1
|
Duan WB, Peng AT, Yuan SN, Wang SN, Li BW, Duan XH. Two new benzophenones from the moss Pogonatum spinulosum. Nat Prod Res 2024; 38:2201-2206. [PMID: 36622886 DOI: 10.1080/14786419.2023.2164857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Two new benzophenone derivatives (1 and 2), named Pogonatone C and pogonatone D, were isolated from the moss Pogonatum spinulosum. Their structures were elucidated by spectroscopic data analyses. The cytotoxicity of compounds for HepG2, HCT-116, A-549 and PANC-1 cells line was also evaluated by using the MTT method. Pogonatone C (1) displays high cytotoxicity on PANC-1 cell with IC50 value of 9.2 μM.
Collapse
Affiliation(s)
- Wen-Bin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Changsha, China
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - An-Tang Peng
- Drug Manufacturing Room, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Shi-Nong Yuan
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| | - Shao-Nan Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| | - Bo-Wen Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xu-Hong Duan
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
2
|
Faleva AV, Ul’yanovskii NV, Falev DI, Onuchina AA, Budaev NA, Kosyakov DS. New Oligomeric Dihydrochalcones in the Moss Polytrichum commune: Identification, Isolation, and Antioxidant Activity. Metabolites 2022; 12:974. [PMID: 36295876 PMCID: PMC9607112 DOI: 10.3390/metabo12100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
One of the most widespread representatives of mosses in the temperate and boreal latitudes of the Northern Hemisphere is common haircap (Polytrichum commune), which is known as the largest moss in the world and widely used in traditional herbal medicine. Polyphenolic compounds constitute one of the most important groups of biologically active secondary metabolites of P. commune, however, the available information on their chemical composition is still incomplete and contradictory. In the present study, a group of dihydrochalcone polyphenolic derivatives that were not previously found in mosses was isolated from P. commune biomass using pressurized liquid extraction with aqueous acetone. The combination of two-dimensional NMR spectroscopy and high-performance liquid chromatography-high-resolution mass spectrometry allowed for identifying them as 3-hydroxyphloretin oligomers formed through a carbon-carbon bond between phloroglucinol and pyrocatechol moieties ("head-to-tail" coupling), with a polymerization degree of 2-5. The individual compounds isolated by preparative reverse-phase HPLC had a purity of 71 to 97% and demonstrated high radical scavenging activity (17.5-42.5% with respect to Trolox) determined by the photochemiluminescence method. Along with the low toxicity predicted by QSAR/QSTR algorithms, this makes 3-hydroxyphloretin oligomers a promising source for the production of biologically active food additives and pharmaceuticals.
Collapse
Affiliation(s)
- Anna V. Faleva
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| | | | | | | | | | - Dmitry S. Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| |
Collapse
|
3
|
Marques RV, Guillaumin A, Abdelwahab AB, Salwinski A, Gotfredsen CH, Bourgaud F, Enemark-Rasmussen K, Miguel S, Simonsen HT. Collagenase and Tyrosinase Inhibitory Effect of Isolated Constituents from the Moss Polytrichum formosum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071271. [PMID: 34206653 PMCID: PMC8309073 DOI: 10.3390/plants10071271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Mosses from the genus Polytrichum have been shown to contain rare benzonaphthoxanthenones compounds, and many of these have been reported to have important biological activities. In this study, extracts from Polytrichum formosum were analyzed in vitro for their inhibitory properties on collagenase and tyrosinase activity, two important cosmetic target enzymes involved respectively in skin aging and pigmentation. The 70% ethanol extract showed a dose-dependent inhibitory effect against collagenase (IC50 = 4.65 mg/mL). The methanol extract showed a mild inhibitory effect of 44% against tyrosinase at 5.33 mg/mL. Both extracts were investigated to find the constituents having a specific affinity to the enzyme targets collagenase and tyrosinase. The known compounds ohioensin A (1), ohioensin C (3), and communin B (4), together with nor-ohioensin D (2), a new benzonaphthoxanthenone, were isolated from P. formosum. Their structures were determined by mass spectrometry and NMR spectroscopy. Compounds 1 (IC50 = 71.99 µM) and 2 (IC50 = 167.33 µM) showed inhibitory activity against collagenase. Compound 1 also exhibited inhibition of 30% against tyrosinase activity at 200 µM. The binding mode of the active compounds was theoretically generated by an in-silico approach against the 3D structures of collagenase and tyrosinase. These current results present the potential application from the moss P. formosum as a new natural source of collagenase and tyrosinase inhibitors.
Collapse
Affiliation(s)
- Raíssa Volpatto Marques
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltoft Plads 223, 2800 Kongens Lyngby, Denmark
| | - Agnès Guillaumin
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Ahmed B Abdelwahab
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Aleksander Salwinski
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Frédéric Bourgaud
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
- Cellengo, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Kasper Enemark-Rasmussen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Sissi Miguel
- Cellengo, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltoft Plads 223, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Duan XH, Zhang XW, Qin M, He P, Pei L, Zhao JC, Chen YL. Two New Benzophenones From the Endohydric Moss Polytrichastrum formosum. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new benzophenone derivatives (1 and 2), were obtained from the endohydric moss Polytrichastrum formosum. Their structures were established by 1D and 2D NMR spectroscopic and HRESIMS methods. The cytotoxicity of 1 and 2 against HCT-116, A-549, HepG2 and HeLa cell lines was evaluated, but no obvious cytotoxic activities were observed (IC50 >100 µM). Benzophenones may be characteristic components of Polytrichaceae.
Collapse
Affiliation(s)
- Xu-Hong Duan
- College of Life Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Xue-Wen Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Meng Qin
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang, People’s Republic of China
| | - Pei He
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang, People’s Republic of China
| | - Lin Pei
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang, People’s Republic of China
| | - Jian-Cheng Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Yu-Ling Chen
- College of Life Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
5
|
Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep 2021; 11:2220. [PMID: 33500463 PMCID: PMC7838196 DOI: 10.1038/s41598-020-80780-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines, has been widely used for treating OA over thousands of years, but its molecular mechanism is still unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology and molecular docking to reveal the bioactive components and potential targets of MOLBCH against OA. The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function, and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1), Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the most representative pathways. Moreover, molecular docking was performed to validate the strong binding interactions between the obtained core components and targets. These observations provide deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new therapeutic instructions to treat OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ru Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Guo ZF, Bi GM, Zhang YH, Li JH, Meng DL. Rare benzonaphthoxanthenones from Chinese folk herbal medicine Polytrichum commune and their anti-neuroinflammatory activities in vitro. Bioorg Chem 2020; 102:104087. [DOI: 10.1016/j.bioorg.2020.104087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
|
7
|
Hsieh YY, Raja A, Hong BC, Kotame P, Chang WC, Lee GH. Organocatalytic Enantioselective Michael–Acetalization–Henry Reaction Cascade of 2-Hydroxynitrostyrene and 5-Oxohexanal for the Entry to the Hexahydro-6H-benzo[c]chromenones with Four Consecutive Stereogenic Centers and an Approach to Aflatoxin Analogues. J Org Chem 2017; 82:12840-12848. [DOI: 10.1021/acs.joc.7b02178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yu-You Hsieh
- Department
of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, R.O.C
| | - Arun Raja
- Department
of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, R.O.C
| | - Bor-Cherng Hong
- Department
of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, R.O.C
| | - Prakash Kotame
- Department
of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, R.O.C
| | - Wan-Chen Chang
- Department
of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, R.O.C
| | - Gene-Hsiang Lee
- Instrumentation
Center, National Taiwan University, Taipei 106, Taiwan, R.O.C
| |
Collapse
|
8
|
Abstract
This study was aimed at exploring the effects of P2X7 receptor on BV2 microglia cell injury induced by glycoprotein gp120 (gp120) and its underlying mechanisms. We used the MTS method to study the influence of different gp120 concentrations on BV2 microglia cells, and to test the degree of cell injury in each gp120 treatment group; quantitative real-time PCR (qPCR) and Western blot were used to detect the P2X7 mRNA and receptor protein expressions. Immunocytochemistry and Western blot were used to detect the P2X7 receptor expression and P65 NF-κB, respectively. We also measured the content of TNFα, IL-1β, nitric oxide (NO) and reactive oxygen species (ROS). We found that the cell survival rate generally decreased as gp120 concentration increased, and the cell survival rate of the gp120 + Brilliant Blue G (BBG) group was higher than that of the gp120 group. Western blot and qPCR results showed that the expressions of P2X7 receptor protein and mRNA were positively dose-dependent with gp120 concentration; the results of immunocytochemistry and Western blot showed that the expressions of P2X7 receptor and P65 NF-κB in the gp120 group increased significantly compared to those of the control (Ctrl) group, but those in the gp120+BBG group decreased. Taken together, these results confirmed that the P2X7 receptor is involved in gp120-induced BV2 microglial cell injury and that the underlying mechanism may be associated with the over-activation of microglia caused by P2X7 receptor up-regulation, which leads to abundant release of inflammatory factors which exert toxic effects on the cells.
Collapse
|
9
|
Lin CC, Lin WN, Cho RL, Wang CY, Hsiao LD, Yang CM. TNF-α-Induced cPLA 2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol 2016; 7:447. [PMID: 27932980 PMCID: PMC5122718 DOI: 10.3389/fphar.2016.00447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) triggers activation of cytosolic phospholipase A2 (cPLA2) and then enhancing the synthesis of prostaglandin (PG) in inflammatory diseases. However, the detailed mechanisms of TNF-α induced cPLA2 expression were not fully defined in human pulmonary alveolar epithelial cells (HPAEpiCs). We found that TNF-α-stimulated increases in cPLA2 mRNA (5.2 folds) and protein (3.9 folds) expression, promoter activity (4.3 folds), and PGE2 secretion (4.7 folds) in HPAEpiCs, determined by Western blot, real-time PCR, promoter activity assay and PGE2 ELISA kit. These TNF-α-mediated responses were abrogated by the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], ROS [N-acetyl cysteine, (NAC)], NF-κB (Bay11-7082) and transfection with siRNA of ASK1, p47 phox , TRAF2, NIK, IKKα, IKKβ, or p65. TNF-α markedly stimulated NADPH oxidase activation and ROS including superoxide and hydrogen peroxide production which were inhibited by pretreatment with a TNFR1 neutralizing antibody, APO, DPI or transfection with siRNA of TRAF2, ASK1, or p47 phox . In addition, TNF-α also stimulated p47 phox phosphorylation and translocation in a time-dependent manner. On the other hand, TNF-α induced TNFR1, TRAF2, ASK1, and p47 phox complex formation in HPAEpiCs, which were attenuated by a TNF-α neutralizing antibody. We found that pretreatment with NAC, DPI, or APO also attenuated the TNF-α-stimulated IKKα/β and NF-κB p65 phosphorylation, NF-κB (p65) translocation, and NF-κB promoter activity in HPAEpiCs. Finally, we observed that TNF-α-stimulated NADPH oxidase activation and ROS generation activates NF-κB through the NIK/IKKα/β pathway. Taken together, our results demonstrated that in HPAEpiCs, up-regulation of cPLA2 by TNF-α is, at least in part, mediated through the cooperation of TNFR1, TRAF2, ASK1, and NADPH oxidase leading to ROS generation and ultimately activates NF-κB pathway.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University New Taipei City, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| |
Collapse
|
10
|
Qin S, Chen Q, Wu H, Liu C, Hu J, Zhang D, Xu C. Effects of naringin on learning and memory dysfunction induced by gp120 in rats. Brain Res Bull 2016; 124:164-71. [PMID: 27154619 DOI: 10.1016/j.brainresbull.2016.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to investigate the effects of naringin on learning and memory dysfunction induced by HIV-1-enveloped protein gp120 in rats, and to identify its potential mechanisms of action. Learning and memory ability was evaluated via Morris water maze test, P2X7 receptor and P65 protein expressions in the rat hippocampus were detected by western blot analysis, and P2X7 mRNA expression in the hippocampus was measured by RT-PCR. We also recorded P2X7 agonist BzATP-activated current in the hippocampus via patch clamp technique. The results showed that naringin treatment (30mg/kg/day) markedly decreased the escape latency and target platform errors of rats treated with gp120 (50ng/day), and further, that naringin treatment significantly decreased the expression of P2X7 and P65 protein and P2X7 mRNA in the hippocampus of gp120-treated rats. In addition, naringin treatment reduced BzATP-activated current in the hippocampus of gp120-treated rats. These results altogether demonstrated that naringin can improve gp120-induced learning and memory dysfunction via mechanisms involving the inhibition of P2X7 expression in the hippocampus.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Qiang Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Hui Wu
- Second Clinical Medical College of Nanchang University, Nanchang 330006, PR China
| | - Chenglong Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Jing Hu
- Second Clinical Medical College of Nanchang University, Nanchang 330006, PR China
| | - Dalei Zhang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
11
|
Yuan R, Zhao D, Zhang LY, Pan X, Yang Y, Wang P, Li HF, Da CS. Isopropylmagnesium chloride-promoted unilateral addition of Grignard reagents to β-diketones: one-pot syntheses of β-tertiary hydroxyl ketones or 3-substituted cyclic-2-enones. Org Biomol Chem 2016; 14:724-728. [PMID: 26575990 DOI: 10.1039/c5ob02072g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The regioselective unilateral additions of Grignard reagents to acyclic or cyclic β-diketones were effectively promoted by sub-stoichiometric amounts of i-PrMgCl to afford β-tertiary hydroxyl ketones or 3-substituted cyclic-2-enones, respectively. Also, the addition of Grignard reagents to acyclic β-diketones followed by a reaction with cyclic β-diketones in a one-pot process was put forward. The reaction mechanism was discussed in detail to explain the high regioselectivity via chemical experiments, hydrogen-deuterium exchange and mass spectrometry.
Collapse
Affiliation(s)
- Rui Yuan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu J, Zhang L, Ren Y, Gao Y, Kang L, Lu S. Matrine inhibits the expression of adhesion molecules in activated vascular smooth muscle cells. Mol Med Rep 2016; 13:2313-9. [PMID: 26783147 DOI: 10.3892/mmr.2016.4767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 12/07/2015] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease associated with increased expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Matrine is a main active ingredient of Sophora flavescens roots, which are used to treat inflammatory diseases. However, the effects of matrine on the expression of adhesion molecules in VSMCs have largely remained elusive. Therefore, the present study investigated the effects of matrine on the expression of adhesion molecules in tumor necrosis factor (TNF)‑α‑stimulated human aortic smooth muscle cells (HASMCs). The results showed that matrine inhibited the expression of vascular cell adhesion molecule‑1 (VCAM‑1) and intercellular adhesion molecule‑1 (ICAM‑1) in TNF‑α‑stimulated HASMCs. Matrine markedly inhibited the TNF‑α‑induced expression of nuclear factor (NF)‑κB p65 and prevented the TNF‑α‑caused degradation of inhibitor of NF‑κB; it also inhibited TNF‑α‑induced activation of mitogen‑activated protein kinases (MAPKs). Furthermore, matrine inhibited the production of intracellular reactive oxygen species (ROS) in TNF‑α‑stimulated HASMCs. In conclusion, the results of the present study demonstrated that matrine inhibited the expression of VCAM‑1 and ICAM‑1 in TNF‑α‑stimulated HASMCs via the suppression of ROS production as well as NF‑κB and MAPK pathway activation. Therefore, matrine may have a potential therapeutic use for preventing the advancement of atherosclerotic lesions.
Collapse
Affiliation(s)
- Jun Liu
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Lihua Zhang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Yingang Ren
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Yanli Gao
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Li Kang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Shaoping Lu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| |
Collapse
|
13
|
Resveratrol inhibits Staphylococcus aureus-induced TLR2/MyD88/NF-κB-dependent VCAM-1 expression in human lung epithelial cells. Clin Sci (Lond) 2014; 127:375-90. [PMID: 24617573 DOI: 10.1042/cs20130816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is the most commonly found Gram-positive bacterium in patients admitted to intensive-care units, causing septicaemia or pneumonia. S. aureus is considered to play an important role in the induction of cell adhesion molecules. Resveratrol, a compound found in the skins of red fruits, may inhibit the inflammatory signalling pathways involved in lung diseases. In the present paper, we have shown that resveratrol reduced S. aureus-mediated VCAM-1 (vascular cell adhesion molecule-1) expression in HPAEpiCs (human lung epithelial cells) and lungs of mice. In an in vivo study, we have shown that resveratrol inhibited S. aureus-induced pulmonary haematoma and leucocyte count in BAL (bronchoalveolar lavage) fluid in mice. In an in vitro study, we observed that resveratrol attenuated S. aureus-induced TLR2 (Toll-like receptor 2), MyD88 (myeloid differentiation factor 88) and PI3K (phosphoinositide 3-kinase) complex formation. S. aureus stimulated Akt, JNK1/2 (c-Jun N-terminal kinase 1/2) and p42/p44 MAPK (mitogen-activated protein kinase) phosphorylation, which were inhibited by resveratrol. In addition, S. aureus induced IκB (inhibitor of nuclear factor κB) α and NF-κB (nuclear factor κB) p65 phosphorylation and NF-κB p65 translocation, which were reduced by resveratrol. Finally, we found that S. aureus induced NF-κB and p300 complex formation and p300 phosphorylation, which were inhibited by resveratrol. Thus resveratrol functions as a suppressor of S. aureus-induced inflammatory signalling not only by inhibiting VCAM-1 expression, but also by reducing TLR2-MyD88-PI3K complex formation and Akt, JNK1/2, p42/p44 MAPK, p300 and NF-κB activation in HPAEpiCs.
Collapse
|
14
|
Yang CM, Lee IT, Chi PL, Cheng SE, Hsiao LD, Hsu CK. TNF-α induces cytosolic phospholipase A2 expression via Jak2/PDGFR-dependent Elk-1/p300 activation in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2014; 306:L543-51. [DOI: 10.1152/ajplung.00320.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA2 expression in human lung epithelial cells (HPAEpiCs) were not completely understood. Here, we demonstrated that TNF-α induced cPLA2 mRNA and protein expression, promoter activity, and PGE2 secretion in HPAEpiCs. These responses induced by TNF-α were inhibited by pretreatment with the inhibitor of Jak2 (AG490), platelet-derived growth factor receptor (PDGFR) (AG1296), phosphoinositide 3 kinase (PI3K) (LY294002), or MEK1/2 (PD98059) and transfection with siRNA of Jak2, PDGFR, Akt, or p42. We showed that TNF-α markedly stimulated Jak2, PDGFR, Akt, and p42/p44 MAPK phosphorylation, which were attenuated by their respective inhibitors. Moreover, TNF-α stimulated Akt activation via a Jak2/PDGFR pathway in HPAEpiCs. In addition, TNF-α-induced p42/p44 MAPK phosphorylation was reduced by AG1296 or LY294002. On the other hand, TNF-α could induce Akt and p42/p44 MAPK translocation from the cytosol into the nucleus, which was inhibited by AG490, AG1296, or LY294002. Finally, we showed that TNF-α stimulated Elk-1 phosphorylation, which was reduced by LY294002 or PD98059. We also observed that TNF-α time dependently induced p300/Elk-1 and p300/Akt complex formation in HPAEpiCs, which was reduced by AG490, AG1296, or LY294002. The activity of cPLA2 protein upregulated by TNF-α was reflected on the PGE2 release, which was reduced by AG490, AG1296, LY294002 , or PD98059. Taken together, these results demonstrated that TNF-α-induced cPLA2 expression and PGE2 release were mediated through a Jak2/PDGFR/PI3K/Akt/p42/p44 MAPK/Elk-1 pathway in HPAEpiCs.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine and
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine and
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine and
| | - Shin-Ei Cheng
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine and
| | - Chih-Kai Hsu
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine and
| |
Collapse
|
15
|
Malvar DDC, Ferreira RT, de Castro RA, de Castro LL, Freitas ACC, Costa EA, Florentino IF, Mafra JCM, de Souza GEP, Vanderlinde FA. Antinociceptive, anti-inflammatory and antipyretic effects of 1.5-diphenyl-1H-Pyrazole-3-carbohydrazide, a new heterocyclic pyrazole derivative. Life Sci 2014; 95:81-8. [DOI: 10.1016/j.lfs.2013.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/08/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022]
|
16
|
Lee IT, Lin CC, Cheng SE, Hsiao LD, Hsiao YC, Yang CM. TNF-α induces cytosolic phospholipase A2 expression in human lung epithelial cells via JNK1/2- and p38 MAPK-dependent AP-1 activation. PLoS One 2013; 8:e72783. [PMID: 24069158 PMCID: PMC3777958 DOI: 10.1371/journal.pone.0072783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/11/2013] [Indexed: 01/05/2023] Open
Abstract
Background Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA2 expression in human lung epithelial cells (HPAEpiCs) were not completely understood. Principal Findings We demonstrated that TNF-α induced cPLA2 mRNA and protein expression, promoter activity, and PGE2 secretion in HPAEpiCs. These responses induced by TNF-α were inhibited by pretreatment with the inhibitor of MEK1/2 (PD98059), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of TNFR1, p42, p38, JNK2, c-Jun, c-Fos, or ATF2. We showed that TNF-α markedly stimulated p42/p44 MAPK, p38 MAPK, and JNK1/2 phosphorylation which were attenuated by their respective inhibitors. In addition, TNF-α also stimulated c-Jun and ATF2 phosphorylation which were inhibited by pretreatment with SP600125 and SB202190, respectively, but not PD98059. Furthermore, TNF-α-induced cPLA2 promoter activity was abrogated by transfection with the point-mutated AP-1 cPLA2 construct. Finally, we showed that TNF-α time-dependently induced p300/c-Fos/c-Jun/ATF2 complex formation in HPAEpiCs. On the other hand, TNF-α induced in vivo binding of c-Jun, c-Fos, ATF2, and p300 to the cPLA2 promoter in these cells. In an in vivo study, we found that TNF-α induced leukocyte count in BAL fluid of mice and cPLA2 mRNA levels in lung tissues via MAPKs and AP-1. Significance Taken together, these results demonstrated that TNF-α-induced cPLA2 expression was mediated through p38 MAPK- and JNK1/2-dependent p300/c-Fos/c-Jun/ATF2 complex formation in HPAEpiCs.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Shin-Ei Cheng
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Yu-Chun Hsiao
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima. Eur J Pharm Sci 2013; 50:198-207. [PMID: 23856417 DOI: 10.1016/j.ejps.2013.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis.
Collapse
|
18
|
Lee IT, Shih RH, Lin CC, Chen JT, Yang CM. Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells. Cell Commun Signal 2012; 10:33. [PMID: 23153039 PMCID: PMC3509033 DOI: 10.1186/1478-811x-10-33] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022] Open
Abstract
Background In bacteria-induced glomerulonephritis, Toll-like receptor 4 (TLR4) activation by lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negative bacteria) can increase oxidative stress and the expression of vascular cell adhesion molecule-1 (VCAM-1), which recruits leukocytes to the glomerular mesangium. However, the mechanisms underlying VCAM-1 expression induced by LPS are still unclear in human renal mesangial cells (HRMCs). Results We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88), Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2), and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], c-Src (PP1), p38 MAPK (SB202190), and p300 (GR343). LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody. Conclusions In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may reduce monocyte adhesion via VCAM-1 suppression and attenuation of the inflammatory responses in renal diseases.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | |
Collapse
|
19
|
Jin XL, Li XH, Zhang LM, Zhao J. The interaction of leukocytes and adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. Microcirculation 2012; 19:539-46. [PMID: 22510105 DOI: 10.1111/j.1549-8719.2012.00185.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the correlation between hemorheological variations and the expression of cell adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. METHODS We established an internal capsule hemorrhage model. Then leukocyte-endothelium interaction was observed and hemorheological variations in mesenteric microvessels were evaluated in the following aspects: blood flow volume, diameter of microvessels, blood flow rate, and shear rate. We also measured the expression of vascular cell adhesion molecule-l and intercellular adhesion molecule-1 (ICAM-1) in mesenteric microvessel endothelial cells with immunohistochemistry stain. RESULTS Leukocyte-endothelium interaction intensified after internal capsule hemorrhage. Besides, blood flow volume and velocity decreased, diameter narrowed, and shear rate reduced. Immunohistochemical staining of vascular cell adhesion molecule-l and ICAM-1in mesenteric microvessel endothelial cells was stronger. CONCLUSIONS VCAM-1 and ICAM-1 expression in mesenteric microvessels increased as a result of decreased wall shear stress in stress state following internal capsule hemorrhage, and then further shear stress change from interaction of enhanced production of CAMs and leukocytes created a vicious cycle of leukocytes margination, adhesion, and transmigration that could ultimately result in stress gastrointestinal ulcer.
Collapse
Affiliation(s)
- Xue-Long Jin
- Department of Physiology, Tianjin Medical University, Tianjin, China
| | | | | | | |
Collapse
|