1
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
2
|
Fang Y, Yan D, Wang L, Zhang J, He Q. Circulating microRNAs (miR-16, miR-22, miR-122) expression and early diagnosis of hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24541. [PMID: 35666610 PMCID: PMC9279946 DOI: 10.1002/jcla.24541] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Circulating microRNA (miRNA) has been reported to have diagnostic value in multiple tumors. To identify serum miRNAs for early diagnosis of hepatocellular carcinoma (HCC), we analyzed the differential miRNA expression between HCC patients and controls. Methods Real‐time reverse transcription polymerase chain reaction (RT‐PCR) was carried out to detect serum miR‐16, miR‐22, and miR‐122 expression in 100 HCC patients and 100 controls (including hepatitis B, liver cirrhosis, liver metastases, hepatic hemangioma, health group, and each of them had 20 subjects). The miRNA expression results were combined with alpha‐fetoprotein (AFP) to evaluate the diagnostic efficacy in HCC through receiver operating characteristic (ROC) curve. And the target genes were predicted through bioinformatics methods. Results Compared with controls, the expression of miR‐16 and miR‐122 significantly increased in early‐stage HCC patients, while no significant changes were detected in miR‐22. The ROC curve analysis demonstrated that miR‐16 and miR‐122 had a high diagnostic efficacy (AUC 0.798 and 0.759), and it was improved when combined with AFP (AUC 0.862). When compared with each of the five groups in the controls, the results showed that miR‐16 of HCC was significantly higher than liver cirrhosis (AUC 0.936), liver metastases, and health; miR‐122 was significantly higher than liver metastases, hepatitis B, and health. Moreover, 175 and 101 potential target genes were regulated by miR‐16 and miR‐122, respectively. And most of the target genes were enriched in the PI3K, MAPK, FoxO signaling pathways, and pathways in cancer. Conclusion Our findings illustrate that both circulating miR‐16 and miR‐122 can provide value for early diagnosis of HCC and they are potential biomarkers for the early‐stage HCC.
Collapse
Affiliation(s)
- Yujia Fang
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lixin Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Jie Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| | - Qingfang He
- Zhejiang Provincial Center for Disease Control and Prevention, Hang Zhou, China
| |
Collapse
|
3
|
Sabina S, Panico A, Mincarone P, Leo CG, Garbarino S, Grassi T, Bagordo F, De Donno A, Scoditti E, Tumolo MR. Expression and Biological Functions of miRNAs in Chronic Pain: A Review on Human Studies. Int J Mol Sci 2022; 23:ijms23116016. [PMID: 35682695 PMCID: PMC9181121 DOI: 10.3390/ijms23116016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic pain is a major public health problem and an economic burden worldwide. However, its underlying pathological mechanisms remain unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in physiological and pathological processes. This review aims to synthesize the human studies examining miRNA expression in the pathogenesis of chronic primary pain and chronic secondary pain. Additionally, to understand the potential pathophysiological impact of miRNAs in these conditions, an in silico analysis was performed to reveal the target genes and pathways involved in primary and secondary pain and their differential regulation in the different types of chronic pain. The findings, methodological issues and challenges of miRNA research in the pathophysiology of chronic pain are discussed. The available evidence suggests the potential role of miRNA in disease pathogenesis and possibly the pain process, eventually enabling this role to be exploited for pain monitoring and management.
Collapse
Affiliation(s)
- Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Pierpaolo Mincarone
- Institute for Research on Population and Social Policies, National Research Council, c/o ex Osp. Di Summa, Piazza Di Summa, 72100 Brindisi, Italy;
| | - Carlo Giacomo Leo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via Edoardo Orabona, 70126 Bari, Italy;
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Correspondence: ; Tel.: +39-(08)-3229-8860
| | - Maria Rosaria Tumolo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| |
Collapse
|
4
|
Emmi G, Bagni G, Lastraioli E, Di Patti F, Bettiol A, Fiorillo C, Becatti M, Silvestri E, Urban ML, Emmi L, Prisco D, Arcangeli A. A unique circulating miRNA profile highlights thrombo-inflammation in Behçet's syndrome. Ann Rheum Dis 2021; 81:386-397. [PMID: 34844932 PMCID: PMC8862064 DOI: 10.1136/annrheumdis-2021-220859] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Objectives Behçet’s syndrome (BS) is a rare systemic vasculitis often complicated by thrombotic events. Given the lack of validated biomarkers, BS diagnosis relies on clinical criteria. In search of novel biomarkers for BS diagnosis, we determined the profile of plasmatic circulating microRNAs (ci-miRNAs) in patients with BS compared with healthy controls (HCs). Methods ci-miRNA profile was evaluated by microarray in a screening cohort (16 patients with BS and 18 HCs) and then validated by poly(T) adaptor PCR (PTA-PCR) in a validation cohort (30 patients with BS and 30 HCs). Two disease control groups (30 patients with systemic lupus erythematosus (SLE) and 30 patients with giant cell arteritis (GCA) were also analysed. Results From the microarray screening, 29 deregulated (differentially expressed (DE)) human ci-miRNAs emerged. A hierarchical cluster analysis indicated that DE ci-miRNAs clearly segregated patients from controls, independently of clinical features. PTA-PCR analysis on the validation cohort confirmed the deregulation of miR-224-5p, miR-206 and miR-653-5p. The combined receiver operating characteristic (ROC) curve analyses showed that such ci-miRNAs discriminate BS from HCs (and BS with active vs inactive disease), as well as BS from patients with SLE and GCA. The functional annotation analyses (FAAs) showed that the most enriched pathways affected by DE ci-miRNAs (ie, cell–matrix interaction, oxidative stress and blood coagulation) are related to thrombo-inflammatory mechanisms. Accordingly, the expression of the three ci-miRNAs from the validation cohort significantly correlated with leucocyte reactive oxygen species production and plasma lipid peroxidation. Conclusions The ci-miRNA profile identified in this study may represent a novel, poorly invasive BS biomarker, while suggesting an epigenetic control of BS-related thrombo-inflammation.
Collapse
Affiliation(s)
- Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Interdisciplinary Internal Medicine-Behçet Center and Lupus Clinic-Azienda Ospedaliero Universitaria Careggi, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Francesca Di Patti
- Department of Mathematics and Informatics, University of Perugia, Perugia, Italy.,Center for the Study of Complex Dynamics, University of Florence, Firenze, Italy.,Department of Physics, University of Florence, Florence, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Interdisciplinary Internal Medicine-Behçet Center and Lupus Clinic-Azienda Ospedaliero Universitaria Careggi, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Interdisciplinary Internal Medicine-Behçet Center and Lupus Clinic-Azienda Ospedaliero Universitaria Careggi, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Lorenzo Emmi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Interdisciplinary Internal Medicine-Behçet Center and Lupus Clinic-Azienda Ospedaliero Universitaria Careggi, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy .,Center for the Study of Complex Dynamics, University of Florence, Firenze, Italy
| |
Collapse
|
5
|
Panico A, Tumolo MR, Leo CG, Donno AD, Grassi T, Bagordo F, Serio F, Idolo A, Masi RD, Mincarone P, Sabina S. The influence of lifestyle factors on miRNA expression and signal pathways: a review. Epigenomics 2020; 13:145-164. [PMID: 33355508 DOI: 10.2217/epi-2020-0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The term 'lifestyle' includes different factors that contribute to the maintenance of a good health status. Increasing evidences suggest that lifestyle factors may influence epigenetic mechanisms, such as miRNAs expression. The dysregulation of miRNAs can modify the expression of genes and molecular pathways that may lead to functional alterations. This review summarizes human studies highlighting that diet, physical activity, smoking and alcohol consumption may affect the miRNA machinery and several biological functions. Most miRNAs are involved in molecular pathways that influence inflammation, cell cycle regulation and carcinogenesis resulting in the onset or progression of pathological conditions. Investigating these interactions will be pivotal for understanding the etiology of pathologic processes, the potential new treatment strategies and for preventing diseases.
Collapse
Affiliation(s)
- Alessandra Panico
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Maria R Tumolo
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Carlo G Leo
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| | - Antonella De Donno
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Tiziana Grassi
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesco Bagordo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesca Serio
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Adele Idolo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Roberto De Masi
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, 'F. Ferrari' Hospital, Casarano, Lecce, 73042, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
6
|
MiRNA-Mediated Mechanisms of Cardiac Protection in Ischemic and Remote Ischemic Preconditioning-A Qualitative Systematic Review. Shock 2020; 51:44-51. [PMID: 29642230 DOI: 10.1097/shk.0000000000001156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) and remote ischemic preconditioning (RIPC) protect myocardial tissue against subsequent ischemia and reperfusion injury (IRI) and have a high potential to improve patient outcome. The mediators and mechanisms of protection through IPC and RIPC remain largely unknown, but micro-RNAs (miRNAs) are promising candidates. METHODS Systematic review of Medline and Embase databases for biomedical scientific literature. RESULTS A total of 26 relevant publications (21 full-text original articles and 5 conference abstracts) were identified, 8 describing cell culture experiments, 14 animal experiments, and 4 randomized clinical trials in humans. Most commonly reported miRNAs with differential expression between preconditioned and control groups include miR-1, miR-21, and miR-144. Experimental designs and procedures differ widely, thereby limiting the potential to compare results between studies. Two of the four RCTs did not find any differentially expressed miRNAs. CONCLUSIONS Results from RCTs should feed back into basic research and focused studies confirming or rejecting hypotheses generated by these RCTs are needed.
Collapse
|
7
|
Shiotsu H, Okada K, Shibuta T, Kobayashi Y, Shirahama S, Kuroki C, Ueda S, Ohkuma M, Ikeda K, Ando Y, Matsui H, Kayamori Y, Umemura T. The Influence of Pre-Analytical Factors on the Analysis of Circulating MicroRNA. Microrna 2018; 7:195-203. [PMID: 29984665 PMCID: PMC6225341 DOI: 10.2174/2211536607666180709143335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 01/13/2023]
Abstract
Background: MicroRNAs (miRNA) are expected as useful biomarkers for various diseases. We studied the pre-analytical factors causing variation in the analysis of miRNA. Material and Methods: Blood samples were collected from 25 healthy subjects. Plasma and serum were obtained from the same samples. The levels of miR-451, -16, -126, and -223 were analyzed using RT-qPCR. Cel-miR-39 was added as a spiked-in control in each sample. Results: With the exception of miR-451, the levels of the miRNAs in plasma were higher than in serum. After high-speed centrifugation, the levels of miRNAs were almost equal between plasma and serum except for miR-451. Membrane filtration with 0.45 µm pore size reduced the levels of plasma miRNAs. The coagulation accelerators for serum processing did not affect the analysis of miRNA. The use of fraction containing particles of > 0.45 µm in size showed the inhibitory effect on the analysis of plasma miR-451. The RNase inhibitor was effective for protecting against the degradation of miRNAs. Conclusion: Plasma contains factors modifying miRNA profiles. The immediate processing of plasma with membrane filtration and RNase inhibitor may be a relevant method for achieving the stable analysis of miRNA
Collapse
Affiliation(s)
- Hiromichi Shiotsu
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Kazuhiro Okada
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuki Shibuta
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Yuki Kobayashi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saki Shirahama
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chieri Kuroki
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Ohkuma
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Katsuyoshi Ikeda
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, Japan.,Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, Japan.,Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuzo Kayamori
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsukuru Umemura
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
8
|
Fang C, Zhao J, Li J, Qian J, Liu X, Sun Q, Liu W, Tian Y, Ji A, Wu H, Yan J. Massively parallel sequencing of microRNA in bloodstains and evaluation of environmental influences on miRNA candidates using realtime polymerase chain reaction. Forensic Sci Int Genet 2018; 38:32-38. [PMID: 30321749 DOI: 10.1016/j.fsigen.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 06/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNA) are small (22-24 nucleotides) non-coding RNAs with potential application in forensic science because of their anti-degradation property and tissue specificity. Recent studies on the use of miRNA in forensic applications have mainly focused on body fluid identification using realtime polymerase chain reaction or microarray analysis. However, the exploration of miRNA in bloodstains, which are the most valuable source of biological evidence during case investigations, is currently lacking, particularly for aged and environmentally compromised forensic samples. Recent developments in massively parallel sequencing (MPS) technology provide the opportunity to establish a whole-genome miRNA profile with high throughput and efficiency. However, MPS analysis of genome-wide miRNA profiles from bloodstains has not been reported to date. In this study, the whole-genome miRNA profiles of bloodstains were examined using MPS, revealing 633 known miRNAs and 266 novel miRNAs. To further explore the stability of miRNAs in bloodstains under various circumstances, the expression levels of six miRNAs (miR-16-5p, miR-20a-5p, miR-486-5p, miR-148a-3p, miR-151a-3p, and miR-451a) that were abundant in blood/bloodstains were examined. The results showed that freezing/thawing and a high concentration of oxidant solution affects the absolute expression of miRNA significantly, while storage for up to 5 months and a temperature of 37 °C did not have any observed effects. This study not only provides a novel method to explore miRNA profiles in bloodstains using MPS, but also points to the circumstantial influences on miRNA expression, which are an important consideration for practical application. Collectively, our work may shed light on MPS-based approaches with miRNA analysis of bloodstains in forensics.
Collapse
Affiliation(s)
- Chen Fang
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jing Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junbo Li
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jialin Qian
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Qifan Sun
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Yanjie Tian
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Anquan Ji
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Huijuan Wu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China.
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
9
|
Kusaoi M, Yamaji K, Ishibe Y, Murayama G, Nemoto T, Sekiya F, Kon T, Ogasawara M, Kempe K, Tamura N, Takasaki Y. Separation of Circulating MicroRNAs Using Apheresis in Patients With Systemic Lupus Erythematosus. Ther Apher Dial 2017; 20:348-53. [PMID: 27523074 DOI: 10.1111/1744-9987.12471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs), which are important inhibitors of mRNA translation, participate in differentiation, migration, cell proliferation, and cell death. The pathology of miRNAs results in alterations in protein expression. Recently, miRNAs circulating in peripheral blood have been shown to control the synthesis and translation of proteins at distal sites after intake into local cells. A number of studies are currently being conducted to investigate how to use miRNAs in disease treatment, but no studies have attempted to alleviate disease by directly eliminating miRNAs from blood. Therefore, we examined whether the removal or reduction of circulating miRNAs with apheresis improved pathologies caused by miRNAs. After approval of the study by our medical school's ethics committee, we collected blood and separated plasma samples from three patients with systemic lupus erythematosus who were undergoing plasmapheresis at our hospital. Peripheral blood was collected before and after it was passed through a primary membrane, centrifuged, and used to extract circulating miRNAs. A comprehensive expression analysis was then performed with a miRNA array chip. The levels of expression of a large number of circulating miRNAs were measured in the plasma samples separated by the primary membranes from all 3 patients with systemic lupus erythematosus. We present the first report that circulating miRNAs in peripheral blood can be separated and possibly directly removed using membrane separation apheresis.
Collapse
Affiliation(s)
- Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yusuke Ishibe
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Go Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuya Nemoto
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumio Sekiya
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takayuki Kon
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Michihiro Ogasawara
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kempe
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Xiang H, Tao X, Xia S, Qu J, Song H, Liu J, Shang D. Targeting MicroRNA Function in Acute Pancreatitis. Front Physiol 2017; 8:726. [PMID: 28983256 PMCID: PMC5613139 DOI: 10.3389/fphys.2017.00726] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disorder that featured by acute inflammatory responses leading to systemic inflammatory response syndrome (SIRS) or multiple organ failure. A worldwide increase in annual incidence has been observed during the past decade with high acute hospitalization and mortality. Lack of any specific treatment for AP, even to this day, is a reminder that there is much to be learned about the exact pathogenesis of AP. Fortunately, the discovery of microRNA (miRNA) has started an entirely new thought process regarding the molecular mechanism associated with the disease processes. Given the extensive effort made on miRNA research, certain types of miRNA have been identified across a variety of biological processes, including cell differentiation, apoptosis, metabolism, and inflammatory responses. Mutations in miRNA sequences or deregulation of miRNA expression may contribute to the alteration of a pivotal physiological function leading to AP. Designing miRNA-related tools for AP diagnosis and treatment presents a novel and potential research frontier. In this mini-review, we summarize the current knowledge of various miRNAs closely interacting with AP and the possible development of targeted miRNA therapies in this disease, which may benefit the development of potential disease biomarkers and novel treatment targets for future medical implications.
Collapse
Affiliation(s)
- Hong Xiang
- College of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical UniversityDalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jianjun Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Dong Shang
- College of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
11
|
Del Carmen Martínez-Jiménez V, Méndez-Mancilla A, Patricia Portales-Pérez D. miRNAs in nutrition, obesity, and cancer: The biology of miRNAs in metabolic disorders and its relationship with cancer development. Mol Nutr Food Res 2017; 62. [PMID: 28594107 DOI: 10.1002/mnfr.201600994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
SCOPE The scope of this review is to explain how metabolic disorders originated by a deficient nutrition can develop into a neoplastic process by the alteration of epigenetic mechanisms like miRNAs. Obesity is a proinflammatory state with a wide impact on health around the world that is associated with neoplastic diseases. Epigenetic mechanisms have a central role in the obesogenic environment, which participates on the development of comorbidities such as cancer. METHODS AND RESULTS We made an exhaustive review of the most recent reports about metabolic disorders with nutrition and their relationship with miRNAs, and their risk of developing into oncogenic processes. MicroRNAs (miRNAs) act as one of the major epigenetic mechanisms that can affect the metabolic reprogramming of cellular metabolism that plays an important role in the oncogenic process. There is evidence that some foods may contribute to diminishing the risk of cancer as well as epidemiological studies that support the notion that diets high in animal protein and fat promote cancer risk. Therefore, diets high in fruit and vegetables reduce the risk of cancer. One of the principal explanations is that these foods contain bioactive compounds that increase the efficacy of epigenetic mechanisms, which in turn decrease the risk of obesity and its comorbidities. CONCLUSION In this review, we show how miRNAs are implicated in several signaling pathways as well as illustrating some bioactive compounds that impact inflammation and cancer development.
Collapse
Affiliation(s)
| | - Alejandro Méndez-Mancilla
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP San Luis Potosí, SLP México
| | - Diana Patricia Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP San Luis Potosí, SLP México
| |
Collapse
|
12
|
Su SH, Wu CH, Chiu YL, Chang SJ, Lo HH, Liao KH, Tsai CF, Tsai TN, Lin CH, Cheng SM, Cheng CC, Wang HW. Dysregulation of Vascular Endothelial Growth Factor Receptor-2 by Multiple miRNAs in Endothelial Colony-Forming Cells of Coronary Artery Disease. J Vasc Res 2017; 54:22-32. [PMID: 28122380 DOI: 10.1159/000449202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Endothelial colony-forming cells (ECFCs) have the potential to be used in regenerative medicine. Dysfunction of ECFCs is correlated with the onset of cardiovascular disorders, especially coronary artery disease (CAD). Binding of vascular endothelial growth factor A (VEGFA) to vascular endothelial growth factor receptor-2 (VEGFR2) triggers cell motility and angiogenesis of ECFCs, which are crucial to vascular repair. METHODS To identify the miRNA-VEGFR2-dependent regulation of ECFC functions, ECFCs isolated from peripheral blood of disease-free and CAD individuals were subjected to small RNA sequencing for identification of anti-VEGFR2 miRNAs. The angiogenic activities of the miRNAs were determined in both in vitro and in vivo mice models. RESULTS Three miRNAs, namely miR-410-3p, miR-497-5p, and miR-2355-5p, were identified to be upregulated in CAD-ECFCs, and VEGFR2 was their common target gene. Knockdown of these miRNAs not only restored the expression of VEGFR2 and increased angiogenic activities of CAD-ECFCs in vitro, but also promoted blood flow recovery in ischemic limbs in vivo. miR-410-3p, miR-497-5p, and miR-2355-5p could serve as potential biomarkers for CAD detection as they are highly expressed in the plasma of CAD patients. CONCLUSIONS This modulation could help develop new therapeutic modalities for cardiovascular diseases and other vascular dysregulated diseases, especially tumor angiogenesis.
Collapse
Affiliation(s)
- Shu-Han Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yan Y, Wang C, Zhou W, Shi Y, Guo P, Liu Y, Wang J, Zhang CY, Zhang C. Elevation of Circulating miR-210-3p in High-Altitude Hypoxic Environment. Front Physiol 2016; 7:84. [PMID: 27014085 PMCID: PMC4781857 DOI: 10.3389/fphys.2016.00084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
Background: The induction of miR-210-3p, a master hypoxamir, is a consistent feature of the hypoxic response in both normal and malignant cells. However, whether miR-210-3p acts as a circulating factor in response to a hypoxic environment remains unknown. The current study aimed to examine the effect of a high-altitude hypoxic environment on circulating miR-210-3p. Methods: We examined and compared the levels of miR-210-3p using TaqMan-based qRT-PCR in both peripheral blood cells and plasma from 84 ethnic Chinese Tibetans residing at 3560 m, 46 newly arrived migrant Han Chinese (Tibet Han) and 82 Han Chinese residing at 8.9 m (Nanjing Han). Furthermore, we analyzed the correlations of miR-210-3p with hematological indices. Results: The relative concentrations of miR-210-3p to internal reference U6 in blood cells were significantly higher in the Tibet Han group (1.01 ± 0.11, P < 0.001) and in the Tibetan group (1.17 ± 0.09, P < 0.001) than in the Nanjing Han group (0.51 ± 0.04). The absolute concentrations of plasma miR-210-3p were also markedly elevated in the Tibet Han group (503.54 ± 42.95 fmol/L, P = 0.004) and in the Tibetan group (557.78 ± 39.84 fmol/L, P < 0.001) compared to the Nanjing Han group (358.39 ± 16.16 fmol/L). However, in both blood cells and plasma, miR-210-3p levels were not significantly different between the Tibet Han group and the Tibetan group (P = 0.280, P = 0.620, respectively). Plasma miR-210-3p concentrations were positively correlated with miR-210-3p levels in blood cells (r = 0.192, P = 0.005). Furthermore, miR-210-3p levels in both blood cells and plasma showed strong positive correlations with red blood cell counts and hemoglobin and hematocrit values. Conclusion: These data demonstrated, for the first time, that miR-210-3p might act as a circulating factor in response to hypoxic environments and could be associated with human adaptation to life at high altitudes.
Collapse
Affiliation(s)
- Yan Yan
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Wanqing Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing University Nanjing, China
| | - Pengtao Guo
- Department of Clinical Laboratory, The Forty-First Hospital of PLA Nêdong, China
| | - Yuxiu Liu
- Department of Medical Statistics, Nanjing University School of Medicine, Jinling Hospital, Nanjing University Nanjing, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing University Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University Nanjing, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|