1
|
Galeffi F, Snellings DA, Wetzel-Strong SE, Kastelic N, Bullock J, Gallione CJ, North PE, Marchuk DA. A novel somatic mutation in GNAQ in a capillary malformation provides insight into molecular pathogenesis. Angiogenesis 2022; 25:493-502. [PMID: 35635655 DOI: 10.1007/s10456-022-09841-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
Sturge-Weber syndrome (SWS) is a sporadic, congenital, neuro-cutaneous disorder characterized by a mosaic, capillary malformation. SWS and non-syndromic capillary malformations are both caused by a somatic activating mutation in GNAQ encoding the G protein subunit alpha-q protein. The missense mutation R183Q is the sole GNAQ mutation identified thus far in 90% of SWS-associated or isolated capillary malformations. In this study, we sequenced skin biopsies of capillary malformations from 9 patients. We identified the R183Q mutation in nearly all samples, but one sample exhibited a Q209R mutation. This new mutation occurs at the same residue as the constitutively-activating Q209L mutation, commonly seen in tumors. However, Q209R is a rare variant in this gene. To compare the effect of the Q209R mutation on downstream signaling, we performed reporter assays with a GNAQ-responsive reporter co-transfected with either GNAQ WT, R183Q, Q209L, Q209R, or C9X (representing a null allele). Q209L showed the highest reporter activation, with R183Q and Q209R showing significantly lower activation. To determine whether these mutations had similar or different downstream consequences we performed RNA-seq analysis in microvascular endothelial cells (HMEC-1) electroporated with the same GNAQ variants. The R183 and Q209 missense variants caused extensive dysregulation of a broad range of transcripts compared to the WT or null allele, confirming that these are all activating mutations. However, the missense variants exhibited very few differentially expressed genes (DEGs) when compared to each other. These data suggest that these activating GNAQ mutations differ in magnitude of activation but have similar downstream effects.
Collapse
Affiliation(s)
- F Galeffi
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - D A Snellings
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - S E Wetzel-Strong
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - N Kastelic
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - J Bullock
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - C J Gallione
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - P E North
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - D A Marchuk
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Huang L, Bichsel C, Norris A, Thorpe J, Pevsner J, Alexandrescu S, Pinto A, Zurakowski D, Kleiman RJ, Sahin M, Greene AK, Bischoff J. Endothelial GNAQ p.R183Q Increases ANGPT2 (Angiopoietin-2) and Drives Formation of Enlarged Blood Vessels. Arterioscler Thromb Vasc Biol 2022; 42:e27-e43. [PMID: 34670408 PMCID: PMC8702487 DOI: 10.1161/atvbaha.121.316651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) β3, a downstream effector of Gαq. Activated PLCβ3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by quantitative PCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCβ3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCβ3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.
Collapse
Affiliation(s)
- Lan Huang
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Colette Bichsel
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Alexis Norris
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jeremy Thorpe
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine Research, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Robin J. Kleiman
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Arin K. Greene
- Department of Plastic and Oral Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Vascular Anomalies Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
3
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Capillary malformations, the most common type of vascular malformation, are caused by a somatic mosaic mutation in GNAQ, which encodes the Gαq subunit of heterotrimeric G-proteins. How the single amino acid change - predicted to activate Gαq - causes capillary malformations is not known but recent advances are helping to unravel the mechanisms. RECENT FINDINGS The GNAQ R183Q mutation is present not only in endothelial cells isolated from skin and brain capillary malformations but also in brain tissue underlying the capillary malformation, raising questions about the origin of capillary malformation-causing cells. Insights from computational analyses shed light on the mechanisms of constitutive activation and new basic science shows Gαq plays roles in sensing shear stress and in regulating cerebral blood flow. SUMMARY Several studies confirm the GNAQ R183Q mutation in 90% of nonsyndromic and Sturge-Weber syndrome (SWS) capillary malformations. The mutation is enriched in endothelial cells and blood vessels isolated from skin, brain, and choroidal capillary malformations, but whether the mutation resides in other cell types must be determined. Further, the mechanisms by which the R183Q mutation alters microvascular architecture and blood flow must be uncovered to develop new treatment strategies for SWS in particular, a devastating disease for which there is no cure.
Collapse
|
5
|
Kim HJ, Nam YR, Woo J, Kim WK, Nam JH. Gardenia jasminoides extract and its constituent, genipin, inhibit activation of CD3/CD28 co-stimulated CD4 + T cells via ORAI1 channel. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:363-372. [PMID: 32587130 PMCID: PMC7317176 DOI: 10.4196/kjpp.2020.24.4.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/15/2022]
Abstract
Gardenia jasminoides (GJ) is a widely used herbal medicine with anti-inflammatory properties, but its effects on the ORAI1 channel, which is important in generating intracellular calcium signaling for T cell activation, remain unknown. In this study, we investigated whether 70% ethanolic GJ extract (GJEtOH) and its subsequent fractions inhibit ORAI1 and determined which constituents contributed to this effect. Whole-cell patch clamp analysis revealed that GJEtOH (64.7% ± 3.83% inhibition at 0.1 mg/ml) and all its fractions showed inhibitory effects on the ORAI1 channel. Among the GJ fractions, the hexane fraction (GJHEX, 66.8% ± 9.95% at 0.1 mg/ml) had the most potent inhibitory effects in hORAI1-hSTIM1 co-transfected HEK293T cells. Chemical constituent analysis revealed that the strong ORAI1 inhibitory effect of GJHEX was due to linoleic acid, and in other fractions, we found that genipin inhibited ORAI1. Genipin significantly inhibited IORAI1 and interleukin-2 production in CD3/CD28-stimulated Jurkat T lymphocytes by 35.9% ± 3.02% and 54.7% ± 1.32% at 30 μM, respectively. Furthermore, the same genipin concentration inhibited the proliferation of human primary CD4+ T lymphocytes stimulated with CD3/CD28 antibodies by 54.9% ± 8.22%, as evaluated by carboxyfluorescein succinimidyl ester assay. Our findings suggest that genipin may be one of the active components of GJ responsible for T cell suppression, which is partially mediated by activation of the ORAI1 channel. This study helps us understand the mechanisms of GJ in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hyun Jong Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Korea.,Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Yu Ran Nam
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Korea.,Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - JooHan Woo
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Korea.,Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Korea.,Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Joo Hyun Nam
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Korea.,Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
6
|
Aleyakpo B, Umukoro O, Kavlie R, Ranson DC, Thompsett A, Corcoran O, Casalotti SO. G-protein αq gene expression plays a role in alcohol tolerance in Drosophila melanogaster. Brain Neurosci Adv 2020; 3:2398212819883081. [PMID: 32166184 PMCID: PMC7058197 DOI: 10.1177/2398212819883081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Ethanol is a psychoactive substance causing both short- and long-term behavioural changes in humans and animal models. We have used the fruit fly Drosophila melanogaster to investigate the effect of ethanol exposure on the expression of the Gαq protein subunit. Repetitive exposure to ethanol causes a reduction in sensitivity (tolerance) to ethanol, which we have measured as the time for 50% of a set of flies to become sedated after exposure to ethanol (ST50). We demonstrate that the same treatment that induces an increase in ST50 over consecutive days (tolerance) also causes a decrease in Gαq protein subunit expression at both the messenger RNA and protein level. To identify whether there may be a causal relationship between these two outcomes, we have developed strains of flies in which Gαq messenger RNA expression is suppressed in a time- and tissue-specific manner. In these flies, the sensitivity to ethanol and the development of tolerance are altered. This work further supports the value of Drosophila as a model to dissect the molecular mechanisms of the behavioural response to alcohol and identifies G proteins as potentially important regulatory targets for alcohol use disorders.
Collapse
Affiliation(s)
- Benjamin Aleyakpo
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, London, UK
| | - Oghenetega Umukoro
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, London, UK
| | - Ryan Kavlie
- UCL Ear Institute, University College London, London, UK
| | - Daniel C Ranson
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, London, UK
| | - Andrew Thompsett
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, London, UK.,Medical School, The University of Buckingham, Buckingham, UK
| | - Olivia Corcoran
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, London, UK
| | - Stefano O Casalotti
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
7
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
8
|
Li Z, Zhang X, Xue W, Zhang Y, Li C, Song Y, Mei M, Lu L, Wang Y, Zhou Z, Jin M, Bian Y, Zhang L, Wang X, Li L, Li X, Fu X, Sun Z, Wu J, Nan F, Chang Y, Yan J, Yu H, Feng X, Wang G, Zhang D, Fu X, Zhang Y, Young KH, Li W, Zhang M. Recurrent GNAQ mutation encoding T96S in natural killer/T cell lymphoma. Nat Commun 2019; 10:4209. [PMID: 31527657 PMCID: PMC6746819 DOI: 10.1038/s41467-019-12032-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Natural killer/T cell lymphoma (NKTCL) is a rare and aggressive malignancy with a higher prevalence in Asia and South America. However, the molecular genetic mechanisms underlying NKTCL remain unclear. Here, we identify somatic mutations of GNAQ (encoding the T96S alteration of Gαq protein) in 8.7% (11/127) of NKTCL patients, through whole-exome/targeted deep sequencing. Using conditional knockout mice (Ncr1-Cre-Gnaqfl/fl), we demonstrate that Gαq deficiency leads to enhanced NK cell survival. We also find that Gαq suppresses tumor growth of NKTCL via inhibition of the AKT and MAPK signaling pathways. Moreover, the Gαq T96S mutant may act in a dominant negative manner to promote tumor growth in NKTCL. Clinically, patients with GNAQ T96S mutations have inferior survival. Taken together, we identify recurrent somatic GNAQ T96S mutations that may contribute to the pathogenesis of NKTCL. Our work thus has implications for refining our understanding of the genetic mechanisms of NKTCL and for the development of therapies.
Collapse
Affiliation(s)
- Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanjie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Chaoping Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yue Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Mei Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lisha Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yingjun Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhiyuan Zhou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Mengyuan Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yangyang Bian
- Medical Research Centre, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Hui Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xiaoyan Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xuefei Fu
- Novogene Bioinformatics Technology Co, Ltd, 38 Xueqing Road, 100083, Beijing, China
| | - Yuan Zhang
- The Academy of Medical Science of Zhengzhou University, 450052, Zhengzhou, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China.
| |
Collapse
|
9
|
Navot S, Kosloff M. Structural design principles that underlie the multi-specific interactions of Gα q with dissimilar partners. Sci Rep 2019; 9:6898. [PMID: 31053791 PMCID: PMC6499889 DOI: 10.1038/s41598-019-43395-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gαq is a ubiquitous molecular switch that activates the effectors phospholipase-C-β3 (PLC-β3) and Rho guanine-nucleotide exchange factors. Gαq is inactivated by regulators of G protein signaling proteins, as well as by PLC-β3. Gαq further interacts with G protein-coupled receptor kinase 2 (GRK2), although the functional role of this interaction is debated. While X-ray structures of Gαq bound to representatives of these partners have revealed details of their interactions, the mechanistic basis for differential Gαq interactions with multiple partners (i.e., Gαq multi-specificity) has not been elucidated at the individual residue resolution. Here, we map the structural determinants of Gαq multi-specificity using structure-based energy calculations. We delineate regions that specifically interact with GTPase Activating Proteins (GAPs) and residues that exclusively contribute to effector interactions, showing that only the Gαq “Switch II” region interacts with all partners. Our analysis further suggests that Gαq-GRK2 interactions are consistent with GRK2 functioning as an effector, rather than a GAP. Our multi-specificity analysis pinpoints Gαq residues that uniquely contribute to interactions with particular partners, enabling precise manipulation of these cascades. As such, we dissect the molecular basis of Gαq function as a central signaling hub, which can be used to target Gαq-mediated signaling in therapeutic interventions.
Collapse
Affiliation(s)
- Shir Navot
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
10
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Suzuki S, Lis A, Schmitz C, Penner R, Fleig A. The TRPM7 kinase limits receptor-induced calcium release by regulating heterotrimeric G-proteins. Cell Mol Life Sci 2018; 75:3069-3078. [PMID: 29500477 PMCID: PMC6033657 DOI: 10.1007/s00018-018-2786-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 12/17/2022]
Abstract
The melastatin-related transient receptor potential member 7 (TRPM7) is a unique fusion protein with both ion channel function and enzymatic α-kinase activity. TRPM7 is essential for cellular systemic magnesium homeostasis and early embryogenesis; it promotes calcium transport during global brain ischemia and emerges as a key player in cancer growth. TRPM7 channels are negatively regulated through G-protein-coupled receptor-stimulation, either by reducing cellular cyclic adenosine monophosphate (cAMP) or depleting phosphatidylinositol bisphosphate (PIP2) levels in the plasma membrane. We here identify that heterologous overexpression of human TRPM7-K1648R mutant will lead to disruption of protease or purinergic receptor-induced calcium release. The disruption occurs at the level of Gq, which requires intact TRPM7 kinase phosphorylation activity for orderly downstream signal transduction to activate phospholipase (PLC)β and cause calcium release. We propose that this mechanism may support limiting GPCR-mediated calcium signaling in times of insufficient cellular ATP supply.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA
- John A. Burns School of Medicine, University of Hawaii Cancer Center, University of Hawaii, 651 Ilalo St, Honolulu, HI, 96813, USA
| | - Annette Lis
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421, Homburg/Saar, Germany
| | - Carsten Schmitz
- Integrated Department of Immunology, National Jewish Health, University of Colorado Denver, Denver, CO, 80206, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA
- John A. Burns School of Medicine, University of Hawaii Cancer Center, University of Hawaii, 651 Ilalo St, Honolulu, HI, 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA.
- John A. Burns School of Medicine, University of Hawaii Cancer Center, University of Hawaii, 651 Ilalo St, Honolulu, HI, 96813, USA.
| |
Collapse
|
12
|
Abstract
G protein-coupled receptors (GPCRs) constitute a large family of receptors that activate intracellular signaling pathways upon detecting specific extracellular ligands. While many aspects of GPCR signaling have been uncovered through decades of studies, some fundamental properties, like its channel capacity—a measure of how much information a given transmission system can reliably transduce—are still debated. Previous studies concluded that GPCRs in individual cells could transmit around one bit of information about the concentration of the ligands, allowing only for a reliable on or off response. Using muscarinic receptor-induced calcium response measured in individual cells upon repeated stimulation, we show that GPCR signaling systems possess a significantly higher capacity. We estimate the channel capacity of this system to be above two, implying that at least four concentration levels of the agonist can be distinguished reliably. These findings shed light on the basic principles of GPCR signaling. G protein-coupled receptors (GPCRs) activate intracellular signalling pathways upon extracellular stimulation. Here authors record single cell responses of GPCR signalling which allows the direct estimation of its channel capacity for each cell along with the reproducibility of its response.
Collapse
|
13
|
Zhou TT, Ma F, Shi XF, Xu X, Du T, Guo XD, Wang GH, Yu L, Rukachaisirikul V, Hu LH, Chen J, Shen X. DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway. J Mol Endocrinol 2017. [PMID: 28637808 DOI: 10.1530/jme-17-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4(1H)-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in db/db mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca2+)/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | - Fei Ma
- School of PharmacyEast China University of Science and Technology, Shanghai, China
| | - Xiao-Fan Shi
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xin Xu
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | - Te Du
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiao-Dan Guo
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | - Gai-Hong Wang
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yu
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | | | - Li-Hong Hu
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jing Chen
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xu Shen
- Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of SciencesBeijing, China
- Key Laboratory of Drug Target and Drug for Degenerative DiseaseSchool of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|