1
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024; 18:945-968. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Fu X, Wang Y, Lu Y, Liu J, Li H. Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection. Life Sci 2024; 358:123192. [PMID: 39488266 DOI: 10.1016/j.lfs.2024.123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Benign prostatic hyperplasia (BPH), a common cause of lower urinary tract symptoms (LUTS), has been recently regarded as a metabolic disease. Metabolic syndrome (MetS) is a constellation of metabolic disarrangements, including insulin resistance, obesity, hypertension, and dyslipidemia, and it has been established that these components of MetS are important contributing factors exacerbating the degree of prostatic enlargement and bladder outlet obstruction among patients with BPH. Clinical and experimental studies demonstrated that many molecules, such as insulin, insulin-like growth factor 1 (IGF-1), androgen and estrogen, and adipokines, are involved in the overlapping pathogenesis of BPH and MetS, indicating that clinicians might be able to simultaneously alleviate or cure two diseases by choosing appropriate medications. This article aims to systematically review the pathophysiological aspect and traditional etiology and pathogenesis of BPH and discuss the intricate association between MetS and BPH from the molecular point of view, in an attempt to provide stronger evidence for better treatment of two diseases.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yi Lu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Jiang Liu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China.
| |
Collapse
|
3
|
Katsimperis S, Kapriniotis K, Manolitsis I, Bellos T, Angelopoulos P, Juliebø-Jones P, Somani B, Skolarikos A, Tzelves L. Early investigational agents for the treatment of benign prostatic hyperplasia'. Expert Opin Investig Drugs 2024; 33:359-370. [PMID: 38421373 DOI: 10.1080/13543784.2024.2326023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH), as a clinical entity that affects many people, has always been in the forefront of interest among researchers, pharmaceutical companies, and physicians. Patients with BPH exhibit a diverse range of symptoms, while current treatment options can occasionally cause adverse events. All the aforementioned have led to an increased demand for more effective treatment options. AREAS COVERED This review summarizes the outcomes of new medications used in a pre-clinical and clinical setting for the management of male lower urinary tract symptoms (LUTS)/BPH and provides information about ongoing trials and future directions in the management of this condition. More specifically, sheds light upon drug categories, such as reductase‑adrenoceptor antagonists, drugs interfering with the nitric oxide (NO)/cyclic guanosine monophosphate (GMP) signaling pathway, onabotulinumtoxinA, vitamin D3 (calcitriol) analogues, selective cannabinoid (CB) receptor agonists, talaporfin sodium, inhibitor of transforming growth factor beta 1 (TGF-β1), drugs targeting the hormonal control of the prostate, phytotherapy, and many more. EXPERT OPINION Clinical trials are being conducted on a number of new medications that may emerge as effective therapeutic alternatives in the coming years.
Collapse
Affiliation(s)
- Stamatios Katsimperis
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis Manolitsis
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Themistoklis Bellos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Angelopoulos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Patrick Juliebø-Jones
- Department of Urology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bhaskar Somani
- Department of Urology, University Hospital Southampton, Southampton, UK
| | - Andreas Skolarikos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lazaros Tzelves
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Urology, University College of London Hospitals (UCLH), London, UK
| |
Collapse
|
4
|
Girel S, Markin PA, Tobolkina E, Boccard J, Moskaleva NE, Rudaz S, Appolonova SA. Comprehensive plasma steroidomics reveals subtle alterations of systemic steroid profile in patients at different stages of prostate cancer disease. Sci Rep 2024; 14:1577. [PMID: 38238434 PMCID: PMC10796437 DOI: 10.1038/s41598-024-51859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The steroid submetabolome, or steroidome, is of particular interest in prostate cancer (PCa) as the dependence of PCa growth on androgens is well known and has been routinely exploited in treatment for decades. Nevertheless, the community is still far from a comprehensive understanding of steroid involvement in PCa both at the tissue and at systemic level. In this study we used liquid chromatography/high resolution mass spectrometry (LC/HRMS) backed by a dynamic retention time database DynaSTI to obtain a readout on circulating steroids in a cohort reflecting a progression of the PCa. Hence, 60 relevant compounds were annotated in the resulting LC/HRMS data, including 22 unknown steroid isomers therein. Principal component analysis revealed only subtle alterations of the systemic steroidome in the study groups. Next, a supervised approach allowed for a differentiation between the healthy state and any of the stages of the disease. Subsequent clustering of steroid metabolites revealed two groups responsible for this outcome: one consisted primarily of the androgens, whereas another contained corticosterone and its metabolites. The androgen data supported the currently established involvement of a hypothalamic-pituitary-gonadal axis in the development of PCa, whereas biological role of corticosterone remained elusive. On top of that, current results suggested a need for improvement in the dynamic range of the analytical methods to better understand the role of low abundant steroids, as the analysis revealed an involvement of estrogen metabolites. In particular, 2-hydroxyestradiol-3-methylether, one of the compounds present in the disease phenotype, was annotated and reported for the first time in men.
Collapse
Affiliation(s)
- Sergey Girel
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland
| | - Pavel A Markin
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, 119435, Moscow, Russia
| | - Elena Tobolkina
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland
| | - Natalia E Moskaleva
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, 119435, Moscow, Russia
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland.
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119435, Moscow, Russia
| |
Collapse
|
5
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
6
|
Interplay between Prostate Cancer and Adipose Microenvironment: A Complex and Flexible Scenario. Int J Mol Sci 2022; 23:ijms231810762. [PMID: 36142673 PMCID: PMC9500873 DOI: 10.3390/ijms231810762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is part of the prostate cancer (PCa) microenvironment not only in the periprostatic area, but also in the most frequent metastatic sites, such as bone marrow and pelvic lymph nodes. The involvement of periprostatic adipose tissue (PPAT) in the aggressiveness of PCa is strongly suggested by numerous studies. Many molecules play a role in the reciprocal interaction between adipocytes and PCa cells, including adipokines, hormones, lipids, and also lipophilic pollutants stored in adipocytes. The crosstalk has consequences not only on cancer cell growth and metastatic potential, but also on adipocytes. Although most of the molecules released by PPAT are likely to promote tumor growth and the migration of cancer cells, others, such as the adipokine adiponectin and the n-6 or n-3 polyunsaturated fatty acids (PUFAs), have been shown to have anti-tumor properties. The effects of PPAT on PCa cells might therefore depend on the balance between the pro- and anti-tumor components of PPAT. In addition, genetic and environmental factors involved in the risk and/or aggressiveness of PCa, including obesity and diet, are able to modulate the interactions between PPAT and cancer cells and their consequences on the growth and the metastatic potential of PCa.
Collapse
|
7
|
Kim JH, Han IH, Shin SJ, Park SY, Chung HY, Ryu JS. Signaling Role of Adipocyte Leptin in Prostate Cell Proliferation Induced by Trichomonas vaginalis. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:235-249. [PMID: 34218595 PMCID: PMC8255495 DOI: 10.3347/kjp.2021.59.3.235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Leptin is a type of adipokine mainly produced by adipocytes and reported to be overproduced in prostate cancer. However, it is not known whether it stimulates the proliferation of prostate cells. In this study, we investigated whether benign prostatic hyperplasia epithelial cells (BPH-1 cells) infected with Trichomonas vaginalis induced the proliferation of prostate cells via a leptin signaling pathway. To investigate the effect of crosstalk between adipocyte leptin and inflamed epithelial cell in proliferation of prostate cells, adipocytes 3T3-L1 cells were incubated in conditioned medium of BPH-1 cells infected with T. vaginalis (T. vaginalis-conditioned medium, TCM), and then the adipocyte-conditioned medium (ATCM) was identified to cause proliferation of prostate cells. BPH-1 cells incubated with live T. vaginalis released pro-inflammatory cytokines, and conditioned medium of these cells caused migration of adipocytes. When prostate stromal cells and BPH-1 cells were incubated with adipocyte conditioned medium containing leptin, their growth rates increased as did expression of the leptin receptor (known as OBR) and signaling molecules such as JAK2/STAT3, Notch and survivin. Moreover, blocking the OBR reduced this proliferation and the expression of leptin signaling molecules in response to ATCM. In conclusion, our findings show that inflamed BPH-1 cells infected with T. vaginalis induce the proliferation of prostate cells through leptin-OBR signaling. Therefore, it is likely that T. vaginalis contributes to prostate enlargement in BPH via adipocyte leptin released as a result of inflammation of the prostate.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung-Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Hyo-Yeoung Chung
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
8
|
Cannarella R, Condorelli RA, Barbagallo F, La Vignera S, Calogero AE. Endocrinology of the Aging Prostate: Current Concepts. Front Endocrinol (Lausanne) 2021; 12:554078. [PMID: 33692752 PMCID: PMC7939072 DOI: 10.3389/fendo.2021.554078] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Benign prostate hyperplasia (BPH), one of the most common diseases in older men, adversely affects quality-of-life due to the presence of low urinary tract symptoms (LUTS). Numerous data support the presence of an association between BPH-related LUTS (BPH-LUTS) and metabolic syndrome (MetS). Whether hormonal changes occurring in MetS play a role in the pathogenesis of BPH-LUTS is a debated issue. Therefore, this article aimed to systematically review the impact of hormonal changes that occur during aging on the prostate, including the role of sex hormones, insulin-like growth factor 1, thyroid hormones, and insulin. The possible explanatory mechanisms of the association between BPH-LUTS and MetS are also discussed. In particular, the presence of a male polycystic ovarian syndrome (PCOS)-equivalent may represent a possible hypothesis to support this link. Male PCOS-equivalent has been defined as an endocrine syndrome with a metabolic background, which predisposes to the development of type II diabetes mellitus, cardiovascular diseases, prostate cancer, BPH and prostatitis in old age. Its early identification would help prevent the onset of these long-term complications.
Collapse
|
9
|
Kamel HFM, Nassir AM, Al Refai AA. Assessment of expression levels of leptin and leptin receptor as potential biomarkers for risk of prostate cancer development and aggressiveness. Cancer Med 2020; 9:5687-5696. [PMID: 32573960 PMCID: PMC7402836 DOI: 10.1002/cam4.3082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023] Open
Abstract
Background Prostate cancer (PCa) is one of the most frequently diagnosed cancers worldwide. Despite the growing evidence associating obesity and adipokines, particularly leptin and its receptors, with cancer development and progression, it is still a debatable matter in PCa. Objectives We aimed to assess the role of leptin and its receptors as potential biomarkers for the risk of PCa development and aggressiveness. Methods In this study, 176 men were included and categorized according to an established histopathological diagnosis into three age‐ and BMI‐matched groups. The PCa group included 56 patients while the BPH group and the control group comprised 60 men each. Serum levels of total PSA (tPSA) were assessed by ELISA and mRNA expression levels of leptin and leptin receptors were assessed by RT‐PCR. Results Leptin and leptin receptor mRNA expression levels were significantly higher in PCa patients relative to BPH and to healthy control men. Both were overexpressed in PCa patients with aggressive and distantly metastasizing tumors compared to patients with confined tumors. Leptin receptor mRNA was an independent predictor of high Gleason score ≥ 7, distant metastasis, LN, and seminal vesicles invasion. Conclusion Leptin and its receptors are suggested to be potential biomarkers for PCa; leptin receptor mRNA might predict risk and aggressiveness of PCa.
Collapse
Affiliation(s)
- Hala Fawzy Mohamed Kamel
- Faculty of Medicine, Biochemistry Department, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Medicine, Medical Biochemistry Department, Ain Shams University, Cairo, Egypt
| | - Anmar M Nassir
- Urology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abeer A Al Refai
- Faculty of Medicine, Biochemistry Department, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Medicine, Medical Biochemistry and Molecular Biology Department, Menoufia University, Shebin Al-Kom, Egypt
| |
Collapse
|
10
|
Zhang B, Chen X, Xie C, Chen Z, Liu Y, Ru F, He Y. Leptin promotes epithelial-mesenchymal transition in benign prostatic hyperplasia through downregulation of BAMBI. Exp Cell Res 2019; 387:111754. [PMID: 31805276 DOI: 10.1016/j.yexcr.2019.111754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in older men, and there is evidence that obesity is a causal factor. It is currently unclear whether the hormone leptin, which is positively correlated to obesity, is involved in BPH. The aim of this study was to determine the effect of leptin on testosterone-induced BPH in mice and to explore possible underlying mechanisms. Testosterone (3 mg/kg) was injected into wild-type and leptin-deficient ob/ob male mice for 14 consecutive days, and prostate tissues were subjected to various analyses. Additionally, BPH epithelial-1 (BPH-1) cells were treated with leptin to further investigate the underlying mechanisms. Leptin deficiency attenuated testosterone-induced morphological and pathological changes of BPH in mice. Furthermore, leptin deficiency alleviated the process of epithelial-mesenchymal transition (EMT) and suppressed the downregulation of bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) in testosterone-treated mice. The in vitro data revealed that leptin significantly increased the expression of the EMT-associated marker vimentin but decreased the expression of E-cadherin, and that upregulation of BAMBI mitigated the intensity of leptin-induced EMT responses. Our results suggest that leptin can promote EMT in BPH through downregulating BAMBI. Suppressing leptin might be a potential therapeutic approach in preventing BPH development and progression.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chaoqun Xie
- Department of Urology, Loudi Central Hospital, Loudi, Hunan, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
11
|
Analysis of Transcriptome, Selected Intracellular Signaling Pathways, Proliferation and Apoptosis of LNCaP Cells Exposed to High Leptin Concentrations. Int J Mol Sci 2019; 20:ijms20215412. [PMID: 31671654 PMCID: PMC6861914 DOI: 10.3390/ijms20215412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
Leptin, the first discovered adipokine, has been connected to various physiological and pathophysiological processes, including cancerogenesis. Increasing evidence confirms its influence on prostate cancer cells. However, studies on the effects of leptin on the proliferation and apoptosis of the androgen-sensitive LNCaP line of prostate cancer cells brought conflicting results. Therefore, we performed studies on the effects of high LEP concentration (1 × 10−6 M) on gene expression profile, change of selected signaling pathways, proliferation and apoptosis of LNCaP cells. RTCA (real-time cell analyzer) revealed inhibitory effect of LEP on cell proliferation, but lower LEP concentrations (10−8 and 10−10 M) did not affect cell division. Moreover, flow cytometry with a specific antibody for Cleaved PARP-1, an apoptosis marker, confirmed the activation of apoptosis in leptin-exposed LNCaP line of prostate cancer cells. Within 24 h LEP (10−6 M) increases expression of 297 genes and decreases expression of 119 genes. Differentially expressed genes (DEGs) were subjected to functional annotation and clusterization using the DAVID bioinformatics tools. Most ontological groups are associated with proliferation and apoptosis (seven groups), immune response (six) and extracellular matrix (two). These results were confirmed by the Gene Set Enrichment Analysis (GSEA). The leptin’s effect on apoptosis stimulation was also confirmed using Pathview library. These results were also confirmed by qPCR method. The results of Western Blot analysis (exposure to LEP 10 min, 1, 2, 4 and 24 h) suggest (after 24 h) decrease of p38 MAPK, p44-42 mitogen-activated protein kinase and Bcl-2 phosphorylated at threonine 56. Moreover, exposure of LNCaP cells to LEP significantly stimulates the secretion of matrix metallopeptidase 7 (MMP7). Obtained results suggest activation of apoptotic processes in LNCaP cells cultured at high LEP concentration. At the same time, this activation is accompanied by inhibition of proliferation of the tested cells.
Collapse
|
12
|
Liu Q, Sun Y, Fei Z, Yang Z, Duan K, Zi J, Cui Q, Yu M, Xiong W. Leptin promotes fatty acid oxidation and OXPHOS via the c-Myc/PGC-1 pathway in cancer cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:707-714. [PMID: 31187140 DOI: 10.1093/abbs/gmz058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Alteration in cellular energy metabolism plays a critical role in the development and progression of cancer. Leptin is a hormone secreted by adipose tissue. Recent reports have shown that leptin can induce cancer cell proliferation and regulate cell energy metabolism, but the regulatory mechanism is still unclear. Here, we showed that leptin could promote cell proliferation and maintain high adenosine triphosphate levels in HCT116 and MCF-7 cells. The expression levels of carnitine palmitoyl transferase 1A (CPT1A), pyruvate dehydrogenase, succinate dehydrogenase subunit A and mitochondrial respiratory chain-associated proteins NADH dehydrogenase 1 (ND1), NADH:ubiquinone oxidoreductase subunit B8, and mitochondrial transcription factor A (TFAM) were distinctly increased in leptin-treated HCT116 and MCF-7 cells, while fatty acid synthase and lactate dehydrogenase expression were downregulated. Simultaneously, we found that c-Myc and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) protein expression levels were significantly increased. These results indicated that leptin boosted fatty acid β-oxidation and the tricarboxylic acid cycle, enhanced oxidative phosphorylation (OXPHOS) activity, and inhibited fatty acid synthesis and glycolysis in tumor cells. Gene transfection experiments revealed that leptin could induce the expression of c-Myc. Moreover, the expressions of PGC-1, CPT1A, and TFAM proteins were downregulated in HCT116 cells with low expression of c-Myc, and the expression levels of these proteins were increased in HCT116 cells overexpressing c-Myc. These findings suggest that leptin plays an important role in the regulation of energy metabolism in tumor cells. It may regulate fatty acid oxidation and OXPHOS of tumor cells by regulating the c-Myc/PGC-1 pathway. Targeting metabolic pathways for cancer treatment has been investigated as potential preventive or therapeutic methods. This study has important implications for the clinical therapy of tumor cell metabolism through hormone regulation.
Collapse
Affiliation(s)
- Qianqian Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Yang Sun
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Zaiyi Fei
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Zhibin Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Duan
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Jiaji Zi
- College of Basic Medical Sciences, Dali University, Dali, China
| | - Qinghua Cui
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Min Yu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
13
|
The influence of leptin on the process of carcinogenesis. Contemp Oncol (Pozn) 2019; 23:63-68. [PMID: 31316286 PMCID: PMC6630388 DOI: 10.5114/wo.2019.85877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is a new risk factor, to which more and more research is devoted, related to the development of cancer. Many studies of recent years have drawn attention to the role of adipose tissue as an important internal endocrine organ. In the adipose tissue proteins are produced, referred to by the common name as adipokines. In the case of obesity, the neoplasm cells are constantly stimulated by pro-inflammatory cytokines and adipokines, among which leptin dominates. The studies show that leptin can affect the cancer cells through numerous phenomena, e.g. inflammation, cell proliferation, suppression of apoptosis and angiogenesis. In this literature review we examined the role of leptin in the development of the individual cancers: breast cancer, colorectal cancer, prostate cancer, ovarian cancer, endometrial cancer and brain neoplasms: glioma and meningioma. However, leptin has very complicated mechanisms of action which require better understanding in certain types of cancer.
Collapse
|
14
|
Ghasemi A, Saeidi J, Mohtashami M, Hashemy SI. Estrogen-independent role of ERα in ovarian cancer progression induced by leptin/Ob-Rb axis. Mol Cell Biochem 2019; 458:207-217. [PMID: 31077012 DOI: 10.1007/s11010-019-03544-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Leptin induces ovarian cancer cell invasion via overexpression of MMP7, MMP9, and upA. In addition, the key role of ERα in leptin-increased cell growth was indicated. However, the influence of ER on leptin-mediated cell invasion remains still unknown. The present study was designed to evaluate the E2-independent effect of ERα/β on leptin-mediated cell invasion and cell proliferation in ovarian cancer. We utilized SKOV3 cancer (expressing OB-Rb and ERα/β, insensitive to estrogen) and OVCAR3 (expressing OB-Rb) cell lines to show the involvement of ER in leptin-mediated effects in an E2-independent manner. MTT, BrdU, and BD matrigel invasion assays were applied to analyze cell growth, proliferation, and invasion. The siRNA approach was used to confirm the role of ERα/β in leptin effects. Moreover, western blotting and Real-time PCR were employed to detect the OB-Rb, ER, MMP9/7, and upA proteins and mRNAs. Leptin, in the absence of E2, increased ERα expression in SKOV3 cells, which was attenuated using knockdown of OB-Rb gene by siRNA. The effect of leptin on the cell growth was promoted in the presence of PPT, but not in the presence of DNP and E2, which was lost when OB-Rb siRNA was transfected. Furthermore, ERα gene silencing and/or pre-incubation with ER antagonist (ICI 182,780, 10 nM) significantly reduced cell invasion and MMP9 expression stimulated by leptin. In conclusion, our findings demonstrated that ERα, but not ERβ, is involved in leptin-induced ovarian cancer in an E2-independent manner, providing new evidence for cancer progression in obesity-associated ovarian cancer.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran. .,Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Circulating Levels of Omentin, Leptin, VEGF, and HGF and Their Clinical Relevance with PSA Marker in Prostate Cancer. DISEASE MARKERS 2018; 2018:3852401. [PMID: 30186533 PMCID: PMC6116468 DOI: 10.1155/2018/3852401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer (PCa) is the first in terms of occurrence in Europe and second in Poland. The PCa risk factors include: genetic load, obesity, diet rich in fat, hypertriglyceridemia, and exposure to androgens. The prostate-specific antigen (PSA) level may be elevated in prostate cancer or other prostate disorders. Fat tissue secretes adipocytokines, which increase the risk of cancer development and metastasis. Objectives The aims of the study were to investigate the relationship between circulating levels of PSA, adipocytokines: omentin, leptin, hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) in serum obtained from patients with benign prostate hyperplasia (BPH) and prostate cancer (PCa). Methods Forty patients diagnosed with BPH and forty diagnosed with PCa were assessed for the purpose of the study. The concentrations of omentin, leptin, HGF, and VEGF were determined using enzyme-linked immunosorbent assays (EIA). Results PSA level was significantly higher in the PCa group than in BPH (18.2 versus 9 ng/mL, p < 0.01), while volume of prostate gland was significantly higher in the BPH group than in PCa (39.1 versus 31.1 cm3, p = 0.02). HGF, VEGF, omentin, and leptin concentrations were significantly higher in PCa group than in BPH (359.5 versus 294.9 pg/mL, p = 0.04; 179.3 versus 127.3 pg/mL, p < 0.01; 478.8 versus 408.3 ng/mL, p = 0.01; 15.7 versus 11.2 ng/mL, p = 0.02, resp.). The multiple logistic regression analysis demonstrated that only omentin and PSA levels were independent predictors of PCa in studied subjects. Conclusions PSA level as well as the level of omentin may be valuable markers of PCa with clinical significance, when compared to PSA.
Collapse
|
16
|
Smy L, Straseski JA. Measuring estrogens in women, men, and children: Recent advances 2012-2017. Clin Biochem 2018; 62:11-23. [PMID: 29800559 DOI: 10.1016/j.clinbiochem.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
The measurement of estrogens is important for diagnosing and monitoring the health of women, men, and children. For example, for postmenopausal women or women undergoing treatment for breast cancer with aromatase inhibitors, the measurement of extremely low concentrations of estrogens in serum, especially estradiol, is problematic but essential for proper medical care. Achieving superb analytical sensitivity and specificity has been and continues to be a challenge for the clinical laboratory, but is a challenge that is being taken seriously. Focusing on publications from 2012 to 2017, this review will provide an overview of recent research in the development of methods to accurately and precisely measure estrogens, including a variety of estrogen metabolites. Additionally, the latest in clinical research involving estrogen measurement in women, men, and children will be presented to provide an update on the association of estrogens with diseases or conditions such as breast cancer, precocious puberty, infertility, and pregnancy. This research update will provide context as to why estrogen measurement is important and why laboratories are working hard to support the recommendations made by the Endocrine Society regarding estrogen measurement.
Collapse
Affiliation(s)
- Laura Smy
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84108, USA
| | - Joely A Straseski
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84108, USA.
| |
Collapse
|
17
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
18
|
Chin YT, Wang LM, Hsieh MT, Shih YJ, Nana AW, Changou CA, Yang YCSH, Chiu HC, Fu E, Davis PJ, Tang HY, Lin HY. Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. J Biomed Sci 2017; 24:51. [PMID: 28750624 PMCID: PMC5532776 DOI: 10.1186/s12929-017-0356-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Obesity and its comorbidities constitute a serious health burden worldwide. Leptin plays an important role in diet control; however, it has a stimulatory potential on cancer cell proliferation. The OB3 peptide, a synthetic peptide, was shown to be more active than leptin in regulating metabolism but with no mitogenic effects in cancer cells. METHODS In this study, we investigated the proliferative effects, gene expressions and signaling pathways modulated by leptin and OB3 in human ovarian cancer cells. In addition, an animal study was performed. RESULTS Leptin, but not OB3, induced the proliferation of ovarian cancer cells. Interestingly, OB3 blocked the leptin-induced proliferative effect when it was co-applied with leptin. Both leptin and OB3 activated the phosphatidylinositol-3-kinase (PI3K) signal transduction pathway. In addition, leptin stimulated the phosphorylation of signal transducer and activator of transcription-3 (STAT3) Tyr-705 as well as estrogen receptor (ER)α, and the expression of ERα-responsive genes. Interestingly, all leptin-induced signal activation and gene expressions were blocked by the co-incubation with OB3 and the inhibition of extracellular signal-regulated kinase (ERK)1/2. Coincidently, leptin, but not OB3, increased circulating levels of follicle-stimulating hormone (FSH) which is known to play important roles in the initiation and proliferation of ovarian cancer cells. CONCLUSIONS In summary, our findings suggest that the OB3 peptide may prevent leptin-induced ovarian cancer initiation and progression by disrupting leptin-induced proliferative signals via STAT3 phosphorylation and ERα activation. Therefore, the OB3 peptide is a potential anticancer agent that might be employed to prevent leptin-induced cancers in obese people.
Collapse
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Le-Ming Wang
- Department of Obstetrics and Gynecology, Wan-Fang Hospital, Taipei, Taiwan
| | - Meng-Ti Hsieh
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - André Wendindondé Nana
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chun A Changou
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan. .,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
19
|
Lee YC, Wu WJ, Lin HH, Li WM, Huang CN, Hsu WC, Chang LL, Li CC, Yeh HC, Li CF, Ke HL. Prognostic Value of Leptin Receptor Overexpression in Upper Tract Urothelial Carcinomas in Taiwan. Clin Genitourin Cancer 2017; 15:e653-e659. [PMID: 28188048 DOI: 10.1016/j.clgc.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Leptin and its receptor (LEPR) are key players in the regulation of energy balance and body weight control and act as a growth factor for specific organs in both normal and disease states. However, LEPR accumulation may be involved in carcinogenesis, progression, and metastasis in many cancers. This study evaluated the clinical significance of LEPR expression in upper tract urothelial carcinoma (UTUC). MATERIALS AND METHODS LEPR expression was examined in 110 tissue samples from patients with UTUC, using immunohistochemistry, and an analysis was performed to identify evidence of association between LEPR expression and different clinicopathologic variables. RESULTS LEPR expression was significantly correlated with patients with increased body mass index (P < .001) and high serum creatinine levels (P = .005). We found, using the log-rank test, that high LEPR expression was associated with poor recurrence-free (P = .009) and cancer-specific survival (P = .001). This finding was supported by our results using Cox regression analysis, which showed that LEPR expression was an independent predictor of poor recurrence-free survival (hazard ratio = 2.55; P = .011) and cancer-specific survival (hazard ratio = 2.26; P = .006). CONCLUSIONS Our findings indicate that LEPR expression is a potential biomarker for predicting patient survival in UTUC. Further study is necessary to investigate the role of LEPR in carcinogenesis of UTUC.
Collapse
Affiliation(s)
- Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Chun-Nung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan
| | - Hung-Lung Ke
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Sansone A, Romanelli F, Sansone M, Lenzi A, Di Luigi L. Gynecomastia and hormones. Endocrine 2017; 55:37-44. [PMID: 27145756 DOI: 10.1007/s12020-016-0975-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/26/2016] [Indexed: 12/28/2022]
Abstract
Gynecomastia-the enlargement of male breast tissue in men-is a common finding, frequently observed in newborns, adolescents, and old men. Physiological gynecomastia, occurring in almost 25 % of cases, is benign and self-limited; on the other hand, several conditions and drugs may induce proliferation of male breast tissue. True gynecomastia is a common feature often related to estrogen excess and/or androgen deficiency as a consequence of different endocrine disorders. Biochemical evaluation should be performed once physiological or iatrogenic gynecomastia has been ruled out. Non-endocrine illnesses, including liver failure and chronic kidney disease, are another cause of gynecomastia which should be considered. Treating the underlying disease or discontinuing medications might resolve gynecomastia, although the psychosocial burden of this condition might require different and careful consideration.
Collapse
Affiliation(s)
- Andrea Sansone
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza, University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| | - Francesco Romanelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza, University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Massimiliano Sansone
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza, University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza, University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of Rome "Foro Italico", Largo Lauro de Bosis 15, 00135, Rome, Italy
| |
Collapse
|
21
|
Alshaker H, Sacco K, Alfraidi A, Muhammad A, Winkler M, Pchejetski D. Leptin signalling, obesity and prostate cancer: molecular and clinical perspective on the old dilemma. Oncotarget 2016; 6:35556-63. [PMID: 26376613 PMCID: PMC4742124 DOI: 10.18632/oncotarget.5574] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/16/2015] [Indexed: 01/22/2023] Open
Abstract
The prevalence of global obesity is increasing. Obesity is associated with general cancer-related morbidity and mortality and is a known risk factor for development of specific cancers. A recent large systematic review of 24 studies based on meta-analysis of 11,149 patients with prostate cancer showed a significant correlation between obesity and the risk of advanced prostate cancer. Further, a sustained reduction in BMI correlates with a decreased risk of developing aggressive disease. On the other hand, the correlation between consuming different products and prostate cancer occurrence/risk is limited.Here, we review the role of adipose tissue from an endocrine perspective and outline the effect of adipokines on cancer metabolism, with particular focus on leptin. Leptin exerts its physiological and pathological effects through modification of intracellular signalling, most notably activating the Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 pathway and recently shown sphingolipid pathway. Both high levels of leptin in circulation and leptin receptor mutation are associated with prostate cancer risk in human patients; however, the in vivo mechanistic evidence is less conclusive.Given the complexity of metabolic cancer pathways, it is possible that leptin may have varying effects on prostate cancer at different stages of its development, a point that may be addressed by further epidemiological studies.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan
| | - Keith Sacco
- University of Malta Medical School, Mater Dei Hospital, Tal-Qroqq, MSD, Malta
| | - Albandri Alfraidi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Aun Muhammad
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
22
|
Schwartz N, Verma A, Bivens CB, Schwartz Z, Boyan BD. Rapid steroid hormone actions via membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2289-98. [PMID: 27288742 DOI: 10.1016/j.bbamcr.2016.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects.
Collapse
Affiliation(s)
- Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel
| | - Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Caroline B Bivens
- School of Art, Virginia Commonwealth University, Richmond, VA, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
23
|
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology and affect the majority of men at some time during their lives. The development of BPH/LUTS is associated with an increased ratio of estrogen to androgen levels, and this ratio, when mimicked in a variety of animals, induces BPH and lower urinary tract dysfunction (LUTD). While the precise molecular etiology remains unclear, estrogens have been implicated in the development and maintenance of BPH. Numerous endogenous and exogenous estrogens exist in humans. These estrogens act via multiple estrogen receptors to promote or inhibit prostatic hyperplasia and other BPH-associated processes. The prostate is an estrogen target tissue, and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of estrogen action directly affecting prostate growth and differentiation in the context of BPH is an understudied area and remains to be elucidated. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation illustrating their potential roles in the development of BPH as therapy. More work will be required to identify estrogen signaling pathways associated with LUTD in order to develop more efficacious drugs for BPH treatment and prevention.
Collapse
|
24
|
Shouman S, Wagih M, Kamel M. Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells. Cancer Biol Med 2016; 13:505-513. [PMID: 28154783 PMCID: PMC5250609 DOI: 10.20892/j.issn.2095-3941.2016.0079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells. Methods: High performance liquid chromatography (HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction (real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-450 1B1 (CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1 (NQO1), and Catechol-O-methyl transferase (COMT). Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and mRNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT. Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer.
Collapse
Affiliation(s)
- Samia Shouman
- Department of Cancer Biology, Unit of Pharmacology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Mohamed Wagih
- Department of Pathology, Faculty of Medicine, Beni-Suef University, Benisuef 62511, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| |
Collapse
|
25
|
Al-Abd AM, Aljehani ZK, Gazzaz RW, Fakhri SH, Jabbad AH, Alahdal AM, Torchilin VP. Pharmacokinetic strategies to improve drug penetration and entrapment within solid tumors. J Control Release 2015; 219:269-277. [PMID: 26342660 DOI: 10.1016/j.jconrel.2015.08.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/28/2015] [Indexed: 02/08/2023]
Abstract
Despite the discovery of a large number of anticancer agents, cancer still remains among the leading causes of death since the middle of the twentieth century. Solid tumors possess a high degree of genetic instability and emergence of treatment resistance. Tumor resistance has emerged for almost all approved anticancer drugs and will most probably emerge for newly discovered anticancer agents as well. The use of pharmacokinetic approaches to increase anticancer drug concentrations within the solid tumor compartment and prolong its entrapment might diminish the possibility of resistance emergence at the molecular pharmacodynamic level and might even reverse tumor resistance. Several novel treatment modalities such as metronomic therapy, angiogenesis inhibitors, vascular disrupting agents and tumor priming have been introduced to improve solid tumor treatment outcomes. In the current review we will discuss the pharmacokinetic aspect of these treatment modalities in addition to other older treatment modalities, such as extracellular matrix dissolving agents, extracellular matrix synthesis inhibitors, chemoembolization and cellular efflux pump inhibition. Many of these strategies showed variable degrees of success/failure; however, reallocating these modalities based on their influence on the intratumoral pharmacokinetics might improve their understanding and treatment outcomes.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Department of Pharmacology, Medical Division, National Research Centre, Dokki, Giza, Egypt; Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zekra K Aljehani
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana W Gazzaz
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah H Fakhri
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha H Jabbad
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|