsi Lin
- Division of Chest MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Chen Lee
- Department of Anatomy, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jia‐Bin Liao
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Chih‐Yu Chou
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| |
Collapse
|
3
|
Peng Y, Zhang Y, Wang W, Liu B, Zhang Z, Gong Z, Zhang X, Xia Y, You X, Wu J. Potential role of remimazolam in alleviating bone cancer pain in mice via modulation of translocator protein in spinal astrocytes. Eur J Pharmacol 2024; 979:176861. [PMID: 39068975 DOI: 10.1016/j.ejphar.2024.176861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Bone cancer pain (BCP) is a complex clinical challenge, with current treatments often falling short of providing adequate relief. Remimazolam, a benzodiazepine receptor agonist recognized for its anxiolytic effects, has emerged as a potential agent in managing BCP. This study explores the analgesic properties of remimazolam and its interaction with the translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, in spinal astrocytes. In the context of BCP, previous research has indicated that TSPO expression in spinal astrocytes may serve a protective regulatory function in neuropathic pain models. Building on this, the BCP mice received various doses of remimazolam on the 15th day post-inoculation, and pain behavior was assessed over time. The results showed that BCP induced an upregulation of TSPO and astrocyte activation in the spinal dorsal horn, alongside increased extracellular signal-regulated kinase (ERK) signaling and inflammatory cytokine expression. Remimazolam administration resulted in a dose-dependent reduction of pain behaviors, which corresponded with a decrease in both ERK pathway activation and inflammatory factor expression. This suggests that remimazolam's analgesic effects are mediated through its action as a TSPO agonist, leading to the attenuation of neuroinflammation and pain signaling pathways. Importantly, the analgesic effects of remimazolam were reversed by the TSPO antagonist PK11195, underscoring the pivotal role of TSPO in the drug's mechanism of action. This reversal also reinstated the heightened levels of ERK activity and inflammatory mediators, further confirming the involvement of TSPO in the modulation of these pain-related processes. These findings open new avenues for the therapeutic management of bone cancer pain, positioning remimazolam as a promising candidate for further investigation and development.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Biying Liu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Zuojing Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Zhihao Gong
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xiaoxuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuefeng Xia
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
4
|
Van den Brande R, Billiet C, Peeters M, Van de Kelft E. Spinal Metastases of the Vertebrae: Three Main Categories of Pain. Life (Basel) 2024; 14:988. [PMID: 39202730 PMCID: PMC11355794 DOI: 10.3390/life14080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Oncologic back pain, infection, inflammation, and trauma are the only specific etiologies of chronic low back pain (CLBP) in contrast to most patients who have non-specific CLBP. In oncologic patients developing CLBP, it is critically important to perform further investigation to exclude spinal metastases (SM).The incidence of cancer is increasing, with 15.7-30% developing SM. In the case of symptomatic SM, we can distinguish three main categories: tumor pain; mechanical pain due to instability, with or without pathologic fractures; and metastatic epidural spinal cord compression (MESCC) or radicular compression. Treatment of SM-related pain is dependent on these categories and consists of symptomatic treatment, target therapy to the bone, radiotherapy, systemic oncologic treatment, and surgery. The care for SM is a multidisciplinary concern, with rapid evolutions in all specialties involved. It is of primordial importance to incorporate the knowledge of specialists in all participating disciplines, such as oncology, radiotherapy, and spinal surgery, to determine the adequate treatment to preserve ambulatory function and quality of life while limiting the burden of treatment if possible. Awareness of potential SM is the first and most important step in the treatment of SM-related pain. Early diagnosis and timely treatment could prevent further deterioration. In this review, we explore the pathophysiology and symptomatology of SM and the treatment options for SM-related pain: tumor pain; mechanical pain due to instability, with or without pathologic fractures; and MESCC or radicular compression.
Collapse
Affiliation(s)
- Ruben Van den Brande
- Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
- Department of Neurosurgery, AZ Klina, 2930 Brasschaat, Belgium
| | - Charlotte Billiet
- Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
- Department of Radiation Oncology, Iridium Netwerk, University of Antwerp, 2000 Antwerpen, Belgium
| | - Marc Peeters
- Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Erik Van de Kelft
- Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
- Department of Neurosurgery, Vitaz, 9100 Sint-Niklaas, Belgium
| |
Collapse
|
5
|
Zhang C, Hu Z, Pan Z, Ji Z, Cao X, Yu H, Qin X, Guan M. The arachidonic acid metabolome reveals elevation of prostaglandin E2 biosynthesis in colorectal cancer. Analyst 2024; 149:1907-1920. [PMID: 38372525 DOI: 10.1039/d3an01723k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Arachidonic acid metabolites are a family of bioactive lipids derived from membrane phospholipids. They are involved in cancer progression, but arachidonic acid metabolite profiles and their related biosynthetic pathways remain uncertain in colorectal cancer (CRC). To compare the arachidonic acid metabolite profiles between CRC patients and healthy controls, quantification was performed using a liquid chromatography-mass spectrometry-based analysis of serum and tissue samples. Metabolomics analysis delineated the distinct oxidized lipids in CRC patients and healthy controls. Prostaglandin (PGE2)-derived metabolites were increased, suggesting that the PGE2 biosynthetic pathway was upregulated in CRC. The qRT-PCR and immunohistochemistry analyses showed that the expression level of PGE2 synthases, the key protein of PGE2 biosynthesis, was upregulated in CRC and positively correlated with the CD68+ macrophage density and CRC development. Our study indicates that the PGE2 biosynthetic pathway is associated with macrophage infiltration and progression of CRC tumors.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zuojian Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ziyue Pan
- Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Xinyi Cao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Hongxiu Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
6
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
7
|
Geng S, Zhan H, Cao L, Geng L, Ren X. Targeting PTGES/PGE2 axis enhances sensitivity of colorectal cancer cells to 5-fluorouracil. Biochem Cell Biol 2023; 101:501-512. [PMID: 37358009 DOI: 10.1139/bcb-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Insensitivity and resistance to 5-fluorouracil (5FU) remain as major hurdles for effective and durable 5FU-based chemotherapy in colorectal cancer (CRC) patients. In this study, we identified prostaglandin E synthase (PTGES)/prostaglandin E2 (PGE2) axis as an important regulator for 5FU sensitivity in CRC cells. We found that PTGES expression and PGE2 production are elevated in CRC cells in comparison to normal colorectal epithelial cells. Depletion of PTGES significantly enhanced the inhibitory effect of 5FU on CRC cell viability that was fully reverted by exogenous supplement of PGE2. Inhibition of PTGES enzymatic function, by either inducing loss-of-function mutant or treatment with selective inhibitors, phenocopied the PTGES depletion in terms of 5FU sensitization. Mechanistically, PTGES/PGE2 axis modulates glycolysis in CRC cells, thereby regulating the 5FU sensitivity. Importantly, high PTGES expression is correlated with poor prognosis in 5FU-treated CRC patients. Thus, our study defines PTGES/PGE2 axis as a novel therapeutic target for enhancing the efficacy of 5FU-based chemotherapy in CRC.
Collapse
Affiliation(s)
- Song Geng
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hao Zhan
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lianmeng Cao
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Longlong Geng
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiang Ren
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
8
|
Liu XQ, Peng YQ, Huang LX, Li CG, Kuang PP, Chen DH, Wu ZC, He BX, Zhou ZR, Fu QL. Dendritic cells mediated by small extracellular vesicles derived from MSCs attenuated the ILC2 activity via PGE2 in patients with allergic rhinitis. Stem Cell Res Ther 2023; 14:180. [PMID: 37488601 PMCID: PMC10367306 DOI: 10.1186/s13287-023-03408-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells-derived small extracellular vesicles (MSC-sEVs) have recently attracted considerable attention because of their therapeutic potential in various immune diseases. We previously reported that MSC-sEVs could exert immunomodulatory roles in allergic airway inflammation by regulating group 2 innate lymphoid cell (ILC2) and dendritic cell (DC) functions. Therefore, this study aimed to investigate the indirect effects of MSC-sEVs on ILC2s from patients with allergic rhinitis (AR) via DCs. METHODS Here, we isolated sEVs from induced pluripotent stem cells-MSCs using anion-exchange chromatography and mature DCs (mDCs) were treated with MSC-sEVs. sEV-mDCs were co-cultured with peripheral blood mononuclear cells from patients with AR or purified ILC2s. The levels of IL-13 and GATA3 in ILC2s were examined by flow cytometry. Bulk RNA sequence for mDCs and sEV-mDCs was employed to further probe the potential mechanisms, which were then validated in the co-culture systems. RESULTS sEV-mDCs showed impaired capacity in priming the levels of IL-13 and GATA3 in ILC2s when compared with mDCs. Furthermore, there was higher PGE2 and IL-10 production from sEV-mDCs, and the blockade of them especially the former one reversed the inhibitory effects of sEV-mDCs. CONCLUSIONS We demonstrated that MSC-sEVs were able to dampen the activating effects of mDCs on ILC2s in patients with AR. Mechanismly, the PGE2-EP2/4 axis played an essential role in the immunomodulatory effects of sEV-mDCs on ILC2s. Herein, we provided new insights into the mechanism underlying the therapeutic effects of MSC-sEVs in allergic airway inflammation.
Collapse
Affiliation(s)
- Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ya-Qi Peng
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Long-Xin Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chan-Gu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peng-Peng Kuang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - De-Hua Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Rou Zhou
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
- Division of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
10
|
Amano H, Eshima K, Ito Y, Nakamura M, Kitasato H, Ogawa F, Hosono K, Iwabuchi K, Uematsu S, Akira S, Narumiya S, Majima M. The microsomal prostaglandin E synthase-1/prostaglandin E2 axis induces recovery from ischaemia via recruitment of regulatory T cells. Cardiovasc Res 2023; 119:1218-1233. [PMID: 35986688 PMCID: PMC10411941 DOI: 10.1093/cvr/cvac137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Microsomal prostaglandin E synthase-1 (mPGES-1)/prostaglandin E2 (PGE2) induces angiogenesis through the prostaglandin E2 receptor (EP1-4). Among immune cells, regulatory T cells (Tregs), which inhibit immune responses, have been implicated in angiogenesis, and PGE2 is known to modulate the function and differentiation of Tregs. We hypothesized that mPGES-1/PGE2-EP signalling could contribute to recovery from ischaemic conditions by promoting the accumulation of Tregs. METHODS AND RESULTS Wild-type (WT), mPGES-1-deficient (mPges-1-/-), and EP4 receptor-deficient (Ep4-/-) male mice, 6-8 weeks old, were used. Hindlimb ischaemia was induced by femoral artery ligation. Recovery from ischaemia was suppressed in mPges-1-/- mice and compared with WT mice. The number of accumulated forkhead box protein P3 (FoxP3)+ cells in ischaemic muscle tissue was decreased in mPges-1-/- mice compared with that in WT mice. Expression levels of transforming growth factor-β (TGF-β) and stromal cell derived factor-1 (SDF-1) in ischaemic tissue were also suppressed in mPges-1-/- mice. The number of accumulated FoxP3+ cells and blood flow recovery were suppressed when Tregs were depleted by injecting antibody against folate receptor 4 in WT mice but not in mPges-1-/- mice. Recovery from ischaemia was significantly suppressed in Ep4-/- mice compared with that in WT mice. Furthermore, mRNA levels of Foxp3 and Tgf-β were suppressed in Ep4-/- mice. Moreover, the number of accumulated FoxP3+ cells in ischaemic tissue was diminished in Ep4-/- mice compared with that in Ep4+/+ mice. CONCLUSION These findings suggested that mPGES-1/PGE2 induced neovascularization from ischaemia via EP4 by promoting the accumulation of Tregs. Highly selective EP4 agonists could be useful for the treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Masaki Nakamura
- Department of Microbiology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - Fumihiro Ogawa
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| |
Collapse
|
11
|
Xie LY, Huang HY, Fang T, Liang JY, Hao YL, Zhang XJ, Xie YX, Wang C, Tan YH, Zeng L. A Prognostic Survival Model of Pancreatic Adenocarcinoma Based on Metabolism-Related Gene Expression. Front Genet 2022; 13:804190. [PMID: 35664305 PMCID: PMC9158121 DOI: 10.3389/fgene.2022.804190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Accurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES, AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework attained the robust predictive performance, with 2-year survival areas under the curve (AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse survival outcome. The metabolic risk score increased the accuracy of survival prediction in patients suffering from PAAD.
Collapse
Affiliation(s)
- Lin-Ying Xie
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tian Fang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ying Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yu-Lei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xue-Jiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi-Xin Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ye-Hui Tan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Fan LJ, Kan HM, Chen XT, Sun YY, Chen LP, Shen W. Vascular endothelial growth factor-A/vascular endothelial growth factor2 signaling in spinal neurons contributes to bone cancer pain. Mol Pain 2022; 18:17448069221075891. [PMID: 35083936 PMCID: PMC8874205 DOI: 10.1177/17448069221075891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tumor metastasis to bone is often accompanied by a severe pain syndrome (cancer-induced bone pain, CIBP) that is frequently unresponsive to analgesics, which markedly reduces patient quality of life and cancer treatment tolerance in patients. Prolonged pain can induce hypersensitivity via spinal plasticity, and several recent studies have implicated the involvement of vascular endothelial growth factor-A (VEGF-A) signaling in this process. Here, we speculated that CIBP is associated with VEGF-A/VEGFR2 signaling in the spinal cord. A mouse model of CIBP was established by intramedullary injection of Lewis lung carcinoma (LLC) cells in the mouse femur. Pain sensitization and potential amelioration via VEGF-A/VEGFR2 blockade were measured using paw withdrawal threshold to mechanical stimulation and paw withdrawal latency to thermal. Spinal VEGF-A/VEGFR2 signaling was blocked by intrathecal injection of the VEGF-A antibody or the specific VEGFR2 inhibitor ZM323881. Changes in the expression levels of VEGF-A, VEGFR2, and other pain-related signaling factors were measured using western blotting and immunofluorescence staining. Mice after LLC injection demonstrated mechanical allodynia and thermal hyperalgesia, both of which were suppressed via anti-VEGF-A antibody or ZM323881. Conversely, the intrathecal injection of exogenous VEGF-A was sufficient to cause pain hypersensitivity in naïve mice via the VEGFR2-mediated activation of protein kinase C. Moreover, the spinal blockade of VEGF-A or VEGFR2 also suppressed N-methyl-D-aspartate receptor (NMDAR) activation and downstream Ca2+-dependent signaling. Thus, spinal VEGF-A/VEGFR2/NMDAR signaling pathways may be critical mediators of CIBP.
Collapse
Affiliation(s)
- Li-Jun Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hou-Ming Kan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Yuan Sun
- Department of Anesthesiology, Xuzhou First People’s Hospital, Xuzhou, China
| | - Li-ping Chen
- Department of Pain Management, Affiliated Hospital of Xuzhou, Xuzhou, China
| | - Wen Shen
- Department of Pain Management, Affiliated Hospital of Xuzhou, Xuzhou, China
| |
Collapse
|
13
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
14
|
Liu B, Ma X, Cai J. Construction and Analysis of Coexpression Network to Understand Biological Responses in Chickens Infected by Eimeria tenella. Front Vet Sci 2021; 8:688684. [PMID: 34307529 PMCID: PMC8299102 DOI: 10.3389/fvets.2021.688684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Coccidiosis, caused by various Eimeria species, is a major parasitic disease in chickens. Our understanding of how chickens respond to coccidian infections is highly limited at both the molecular and cellular levels. In this study, coexpression modules were identified by weighted gene coexpression network analysis in chickens infected with Eimeria tenella. A total of 15 correlation modules were identified using 5,175 genes with 24 chicken samples, 12 with primary and 12 with secondary E. tenella infection. The analysis of the interactions between these modules showed a high degree of scale independence. Gene Ontology and Kyoto Encyclopedia of Gene and Genomes enrichment analyses revealed that genes in these functional modules were involved in a broad categories of functions, such as immune response, amino acid metabolism, cellular responses to lipids, sterol biosynthetic processes, and RNA transport. Two modules viz yellow and magenta were identified significantly associating with infection status. Preservation analysis showed that most of the modules identified in E. tenella infections were highly or moderately preserved in chickens infected with either Eimeria acervulina or Eimeria maxima. These analyses outline a biological responses landscape for chickens infected by E. tenella, and also indicates that infections with these three Eimeria species elicit similar biological responses in chickens at the system level. These findings provide new clues and ideas for investigating the relationship between parasites and host, and the control of parasitic diseases.
Collapse
Affiliation(s)
- Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
15
|
Pineda-Farias JB, Saloman JL, Scheff NN. Animal Models of Cancer-Related Pain: Current Perspectives in Translation. Front Pharmacol 2021; 11:610894. [PMID: 33381048 PMCID: PMC7768910 DOI: 10.3389/fphar.2020.610894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The incidence of pain in cancer patients during diagnosis and treatment is exceedingly high. Although advances in cancer detection and therapy have improved patient prognosis, cancer and its treatment-associated pain have gained clinical prominence. The biological mechanisms involved in cancer-related pain are multifactorial; different processes for pain may be responsible depending on the type and anatomic location of cancer. Animal models of cancer-related pain have provided mechanistic insights into the development and process of pain under a dynamic molecular environment. However, while cancer-evoked nociceptive responses in animals reflect some of the patients’ symptoms, the current models have failed to address the complexity of interactions within the natural disease state. Although there has been a recent convergence of the investigation of carcinogenesis and pain neurobiology, identification of new targets for novel therapies to treat cancer-related pain requires standardization of methodologies within the cancer pain field as well as across disciplines. Limited success of translation from preclinical studies to the clinic may be due to our poor understanding of the crosstalk between cancer cells and their microenvironment (e.g., sensory neurons, infiltrating immune cells, stromal cells etc.). This relatively new line of inquiry also highlights the broader limitations in translatability and interpretation of basic cancer pain research. The goal of this review is to summarize recent findings in cancer pain based on preclinical animal models, discuss the translational benefit of these discoveries, and propose considerations for future translational models of cancer pain.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Hillman Cancer Center, University of Pittsburgh Medicine Center, Pittsburgh, PA, United States
| |
Collapse
|
16
|
de Clauser L, Santana-Varela S, Wood JN, Sikandar S. Physiologic osteoclasts are not sufficient to induce skeletal pain in mice. Eur J Pain 2020; 25:199-212. [PMID: 32955748 PMCID: PMC8436750 DOI: 10.1002/ejp.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022]
Abstract
Background Increased bone resorption is driven by augmented osteoclast activity in pathological states of the bone, including osteoporosis, fracture and metastatic bone cancer. Pain is a frequent co‐morbidity in bone pathologies and adequate pain management is necessary for symptomatic relief. Bone cancer is associated with severe skeletal pain and dysregulated bone remodelling, while increased osteoclast activity and bone pain are also observed in osteoporosis and during fracture repair. However, the effects of altered osteoclast activity and bone resorption on nociceptive processing of bone afferents remain unclear. Methods This study investigates whether physiologic osteoclasts and resulting changes in bone resorption can induce skeletal pain. We first assessed correlation between changes in bone microarchitecture (through µCT) and skeletal pain using standardized behavioural phenotyping assays in a mouse model of metastatic bone cancer. We then investigated whether increased activity of physiologic osteoclasts, and the associated bone resorption, is sufficient to induce skeletal pain using mouse models of localized and widespread bone resorption following administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL). Results Our data demonstrates that mice with bone cancer exhibit progressive pain behaviours that correlate with increased bone resorption at the tumour site. Systemic RANKL injections enhance osteoclast activity and associated bone resorption, without producing any changes in motor function or pain behaviours at both early and late timepoints. Conclusion These findings suggest that activation of homeostatic osteoclasts alone is not sufficient to induce skeletal pain in mice. Significance statement The role of osteoclasts in peripheral sensitization of sensory neurones is not fully understood. This study reports on the direct link between oestrogen‐independent osteoclast activation and skeletal pain. Administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL) increases bone resorption, but does not produce pro‐nociceptive changes in behavioural pain thresholds. Our data demonstrates that physiologic osteoclasts are not essential for skeletal pain behaviours.
Collapse
Affiliation(s)
- Larissa de Clauser
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK.,William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Mary University of London, London, UK
| |
Collapse
|
17
|
Wang T, Jing B, Xu D, Liao Y, Song H, Sun B, Guo W, Xu J, Li K, Hu M, Liu S, Ling J, Kuang Y, Zhang T, Zhang S, Yao F, Zhou BP, Deng J. PTGES/PGE 2 signaling links immunosuppression and lung metastasis in Gprc5a-knockout mouse model. Oncogene 2020; 39:3179-3194. [PMID: 32060421 PMCID: PMC7142021 DOI: 10.1038/s41388-020-1207-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation has been linked to promotion of tumorigenesis and metastasis in lung. However, due to lack of a relevant animal model for characterization, the underlying mechanism remains elusive. Lung tumor suppressor gene Gprc5a-knockout (ko) mice are susceptible to lung inflammation, tumorigenesis and metastasis, which resembles the pathological features in human patients. Here, we showed that PTGES/PGE2 signaling was highly associated with lung tumorigenesis and metastasis in Gprc5a-ko mice. Interestingly, Ptges-knockout in mouse lung tumor cells, although reduced their stemness and EMT-like features, still formed tumors and lung metastasis in immune-deficient nude mice, but not in immune-competent mice. This suggests that the major role of PTGES/PGE2 signaling in tumorigenicity and lung metastasis is through immunosuppression. Mechanistically, PTGES/PGE2 signaling intrinsically endows tumor cells resistant to T-cell cytotoxicity, and induces cytokines extrinsically for MDSC recruitment, which is crucial for suppression of T-cell immunity. Importantly, targeting PGE2 signaling in Gprc5a-ko mice by PTGES inhibitor suppressed MDSC recruitment, restored T cells, and significantly repressed lung metastasis. Thus, PTGES/PGE2 signaling links immunosuppression and metastasis in an inflammatory lung microenvironment of Gprc5a-ko mouse model.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Xu
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, the Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tuo Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Siwei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA.
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Woolbright BL, Pilbeam CC, Taylor JA. Prostaglandin E2 as a therapeutic target in bladder cancer: From basic science to clinical trials. Prostaglandins Other Lipid Mediat 2020; 148:106409. [PMID: 31931078 DOI: 10.1016/j.prostaglandins.2020.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BCa) is a common solid tumor marked by high rates of recurrence, especially in non-muscle invasive disease. Prostaglandin E2 (PGE2) is a ubiquitously present lipid mediator responsible for numerous physiological actions. Inhibition of cyclooxygenase (COX) enzymes by the non-steroidal anti-inflammatory (NSAID) class of drugs results in reduced PGE2 levels. NSAID usage has been associated with reductions in cancers such as BCa. Clinical trials using NSAIDs to prevent recurrence have had mixed results, but largely converge on issues with cardiotoxicity. The purpose of this review is to understand the basic science behind how and why inhibitors of PGE2 may be effective against BCa, and to explore alternate therapeutic modalities for addressing the role of PGE2 without the associated cardiotoxicity. We will address the role of PGE2 in a diverse array of cancer-related functions including stemness, immunosuppression, proliferation, cellular signaling and more.
Collapse
Affiliation(s)
| | - Carol C Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
19
|
Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone Pain in Cancer Patients: Mechanisms and Current Treatment. Int J Mol Sci 2019; 20:E6047. [PMID: 31801267 PMCID: PMC6928918 DOI: 10.3390/ijms20236047] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The skeletal system is the third most common site for cancer metastases, surpassed only by the lungs and liver. Many tumors, especially those of the breast, prostate, lungs, and kidneys, have a strong predilection to metastasize to bone, which causes pain, hypercalcemia, pathological skeletal fractures, compression of the spinal cord or other nervous structures, decreased mobility, and increased mortality. Metastatic cancer-induced bone pain (CIBP) is a type of chronic pain with unique and complex pathophysiology characterized by nociceptive and neuropathic components. Its treatment should be multimodal (pharmacological and non-pharmacological), including causal anticancer and symptomatic analgesic treatment to improve quality of life (QoL). The aim of this paper is to discuss the mechanisms involved in the occurrence and persistence of cancer-associated bone pain and to review the treatment methods recommended by experts in clinical practice. The final part of the paper reviews experimental therapeutic methods that are currently being studied and that may improve the efficacy of bone pain treatment in cancer patients in the future.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Wojciech Leppert
- Laboratory of Quality of Life Research, Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| |
Collapse
|
20
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
21
|
Ruan Y, Gu L, Yan J, Guo J, Geng X, Shi H, Yu G, Zhu C, Yang Y, Zhou Y, Wang C, Tang Z. An effective and concise device for detecting cold allodynia in mice. Sci Rep 2018; 8:14002. [PMID: 30228362 PMCID: PMC6143538 DOI: 10.1038/s41598-018-31741-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023] Open
Abstract
Detection of cold allodynia is a very important aspect in the study of pain behavior. An effective and concise device for detecting cold pain has always been the hope of many researchers. Here, an easily produced and operated cold plate device is presented for the assessment of cold allodynia in mice. The device used to detect cold allodynia has two components: a chamber consists of a cylinder for animal experiment and a cube box around the chamber for holding ice to keep temperature stable. In the testing chamber, a mouse was placed on the circular plexiglass plate steady at 4 °C above ice for five minutes. The tested mouse will lift its paw when exposed to the cold plate. The number of lifts will present animal's response to the degree of cold stimulation. To evaluate this approach, three commonly used pain models of mice were tested: formalin test, bone cancer pain (BCP), and chronic constriction injury (CCI). As is reported in other literatures, these three pain mice models showed increased sensitivity to cold stimulation. The new device is indeed suitable for detecting cold allodynia behavior in mice. Comparisons with existing devices of detecting cold allodynia, such as the cold plate in the market (UGO, Panlab, Columbus, etc.), the new device has the advantages of low cost, simple operation and easy popularization and can detect cold allodynia behavior of mice very well. This is a very practical and economical device to detect cold allodynia behavior.
Collapse
Affiliation(s)
- Yonglan Ruan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Leying Gu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjin Yan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao Geng
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Shi
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guang Yu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chan Zhu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changming Wang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China. .,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China. .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zongxiang Tang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China. .,Key Laboratory of Chinese Medicine for Prevention and Treatment of neurological diseases, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China. .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
22
|
Park SH, Eber MR, Widner DB, Shiozawa Y. Role of the Bone Microenvironment in the Development of Painful Complications of Skeletal Metastases. Cancers (Basel) 2018; 10:cancers10050141. [PMID: 29747461 PMCID: PMC5977114 DOI: 10.3390/cancers10050141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and painful complication in patients with bone metastases. It causes a significant reduction in patient quality of life. Available analgesic treatments for CIBP, such as opioids that target the central nervous system, come with severe side effects as well as the risk of abuse and addiction. Therefore, alternative treatments for CIBP are desperately needed. Although the exact mechanisms of CIBP have not been fully elucidated, recent studies using preclinical models have demonstrated the role of the bone marrow microenvironment (e.g., osteoclasts, osteoblasts, macrophages, mast cells, mesenchymal stem cells, and fibroblasts) in CIBP development. Several clinical trials have been performed based on these findings. CIBP is a complex and challenging condition that currently has no standard effective treatments other than opioids. Further studies are clearly warranted to better understand this painful condition and develop more effective and safer targeted therapies.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - D Brooke Widner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
23
|
Yang H, Yan H, Li X, Liu J, Cao S, Huang B, Huang D, Wu L. Inhibition of Connexin 43 and Phosphorylated NR2B in Spinal Astrocytes Attenuates Bone Cancer Pain in Mice. Front Cell Neurosci 2018; 12:129. [PMID: 29867362 PMCID: PMC5951934 DOI: 10.3389/fncel.2018.00129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Bone cancer pain (BCP) is common in patients with advanced cancers when the tumors are metastasized to bone. The limited understanding of the complex pathogenesis of BCP leads to the poor effectiveness of clinical treatment. Previous studies have shown that astrocyte-specific connexin (Cx) 43, a forming protein of gap junction (GJ) and hemichannel, and N-methyl-D-aspartate receptors (NMDARs), especially the phosphorylated NMDAR 2B subunit (NR2B) phosphorylated NR2B (p-NR2B) subunit are involved in BCP. However, the relationship between Cx43 and p-NR2B in BCP remains unclear. In the present study, we investigated the expressions of Cx43, glial fibrillary acidic protein (GFAP, a marker of astrocytes), and p-NR2B in the spinal dorsal horn (SDH) in a mouse model of BCP established by intra-femural inoculation of Lewis lung carcinoma (LLC) cells via intrathecal (ith) injection of the GJ/hemichannel blocker carbenoxolone (CARB) and the NMDAR antagonist MK801, respectively. We found that the characters of BCP were mimicked by intra-femural inoculation of LLC cells in mice, and the expressions of Cx43, GFAP and p-NR2B in BCP mice were remarkably increased in a time-dependent manner from day 7 to day 21 after cell inoculation with a gradual aggravate in spontaneous pain and mechanical allodynia. Furthermore, Cx43 was predominantly expressed in the spinal astrocytes. Both CARB and MK801 inhibited the expressions of Cx43, GFAP and p-NR2B with attenuated pain hypersensitivity in BCP mice. In addition, Cx43 was co-localized with p-NR2B in the SDH, which further evidenced the presence of functional NR2B in the spinal astrocytes in BCP mice. Our findings demonstrate that inhibition of Cx43 and p-NR2B in spinal astrocytes could attenuate BCP in mice and Cx43 and p-NR2B in the astrocytes of the SDH may play an important role via their combination action in the development and maintenance of BCP in mice. These results may provide a potential therapeutic target in the prevention and/or treatment of BCP.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Hui Yan
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Jing Liu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Baisheng Huang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Lixiang Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
24
|
Wakabayashi H, Wakisaka S, Hiraga T, Hata K, Nishimura R, Tominaga M, Yoneda T. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J Bone Miner Metab 2018; 36:274-285. [PMID: 28516219 DOI: 10.1007/s00774-017-0842-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP)+ SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP+ SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H+ secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 -/- mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain.
Collapse
Affiliation(s)
- Hiroki Wakabayashi
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hiraga
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara‑Hirooka, Shiojiri, Nagano, 399‑0781, Japan
| | - Kenji Hata
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Tominaga
- Okazaki Institute of Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi, 444-8787, Japan
| | - Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Division of Hematology and Oncology, Indiana University School of Medicine, 980 W Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
25
|
Cancer pain relief achieved by disrupting tumor-driven semaphorin 3A signaling in mice. Neurosci Lett 2016; 632:147-51. [DOI: 10.1016/j.neulet.2016.08.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 02/03/2023]
|
26
|
Kim SH, Hashimoto Y, Cho SN, Roszik J, Milton DR, Dal F, Kim SF, Menter DG, Yang P, Ekmekcioglu S, Grimm EA. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression. Pigment Cell Melanoma Res 2016; 29:297-308. [PMID: 26801201 DOI: 10.1111/pcmr.12455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/07/2016] [Indexed: 12/23/2022]
Abstract
COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuuri Hashimoto
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sung-Nam Cho
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology and Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denái R Milton
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fulya Dal
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, Perlman School of Medicine at University of Pennsylvania at University of Pennsylvania, Philadelphia, PA, USA
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiying Yang
- Department of General Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Matsuda H, Hosono K, Tsuru S, Kurashige C, Sekiguchi K, Akira S, Uematsu S, Okamoto H, Majima M. Roles of mPGES-1, an inducible prostaglandin E synthase, in enhancement of LPS-induced lymphangiogenesis in a mouse peritonitis model. Life Sci 2015; 142:1-7. [DOI: 10.1016/j.lfs.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|
28
|
Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, Fisher MJ. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics. J Med Chem 2015; 58:4727-37. [DOI: 10.1021/acs.jmedchem.5b00330] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- John Gately Luz
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Stephen Antonysamy
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Steven L. Kuklish
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Bradley Condon
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Matthew R. Lee
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Dagart Allison
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Xiao-Peng Yu
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Srinivasan Chandrasekhar
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ryan Backer
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Aiping Zhang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Marijane Russell
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Shawn S. Chang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Anita Harvey
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ashley V. Sloan
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Matthew J. Fisher
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| |
Collapse
|
29
|
Shor S, Fadl-Alla BA, Pondenis HC, Zhang X, Wycislo KL, Lezmi S, Fan TM. Expression of nociceptive ligands in canine osteosarcoma. J Vet Intern Med 2015; 29:268-75. [PMID: 25572473 PMCID: PMC4858053 DOI: 10.1111/jvim.12511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022] Open
Abstract
Background Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Hypothesis Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Animals Ten dogs with appendicular OS. Methods Expression of nerve growth factor, endothelin‐1, and microsomal prostaglandin E synthase‐1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Results Canine OS cells express and secrete nerve growth factor, endothelin‐1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS‐bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Conclusions and Clinical Importance Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS.
Collapse
Affiliation(s)
- S Shor
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL
| | | | | | | | | | | | | |
Collapse
|
30
|
Zang S, Ni M, Lian Y, Zhang Y, Liu J, Huang A. Expression of microsomal prostaglandin E2 synthase-1 and its role in human hepatocellular carcinoma. Hum Pathol 2013; 44:1681-7. [DOI: 10.1016/j.humpath.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
31
|
Abstract
Boney metastasis may lead to terrible suffering from debilitating pain. The most likely malignancies that spread to bone are prostate, breast, and lung. Painful osseous metastases are typically associated with multiple episodes of breakthrough pain which may occur with activities of daily living, weight bearing, lifting, coughing, and sneezing. Almost half of these breakthrough pain episodes are rapid in onset and short in duration and 44% of episodes are unpredictable. Treatment strategies include: analgesic approaches with "triple opioid therapy", bisphosphonates, chemotherapeutic agents, hormonal therapy, interventional and surgical approaches, steroids, radiation (external beam radiation, radiopharmaceuticals), ablative techniques (radiofrequency ablation, cryoablation), and intrathecal analgesics.
Collapse
Affiliation(s)
- Howard S Smith
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | | |
Collapse
|
32
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|