1
|
Wang Y, Ma Z, Peng W, Yu Q, Liang W, Cao L, Wang Z. 3,5,6,7,8,3',4'- Heptamethoxyflavonoid inhibits TGF-β1-induced epithelial-mesenchymal transition by regulating oxidative stress and autophagy through MEK/ERK/PI3K/AKT/mTOR signaling pathway. Sci Rep 2025; 15:4567. [PMID: 39915543 PMCID: PMC11802913 DOI: 10.1038/s41598-025-88869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial pathological process in the pathogenesis of fibrosis. 3,5,6,7,8,3',4'-hepmethoxyflavone (HMF), the main active ingredient extracted from the Chinese herb Breynia fruticosa (L.) Hook. f., has been shown to have beneficial effects on regulating apoptosis and inhibiting collagen deposition. However, it remains unclear whether and how HMF alleviates transforming growth factor-β1 (TGF-β1)-induced EMT. The objective of this study was to investigate the impact of HMF on TGF-β1-induced EMT in human alveolar Type II epithelial cells (A549) and its underlying mechanism. In vitro culture of TGF-β1-induced EMT in A549 cells revealed that HMF reduced cell viability and migration, inhibited collagen deposition, decreased expression levels of mesenchymal cell markers and fibrosis markers α-SMA, MMP2, TIMP1, β-catenin, and Snail. Meanwhile, the expression level of E-cadherin increased as an epithelial cell marker. Additionally, we discussed the effects of HMF on oxidative stress and autophagy. Various experiments confirmed that HMF regulated the expression levels of Nrf2, keap-1, HO-1, ROS, MDA, SOD, GSH, and played a role in reducing oxidative stress. At the same time, HMF significantly activated autophagy by increasing expressions of Beclin-1 and LC3B as well as enhancing autophagosome content. The addition 3-MA, an autophagy inhibitor attenuated these beneficial effects. Furthermore, HMF significantly inhibited phosphorylation levels of MEK, ERK, PI3K, AKT, and mTOR through various pathways. In conclusion, HMF effectively inhibits TGF-β1-induced EMT in A549 cells by targeting the MEK/ERK/PI3K/AKT/mTOR signaling pathway. Moreover, it exhibits a close correlation with the suppression of oxidative stress and induction of autophagy.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhiheng Ma
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Weiwen Peng
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Qinglian Yu
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Wenjie Liang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Liu Cao
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhuqiang Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China.
| |
Collapse
|
2
|
Zhang BH, Chen H, Yang R, Jiang Z, Huang S, Chen Z, Liu C, Wang L, Liu XH. Pinocembrin alleviates renal ischemia-reperfusion injury/unilateral ureteral obstruction (UUO)-generated renal fibrosis by targeting the CYP1B1/ROS/MAPK axis. FEBS J 2025. [PMID: 39876048 DOI: 10.1111/febs.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment. Importantly, the "ingredient-target-pathway-disease" network was established through bioinformatics analysis and molecular docking, which showed that PIN may target cytochrome P450 1B1 (CYP1B1) and modulate the mitogen-activated protein kinase (MAPK) pathway to exert its impact during injury. Furthermore, experiments confirmed that PIN usage remarkably constrained CYP1B1 expression, reactive oxygen species (ROS) production, MAPK-pathway-associated inflammation, or apoptosis during I/R injury or UUO exposure. PIN also ameliorated the elevated protein phosphorylation of MAPK pathway components [p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 1 (JNK ERK and JNK)], which validated the PIN-induced inhibition of the MAPK signaling pathway in renal I/R or UUO injury. Moreover, the AAV9 (adeno-associated virus 9)-packed CYP1B1 or pcDNA-CYP1B1 overexpression plasmid was utilized to treat C57BL/6 mice or HK-2 cells to overexpress CYP1B1, respectively. Notably, CYP1B1 overexpression considerably abolished PIN's restriction impact on ROS generation and MAPK pathway activation. In conclusion, via bioinformatics analysis, molecular docking, animal model, and cellular experiments, we proved that PIN alleviates renal I/R injury/UUO-generated renal fibrosis through regulating the CYP1B1/ROS/MAPK axis.
Collapse
Affiliation(s)
- Bang-Hua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, China
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Zhengyu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, China
- Wuhan University Institute of Urological Disease, China
| |
Collapse
|
3
|
Zhang B, Feng X, Tian L, Xiao B, Hou L, Mo B, Yao D. Epithelial-mesenchymal transition in asthma: its role and underlying regulatory mechanisms. Front Immunol 2025; 16:1519998. [PMID: 39911398 PMCID: PMC11794105 DOI: 10.3389/fimmu.2025.1519998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Bronchial asthma (asthma) is a respiratory disease characterized by chronic inflammation, airway hyperresponsiveness, and airway remodeling. Numerous studies have delved into asthma's pathogenesis, among which epithelial mesenchymal transition (EMT) is considered one of the important mechanisms in the pathogenesis of asthma. EMT refers to the transformation of epithelial cells, which lose their original features and acquire a migratory and invasive stromal phenotype. EMT contributes to normal physiological functions like growth, development, and wound healing. However, EMT is also involved in the occurrence and development of many diseases. Currently, the precise regulatory mechanism linking EMT and asthma remain obscure. Increasing evidence suggests that airway EMT contributes to asthma pathogenesis via dysregulation of associated control mechanisms. This review explores EMT's significance in asthma and the regulatory networks associated with EMT in this context.
Collapse
Affiliation(s)
- Bingxi Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xinru Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lincha Tian
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bo Xiao
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lixia Hou
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Biwen Mo
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China
| | - Dong Yao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
Luo X, Wen S, Zeng J, Liu J, Ye W, Wu J, Huang S, Xie W, Wen H, Sun Y, Cai J, Mo D, Lin Q, Chen M, Xia S, Song Y. AOPPs induces EMT and fibrosis by activating oxidative stress through ERK/p38 MAPK signaling pathway in endometriosis. Reprod Biol 2024; 24:100950. [PMID: 39241657 DOI: 10.1016/j.repbio.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is known to play a crucial role in the development of endometriosis (EMs). However, the exact mechanisms involved in EMT regulation in EMs are not well understood. In this study, we performed comprehensive research using clinical samples, single-cell sequencing, and in vivo/in vitro models to investigate the effects of advanced oxidation protein products (AOPPs) on EMT and the underlying mechanisms in EMs. Combining bioinformatics analysis with experimental validation, our results show that AOPPs accumulate in EMs tissues, and their levels positively correlate with the expression of EMT markers in fibrotic lesions of EMs patients. Stimulation with AOPPs leads to a concentration- and time-dependent alteration of EMT markers expression in both in vitro and in vivo models. These effects are mainly mediated by the generation of reactive oxygen species and nitrite, along with the activation of the ERK and P38 signaling pathways. In chronic administration studies using normal rats, AOPPs induce EMT and enhance collagen deposition. These findings significantly contribute to our understanding of the molecular mechanisms of EMs and provide a foundation for future research and therapeutic development in this field.
Collapse
Affiliation(s)
- Xiaoqing Luo
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Sixi Wen
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junling Zeng
- Laboratory Animal Research Center of Nanfang Hospital Southern Medical University
| | - Jing Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenting Ye
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Jiangpeng Wu
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Songyu Huang
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Wuwei Xie
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haiping Wen
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Yan Sun
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Jing Cai
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Daidi Mo
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Qianxia Lin
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Mingwei Chen
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Siyu Xia
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China.
| | - Yali Song
- Department of Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China.
| |
Collapse
|
5
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
6
|
Kraik K, Tota M, Laska J, Łacwik J, Paździerz Ł, Sędek Ł, Gomułka K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024; 13:1271. [PMID: 39120302 PMCID: PMC11311642 DOI: 10.3390/cells13151271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) represent chronic inflammatory respiratory disorders that, despite having distinct pathophysiological underpinnings, both feature airflow obstruction and respiratory symptoms. A critical component in the pathogenesis of each condition is the transforming growth factor-β (TGF-β), a multifunctional cytokine that exerts varying influences across these diseases. In asthma, TGF-β is significantly involved in airway remodeling, a key aspect marked by subepithelial fibrosis, hypertrophy of the smooth muscle, enhanced mucus production, and suppression of emphysema development. The cytokine facilitates collagen deposition and the proliferation of fibroblasts, which are crucial in the structural modifications within the airways. In contrast, the role of TGF-β in COPD is more ambiguous. It initially acts as a protective agent, fostering tissue repair and curbing inflammation. However, prolonged exposure to environmental factors such as cigarette smoke causes TGF-β signaling malfunction. Such dysregulation leads to abnormal tissue remodeling, marked by excessive collagen deposition, enlargement of airspaces, and, thus, accelerated development of emphysema. Additionally, TGF-β facilitates the epithelial-to-mesenchymal transition (EMT), a process contributing to the phenotypic alterations observed in COPD. A thorough comprehension of the multifaceted role of TGF-β in asthma and COPD is imperative for elaborating precise therapeutic interventions. We review several promising approaches that alter TGF-β signaling. Nevertheless, additional studies are essential to delineate further the specific mechanisms of TGF-β dysregulation and its potential therapeutic impacts in these chronic respiratory diseases.
Collapse
Affiliation(s)
- Krzysztof Kraik
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Paździerz
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
7
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Lu J, Su D, Yang Y, Shu M, Wang Y, Zhou X, Yu Q, Li C, Xie J, Chen Y. Disruption of intestinal epithelial permeability in the Co-culture system of Caco-2/HT29-MTX cells exposed individually or simultaneously to acrylamide and ochratoxin A. Food Chem Toxicol 2024; 186:114582. [PMID: 38460668 DOI: 10.1016/j.fct.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/13/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1β, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.
Collapse
Affiliation(s)
- Jiawen Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Dan Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ying Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Mengni Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
9
|
Hui Q, Yang N, Xiong C, Zhou S, Zhou X, Jin Q, Xu X. Isorhamnetin suppresses the epithelial-mesenchymal transition of the retinal pigment epithelium both in vivo and in vitro through Nrf2-dependent AKT/GSK-3β pathway. Exp Eye Res 2024; 240:109823. [PMID: 38331017 DOI: 10.1016/j.exer.2024.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in the elderly worldwide. Multiple studies have shown that epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of AMD. Isorhamnetin (Isor) is a flavonoid compound that inhibits EMT in tumor cells. However, whether it can also attenuate EMT in the retinal pigment epithelium (RPE) is unknown. Therefore, our study was designed to probe the possible impact of Isor on EMT process in both mouse retina and ARPE-19 cells. C57BL/6 mice were utilized to establish a dry AMD model. Isor and LCZ (a mixture of luteine/β-carotene/zinc gluconate) were administered orally for 3 months. The effects of Isor on the retina were evaluated using fundus autofluorescence, optical coherence tomography, and transmission electron microscopy. Transwell and wound healing assay were employed to assess ARPE-19 cell migration. Western blotting and immunofluorescence were used to measure the protein expressions associated with EMT, Nrf2 and AKT/GSK-3β pathway. The findings indicated that Isor alleviated dry AMD-like pathological changes in vehicle mice retina, inhibited the migration of Ox-LDL-treated ARPE-19 cells, and repressed the EMT processes in vivo and in vitro. Furthermore, Isor activated Nrf2 pathway and deactivated AKT/GSK-3β pathway in both vehicle mice and ARPE-19 cells. Interestingly, when Nrf2 siRNA was transfected into ARPE-19 cells, the inhibitory effect of Isor on EMT and AKT/GSK-3β pathway was attenuated. These results suggested that Isor inhibited EMT processes via Nrf2-dependent AKT/GSK-3β pathway and is a promising candidate for dry AMD treatment.
Collapse
Affiliation(s)
- Qinyi Hui
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Ning Yang
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Caijian Xiong
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Siqi Zhou
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Xin Zhou
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Qingzi Jin
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Xinrong Xu
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China.
| |
Collapse
|
10
|
Varshney KK, Gupta JK, Srivastava R. Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways. Protein Pept Lett 2024; 31:275-289. [PMID: 38629379 DOI: 10.2174/0109298665294109240323033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities. OBJECTIVE This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases. METHODS A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023. RESULTS The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis. CONCLUSION The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.
Collapse
Affiliation(s)
| | | | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
11
|
He H, Ji X, Cao L, Wang Z, Wang X, Li XM, Miao M. Medicine Targeting Epithelial-Mesenchymal Transition to Treat Airway Remodeling and Pulmonary Fibrosis Progression. Can Respir J 2023; 2023:3291957. [PMID: 38074219 PMCID: PMC10701063 DOI: 10.1155/2023/3291957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Objective. Dysregulation of epithelial-mesenchymal transition (EMT) in the airway epithelium is associated with airway remodeling and the progression of pulmonary fibrosis. Many treatments have been shown to inhibit airway remodeling and pulmonary fibrosis progression in asthma and chronic obstructive pulmonary disease (COPD) by regulating EMT and have few side effects. This review aimed to describe the development of airway remodeling through the EMT pathway, as well as the potential therapeutic targets in these pathways. Furthermore, this study aimed to review the current research on drugs to treat airway remodeling and their effects on the EMT pathway. Findings. The dysregulation of EMT was associated with airway remodeling in various respiratory diseases. The cytokines released during inflammation may induce EMT and subsequent airway remodeling. Various drugs, including herbal formulations, specific herbal compounds, cytokines, amino acid or protein inhibitors, microRNAs, and vitamins, may suppress airway remodeling by inhibiting EMT-related pathways.
Collapse
Affiliation(s)
- Hongjuan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiaoyan Ji
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Zhenzhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiaoyu Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiu-Min Li
- Department of Otolaryngology, Microbiology and Immunology, New York Medical College, New York, NY 10595, USA
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| |
Collapse
|
12
|
Yuan J, Wang M, Wang C, Zhang L. Epithelial cell dysfunction in chronic rhinosinusitis: the epithelial-mesenchymal transition. Expert Rev Clin Immunol 2023; 19:959-968. [PMID: 37386882 DOI: 10.1080/1744666x.2023.2232113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is a type of epithelial cell dysfunction, which is widely present in the nasal mucosa of patients with chronic rhinosinusitis (CRS), especially CRS with nasal polyps, and contributes to pathogenesis of the disease. EMT is mediated via complex mechanisms associated with multiple signaling pathways. AREAS COVERED We have summarized the underlying mechanisms and signaling pathways promoting EMT in CRS. Strategies or drugs/agents targeting the genes and pathways related to the regulation of EMT are also discussed for their potential use in the treatment of CRS and asthma. A literature search of studies published in English from 2000 to 2023 was conducted using the PubMed database, employing CRS, EMT, signaling, mechanisms, targeting agents/drugs, as individual or combinations of search terms. EXPERT OPINION EMT in nasal epithelium not only leads to epithelial cell dysfunction but also plays an important role in nasal tissue remodeling in CRS. A comprehensive understanding of the mechanisms underlying EMT and the development of drugs/agents targeting these mechanisms may provide new treatment strategies for CRS.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Zhang Q, Liu J, Deng MM, Tong R, Hou G. Relief of ovalbumin-induced airway remodeling by the glycyl-l-histidyl-l-lysine-Cu 2+ tripeptide complex via activation of SIRT1 in airway epithelial cells. Biomed Pharmacother 2023; 164:114936. [PMID: 37257226 DOI: 10.1016/j.biopha.2023.114936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Fixed airflow limitation (FAO), prevalent in patients with severe or difficult-to-treat asthma, is mainly caused by airway remodeling. Airway remodeling is initiated by inflammation and involves subsequent pathological changes. Glycyl-l-histidyl-l-lysine (GHK) is a matrikine with anti-inflammatory and antioxidant effects, naturally existing in human tissue. At present, the GHK level in human plasma and whether it is related to airway remodeling of asthma remain unclear. This study was conducted to determine how GHK is involved in airway remodeling in asthma. Our result showed that the plasma GHK levels of patients with asthma were significantly lower than those of age-matched healthy controls. In asthma patients, plasma GHK levels display a moderate correlation with FEF25-75%, and patients with FAO had significantly lower GHK levels. Ovalbumin-induced mice of asthma model treated with PBS or GHK-Cu (a form of GHK with higher bioavailability) were used to evaluate the effect of exogenous GHK supplement on airway remodeling. GHK-Cu administration alleviated airway remodeling, as reflected by decreased peribronchial collagen deposition and airway mucus secretion, and suppressed epithelial-mesenchymal transition. The therapeutical effect related to decreased TGF-β1 level. Successively, network pharmacology and the validation data of experiments in vivo and vitro demonstrated that GHK-Cu decreased TGF-β1 level by increasing SIRT1 expression and activating SIRT1 deacetylation in airway epithelial cells, thereby alleviating airway remodeling. Collectively, decreased plasma GHK levels were related to FAO in asthma patients. Through the direct binding and activation of SIRT1, exogenous GHK-Cu administration alleviated airway remodeling in asthmatic mice.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Disease, the First Hospital of China Medical University, No. 155, Nanjing Street, Heping District, 110000 Shenyang, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555, Zuchongzhi Road, Pudong District, Shanghai 201203, China
| | - Ming-Ming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Run Tong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China; National Center for Respiratory Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
14
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
15
|
Li R, Kang H, Chen S. From Basic Research to Clinical Practice: Considerations for Treatment Drugs for Silicosis. Int J Mol Sci 2023; 24:ijms24098333. [PMID: 37176040 PMCID: PMC10179659 DOI: 10.3390/ijms24098333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Silicosis, characterized by irreversible pulmonary fibrosis, remains a major global public health problem. Nowadays, cumulative studies are focusing on elucidating the pathogenesis of silicosis in order to identify preventive or therapeutic antifibrotic agents. However, the existing research on the mechanism of silica-dust-induced pulmonary fibrosis is only the tip of the iceberg and lags far behind clinical needs. Idiopathic pulmonary fibrosis (IPF), as a pulmonary fibrosis disease, also has the same problem. In this study, we examined the relationship between silicosis and IPF from the perspective of their pathogenesis and fibrotic characteristics, further discussing current drug research and limitations of clinical application in silicosis. Overall, this review provided novel insights for clinical treatment of silicosis with the hope of bridging the gap between research and practice in silicosis.
Collapse
Affiliation(s)
- Rou Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Huimin Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
16
|
Seyedrezazadeh E, Ghoushouni S, Sharifi A, Zafari V, Zarredar H. Association of the Toll-like receptor 4 and NOX4 gene and protein levels in asthmatic patients with metabolic syndrome: A case–control study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2023; 28:11. [PMID: 36974113 PMCID: PMC10039097 DOI: 10.4103/jrms.jrms_860_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/17/2022] [Accepted: 04/02/2022] [Indexed: 02/23/2023]
Abstract
Background Understanding the contributing of influence inflammatory biomarkers in asthmatic patients with metabolic syndrome is more important. Whereby, the present study considering the important association of NADPH oxidase4 (NOX4) and Toll- like receptor4 (TLR4) in the respiratory inflammatory responses in asthmatic patients with metabolic syndrome (AS-MetS) and asthmatic (AS) patients. Materials and Methods In this case-control study, 30 AS and 34 AS-MetS patients were enrolled. The Peripheral blood mononuclear cells (PBMCs) mRNA and protein levels of TLR4 and NOX4 were measured by qRT-PCR and western blot, respectively. Then their correlation was evaluated. Results The significant down-regulation of mRNA and protein PBMCs expression levels of TLR4 were observed in the AS-MetS group in comparison to AS one (P=0.03), but the NOX4 expression was non-significant. Additionally, the significant correlation was exhibited between mRNA expression levels of NOX4 and TLR4 in both AS-MetS (r= 0.440, P=0.009) and AS groups (r=0.909, P=0.0001). The association between TLR4 mRNA level and triglyceride in AS-MetS group (r=0.454, P=0.008,) and also white blood cells (WBC) in AS group (r= -0.507, P=0.006,) were significant. Conclusion The metabolic syndrome can significantly influence the expressions of TLR4 in AS-MetS. This study indicated that TLR4 and NOX4 altogether may provide valuable molecular knowledge of their relation with metabolic syndrome criteria for finding major pathways in different phenotype of asthma.
Collapse
|
17
|
Tu J, Tang M, Li G, Chen L, Huang Y. Molecular Typing Based on Oxidative Stress Genes and Establishment of Prognostic Characteristics of 7 Genes in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9683819. [PMID: 36148413 PMCID: PMC9485712 DOI: 10.1155/2022/9683819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress could maintain different biological processes in human cancer. However, the effect of oxidative stress on lung adenocarcinoma (LUAD) should be studied. This study analyzed the expression and clinical importance of oxidative stress in LUAD in detail. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were employed for obtaining LUAD expression profiles. Based on oxidative stress-related genes, molecular subtypes substantially correlated with the LUAD prognosis were discovered with ConsensusClusterPlus. Differentially expressed genes (DEGs) among subtypes were found using the Limma software package. Least absolute shrinkage and selection operator- (Lasso-) Cox analysis was employed to create the polygenic risk model. RiskScore and clinically relevant features were used to create nomograms. By utilizing oxidative stress-related genes and reliable clustering, stable molecular subtypes were first discovered. The prognosis, clinical characteristics, route characteristics, and immunological characteristics of these three molecular subtypes were all different. Subsequently, by using differential expression genes among molecular subtypes and Lasso, 7 main genes linked with the oxidative stress phenotype were discovered. A prognostic risk model was also built on the basis of major genes associated with the oxidative stress phenotype. The model demonstrated a high level of resilience and was unaffected by clinical-pathological features. It played a stable predictive role in independent datasets. Ultimately, to improve the prognosis model and survival prediction, RiskScore (RS) was combined with clinicopathological variables, and a decision tree model was used. The model exhibited a high prediction accuracy as well as the ability to predict survival. This research found that oxidative stress-related genes have a major involvement in the onset and progression of LUAD and that they may influence LUAD susceptibility to immunotherapy and standard chemotherapy. Furthermore, the identified risk models for 7 genes linked with oxidative stress exhibited could assist clinical treatment decisions and prognosis prediction. The classifier could be used as a molecular diagnostic tool for assessing LUAD patients' prognosis risk.
Collapse
Affiliation(s)
- Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Guoqing Li
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Liang Chen
- Intensive Care Unit, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Yong Huang
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| |
Collapse
|
18
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
19
|
Ding Y, Wang L, Liu B, Ren G, Okubo R, Yu J, Zhang C. Bryodulcosigenin attenuates bleomycin-induced pulmonary fibrosis via inhibiting AMPK-mediated mesenchymal epithelial transition and oxidative stress. Phytother Res 2022; 36:3911-3923. [PMID: 35794782 DOI: 10.1002/ptr.7535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022]
Abstract
Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in several organs, including the lungs. Bryodulcosigenin (BDG) is a cucurbitane-type triterpene isolated from Siratia grosvenori and has clear-cut anti-inflammatory effects, yet its benefit of pulmonary fibrosis (PF) remains unclear. In this study, we investigated the protective effects of BDG (10 mg/kg/day, for 14 days) against TGF-β1-stimulated mouse alveolar epithelial MLE-12 cells and bleomycin (BLM)-induced PF mice. In vitro experiments showed that BDG could inhibit epithelial-mesenchymal transition (EMT) and oxidative stress. In vivo experiments indicated that BDG could ameliorate BLM-induced PF in mice as evidenced by characteristic structural changes in histopathology, increased collagen deposition and reduced survival and weight of mice. The abnormal increased expressions of TGF-β1, p-Smad2/3, α-SMA, COL-I, and NOX4 and decreased expressions for Sirt1 and p-AMPK were improved in BDG treatment. But these beneficial effects could be eliminated by co-treatment with Compound C (CC, a selective AMPK inhibitor). Molecular docking technology also revealed the potential of BDG to activate AMPK. In summary, AMPK activation modulated by BDG not only ameliorated TGF-β1/Smad2/3 signaling pathways but also partially mediated the suppression effects on EMT and oxidative stress, thus mediating the anti-fibrotic effects.
Collapse
Affiliation(s)
- Yue Ding
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Bei Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Guoqing Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Ryosuke Okubo
- Kampo Medicine Pharmacology Research Laboratory, Graduate School of Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama-shi, Japan
| | - Jing Yu
- Kampo Medicine Pharmacology Research Laboratory, Graduate School of Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama-shi, Japan
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Ameliorative Effects of Arctigenin on Pulmonary Fibrosis Induced by Bleomycin via the Antioxidant Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3541731. [PMID: 35847593 PMCID: PMC9277162 DOI: 10.1155/2022/3541731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
In this study, we evaluated the in vivo effect of arctigenin (ATG) on bleomycin-induced pulmonary fibrosis in mice and assessed the role of antioxidant activity. Hematoxylin and eosin (H&E) staining, the results of Masson's trichrome, and Sirius red staining showed that bleomycin induced obvious pathological changes and collagen deposition in the lung tissue of mice, which were effectively inhibited by ATG. Specifically, based on immunohistochemistry and western blot results, ATG inhibited the expression of fibrosis markers, such as collagen, fibronectin, and α-SMA. Moreover, ATG regulated reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the lung tissue of pulmonary fibrosis mice and reduced the pressure of oxidative stress. ATG also regulated the TGF-β-induced expression of p-Akt, confirming that ATG can inhibit fibrosis through antioxidant activity modulation.
Collapse
|
21
|
Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:845878. [PMID: 35711341 PMCID: PMC9193824 DOI: 10.3389/fcvm.2022.845878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis represents a redundant accumulation of extracellular matrix proteins, resulting from a cascade of pathophysiological events involved in an ineffective healing response, that eventually leads to heart failure. The pathophysiology of cardiac fibrosis involves various cellular effectors (neutrophils, macrophages, cardiomyocytes, fibroblasts), up-regulation of profibrotic mediators (cytokines, chemokines, and growth factors), and processes where epithelial and endothelial cells undergo mesenchymal transition. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. The most effective anti-fibrotic strategy will have to incorporate the specific targeting of the diverse cells, pathways, and their cross-talk in the pathogenesis of cardiac fibroproliferation. Additionally, renalase, a novel protein secreted by the kidneys, is identified. Evidence demonstrates its cytoprotective properties, establishing it as a survival element in various organ injuries (heart, kidney, liver, intestines), and as a significant anti-fibrotic factor, owing to its, in vitro and in vivo demonstrated pleiotropy to alleviate inflammation, oxidative stress, apoptosis, necrosis, and fibrotic responses. Effective anti-fibrotic therapy may seek to exploit renalase’s compound effects such as: lessening of the inflammatory cell infiltrate (neutrophils and macrophages), and macrophage polarization (M1 to M2), a decrease in the proinflammatory cytokines/chemokines/reactive species/growth factor release (TNF-α, IL-6, MCP-1, MIP-2, ROS, TGF-β1), an increase in anti-apoptotic factors (Bcl2), and prevention of caspase activation, inflammasome silencing, sirtuins (1 and 3) activation, and mitochondrial protection, suppression of epithelial to mesenchymal transition, a decrease in the pro-fibrotic markers expression (’α-SMA, collagen I, and III, TIMP-1, and fibronectin), and interference with MAPKs signaling network, most likely as a coordinator of pro-fibrotic signals. This review provides the scientific rationale for renalase’s scrutiny regarding cardiac fibrosis, and there is great anticipation that these newly identified pathways are set to progress one step further. Although substantial progress has been made, indicating renalase’s therapeutic promise, more profound experimental work is required to resolve the accurate underlying mechanisms of renalase, concerning cardiac fibrosis, before any potential translation to clinical investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
22
|
ZHANG BY, ZHENG YF, ZHAO J, KANG D, WANG Z, XU LJ, LIU AL, DU GH. Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation. Chin J Nat Med 2022; 20:332-351. [DOI: 10.1016/s1875-5364(22)60180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/03/2022]
|
23
|
Luteolin Alleviates Epithelial-Mesenchymal Transformation Induced by Oxidative Injury in ARPE-19 Cell via Nrf2 and AKT/GSK-3β Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2265725. [PMID: 35198094 PMCID: PMC8860553 DOI: 10.1155/2022/2265725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Oxidative stress plays a critical role in age-related macular degeneration (AMD), and epithelial-mesenchymal transition (EMT) is involved in this process. The aim of this study was to investigate the protective effects of luteolin, a natural flavonoid with strong antioxidant activity, on H2O2-induced EMT in ARPE-19 cells. ARPE-19 cells were incubated with H2O2 at 200 μΜ to induce oxidative stress-associated injury. Cell viability assay showed that luteolin at 20 and 40 μM significantly promoted cell survival in H2O2-treated ARPE-19 cells. Luteolin also markedly protected ARPE-19 cells from H2O2-induced apoptosis. Cell migration assay presented that luteolin significantly reduced H2O2-induced migration in APRE-19 cells. EMT in ARPE-19 cells was detected by western blotting and immunofluorescence. The results showed that H2O2 significantly upregulated the expression of α-SMA and vimentin and downregulated the expression of ZO-1 and E-cadherin, while cells pretreated with luteolin showed a reversal. Meanwhile, the assessment of effects of luteolin on the Nrf2 pathway indicated that luteolin promoted Nrf2 nuclear translocation and upregulated the expressions of HO-1 and NQO-1. In addition, luteolin significantly increased the activities of SOD and GSH-PX and decreased intracellular levels of ROS and MDA in H2O2-treated ARPE-19 cells. Meanwhile, we observed that the expression of TGF-β2, p-AKT, and p-GSK-3β was upregulated in H2O2-treated ARPE-19 cells and downregulated in luteolin-treated cells, revealing that luteolin inhibited the activation of the AKT/GSK-3β pathway. However, these effects of luteolin were all annulled by transfecting ARPE-19 cells with Nrf2 siRNA. Our current data collectively indicated that inhibition of luteolin on EMT was induced by oxidative injury in ARPE-19 cell through the Nrf2 and AKT/GSK-3β pathway, suggesting that luteolin could be a potential drug for the treatment of dry AMD.
Collapse
|
24
|
Pan L, Feng F, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Diosmetin inhibits cell growth and proliferation by regulating the cell cycle and lipid metabolism pathway in hepatocellular carcinoma. Food Funct 2021; 12:12036-12046. [PMID: 34755740 DOI: 10.1039/d1fo02111g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diosmetin (DSM), a newly discovered natural flavonoid, found in citrus plants and olive leaves, has been reported to inhibit the progression of cancer when used as a food supplement. This study aimed to investigate DSM's anti-hepatocellular carcinoma (HCC) properties and possible molecular mechanisms. Hep3B and HCCLM3 cells were selected to evaluate the anti-HCC properties of DSM in vitro. RNA sequencing (RNA-seq) was used to identify the possible molecular targets and pathways. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of DSM treatment on the primary metabolites of HCCLM3 cells. Tumor xenograft was performed in nude mice to examine the anti-HCC properties of DSM in vivo. The results showed that DSM inhibited the proliferation and migration of HCC cells in vitro in a dose-dependent manner. RNA-seq identified 4459 differentially expressed genes (DEGs) that were highly enriched in the cell cycle pathway. In addition, DSM regulated cell growth by arresting the cell cycle in the G1 phase by decreasing the expression of BCL2, CDK1, and CCND1. Furthermore, metabolomics analysis revealed that DSM interfered with the lipid metabolism pathway of HCC cells by significantly inhibiting the synthesis of metabolites, such as acetic acid, decanoic acid, glycerol, and L-proline. Subcutaneous tumor formation experiments revealed that DSM significantly reduced the tumor volume and weight when compared to the control. Immunohistochemical analysis further revealed that DSM treatment significantly decreased the expression of the proliferative marker KI67. Our findings demonstrated that DSM exhibited antitumor effects on HCC cells by inhibiting cell proliferation via cell cycle arrest and interfering with lipid metabolism.
Collapse
Affiliation(s)
- Lianhong Pan
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China. .,Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Fan Feng
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jiaqin Wu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
25
|
He WS, Wu Y, Ren MJ, Yu ZY, Zhao XS. Diosmetin inhibits apoptosis and activates AMPK-induced autophagy in myocardial damage under hypoxia environment. Kaohsiung J Med Sci 2021; 38:139-148. [PMID: 34713558 DOI: 10.1002/kjm2.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Inhibition of hypoxia-induced cardiomyocyte apoptosis is considered as an important treatment method for ischemic heart diseases, but related drugs are still insufficient. The present study aims to explore the protective function and mechanism of the key Chinese medicine monomer diosmetin (DIOS) on the injury of cardiomyocytes induced by hypoxia. Here, AC16 and HCM-a cells were treated with 40 μM of DIOS under hypoxic environment and a hypoxic rat model was built to study the role of DIOS. The viability and autophagy of cardiomyocytes were increased, but the apoptosis of cells was suppressed by 40 μM DIOS, under hypoxic environment. Intriguingly, 10 mM 3-methyladenine, an inhibitor of autophagy, reversed the effect of DIOS on autophagy and apoptosis of the cardiomyocytes under hypoxia. Furthermore, DIOS induced AMP-activated protein kinase (AMPK) activation and Compound C (5 μM), an AMPK inhibitor, attenuated the inhibition of DIOS on the apoptosis of cardiomyocytes under hypoxia environment. In isoprenaline-induced hypoxic rats, it was verified that DIOS inhibited apoptosis, accelerated autophagy, and activated AMPKα pathway in vivo. Our findings indicated that DIOS alleviated hypoxia-induced myocardial apoptosis via inducing the activation of AMPK-induced autophagy. In summary, the study suggested that DIOS inhibited the apoptosis and induced the autophagy of hypoxia-induced cardiomyocytes through AMPK activation.
Collapse
Affiliation(s)
- Wen-Shuai He
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yun Wu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Mao-Jia Ren
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhong-Yu Yu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xing-Sheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
26
|
Xie B, Pan D, Liu H, Liu M, Shi X, Chu X, Lu J, Zhu M, Xia B, Wu J. Diosmetin Protects Against Obesity and Metabolic Dysfunctions Through Activation of Adipose Estrogen Receptors in Mice. Mol Nutr Food Res 2021; 65:e2100070. [PMID: 34223710 DOI: 10.1002/mnfr.202100070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Indexed: 12/19/2022]
Abstract
SCOPE Obesity is a major public health and economic problem of global significance. Here, we investigate the role of diosmetin, a natural flavonoid presents mainly in citrus fruits, in the regulation of obesity and metabolic dysfunctions in mice. METHODS AND RESULTS Eight-week-old male C57BL/6 mice fed a high-fat diet (HFD) or 5-week-old male ob/ob mice fed a normal diet are treated with diosmetin (50 mg kg-1 daily) or vehicle for 8 weeks. Diosmetin treatment decreases body weight and fat mass, improves glucose tolerance and insulin resistance in obese mice. These metabolic benefits are mainly attributed to increase energy expenditure via enhancing thermogenesis in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Mechanistically, diosmetin acts as an agonist for estrogen receptors (ERs), and subsequently elevates adipose expressions of ERs in mice and in cultured adipocytes. When ERs are blocked by their antagonist fulvestrant in mice, diosmetin loses its beneficial effects, suggesting that ERs are indispensable for the metabolic benefits of diosmetin. CONCLUSION The results indicate that diosmetin may be a potential anti-obesity nutritional supplement and could be explored for low ERs-related obesity populations.
Collapse
Affiliation(s)
- Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaochen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junfeng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengqing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Wang L, Li S, Yao Y, Yin W, Ye T. The role of natural products in the prevention and treatment of pulmonary fibrosis: a review. Food Funct 2021; 12:990-1007. [PMID: 33459740 DOI: 10.1039/d0fo03001e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary fibrosis is an incurable end-stage lung disease and remains a global public health problem. Although there have been some breakthroughs in understanding the pathogenesis of pulmonary fibrosis, effective intervention methods are still limited. Natural products have the advantages of multiple biological activities and high levels of safety, which are important factors for preventing and treating pulmonary fibrosis. In this review, we summarized the mechanisms and health benefits of natural products against pulmonary fibrosis. These natural products target oxidative stress, inflammatory injury, epithelial-mesenchymal transition (EMT), fibroblast activation, extracellular matrix accumulation and metabolic regulation, and the mechanisms involve the NF-κB, TGF-β1/Smad, PI3K/Akt, p38 MAPK, Nrf2-Nox4, and AMPK signaling pathways. We hope to provide new ideas for pulmonary fibrosis prevention and treatment strategies.
Collapse
Affiliation(s)
- Liqun Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. and West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Sha Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
28
|
Guo J, Hang P, Yu J, Li W, Zhao X, Sun Y, Fan Z, Du Z. The association between RGS4 and choline in cardiac fibrosis. Cell Commun Signal 2021; 19:46. [PMID: 33892733 PMCID: PMC8063380 DOI: 10.1186/s12964-020-00682-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Myocardial fibrosis is caused by the adverse and powerful remodeling of the heart secondary to the death of cardiomyocytes after myocardial infarction. Regulators of G protein Signaling (RGS) 4 is involved in cardiac diseases through regulating G protein-coupled receptors (GPCRs). Methods Cardiac fibrosis models were established through cardiac fibroblasts (CFs) treatment with transforming growth factor (TGF)-β1 in vitro and mice subjected to myocardial infarction in vivo. The mRNA expression of RGS4, collagen I/III and α-SMA detected by qRT-PCR. Protein level of RGS4, collagen I, CTGF and α-SMA detected by Western blot. The ejection fraction (EF%) and fractional shortening (FS%) of mice were measured by echocardiography. Collagen deposition of mice was tested by Masson staining. Results The expression of RGS4 increased in CFs treatment with TGF-β1 and in MI mice. The model of cardiac fibrosis detected by qRT-PCR and Western blot. It was demonstrated that inhibition of RGS4 expression improved cardiac fibrosis by transfection with small interfering RNA in CFs and injection with lentivirus shRNA in mice. The protective effect of choline against cardiac fibrosis was counteracted by overexpression of RGS4 in vitro and in vivo. Moreover, choline inhibited the protein level of TGF-β1, p-Smad2/3, p-p38 and p-ERK1/2 in CFs treated with TGF-β1, which were restored by RGS4 overexpression. Conclusion This study demonstrated that RGS4 promoted cardiac fibrosis and attenuated the anti-cardiac fibrosis of choline. RGS4 may weaken anti-cardiac fibrosis of choline through TGF-β1/Smad and MAPK signaling pathways. ![]()
Video Abstract: Video Byte of this article
Supplementary Information The online version contains supplementary material availlable at 10.1186/s12964-020-00682-y.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Pengzhou Hang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yue Sun
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Ziyi Fan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China. .,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China. .,State Key Laboratory of Quality Reserch in Chinese Medicines, Macau University of Science and Technology, Macau, Macau, 150086, People's Republic of China.
| |
Collapse
|
29
|
Chen J, Zhu J, Zhu T, Cui J, Deng Z, Chen K, Chang C, Geng Y, Chen F, Ouyang K, Xiong J, Wang M, Wang D, Zhu W. Pathological changes of frozen shoulder in rat model and the therapeutic effect of PPAR-γ agonist. J Orthop Res 2021; 39:891-901. [PMID: 33222263 DOI: 10.1002/jor.24920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 02/04/2023]
Abstract
Frozen shoulder is a common shoulder disorder characterized by a gradual increase of pain and a limited range of motion. However, its pathophysiologic mechanisms remain unclear and there is no consensus as to the most effective treatment. The purpose of the study was to investigate the effect of transforming growth factor-β (TGF-β) on fibrosis and inflammatory response of the shoulder joint of rat models and to explore the therapeutic effect of the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist. In the study, the effect of PPAR-γ agonist CDDO-IM treatment on cell proliferation, migration, and extracellular matrix proteins synthesis (vimentin, α-smooth muscle actin, collagen I, and collagen III) were tested by cell proliferation test, scratches test, real-time quantitative polymerase chain reaction, and Western blot analysis. The frozen shoulder was also established on the rat model by injecting adenovirus-TGF-β1 into rats' shoulder capsule. Pathological changes of the frozen shoulder tissue of the experimental group and PPAR-γ agonist treatment group were evaluated. The stiffness of joints of the three groups was tested. Inflammatory mediators' expression including cyclooxygenase-1, interleukin-1β, and tumor necrosis factor-α of the shoulder was tested by enzyme-linked immunosorbent assay, and the expression of extracellular matrix proteins was evaluated by hematoxylin and eosin staining and immunohistochemistry. The results showed that pathological changes of the frozen shoulder in the rat model include an abnormal proliferation of fibroblasts, infiltration of inflammatory cells, and disorder of fibrous structure, while rosiglitazone reduced the severity of the frozen shoulder in the treatment group. Clinically, PPAR-γ agonists may be a promising target for the treatment of the frozen shoulder.
Collapse
Affiliation(s)
- Jinfu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Junjun Zhu
- Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tianfei Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jiaming Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Kang Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Chongfei Chang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yiyun Geng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Fei Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Kan Ouyang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jianyi Xiong
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Manyi Wang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Daping Wang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
TGF-β promote epithelial-mesenchymal transition via NF-κB/NOX4/ROS signal pathway in lung cancer cells. Mol Biol Rep 2021; 48:2365-2375. [PMID: 33792826 DOI: 10.1007/s11033-021-06268-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/05/2021] [Indexed: 01/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT), transforming growth factor β(TGF-β) and reactive oxygen species(ROS) plays a central role in cancer metastasis. Moreover, nicotinamide adenine dinucleotide phosphate 4(NOX4) is one of the main sources of ROS in lung cancer cells suggesting that NOX4 is associated with tumor cell migration. NF-κB(Nuclear factor-Kappa-B) is known to regulate ROS-mediated EMT process by activating Snail transcription factor in A549 cells. The purpose of this study was to explore the relationship between NF-κB and NOX4 in ROS production during TGF-β induced EMT process. Several fractions have been pooled to evaluates the EMT process on lung cancer cells through real-time PCR, Western Blot and flow cytometry with DCFH-DA probe etc. Cells proliferation and migration activities were monitored by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and wound healing assay respectively. The result showed that TGF-β induction decreased the expression of E-cadherin, increased the Vimentin and the EMT transcription factor Snail in A549 cells. DPI (Diphenyleneiodonium chloride, an inhibitor of NOX4) inhibited the NOX4 expression and reduced ROS production induced by TGF-β, but didn't affect the activation of NF-κB induced by TGF-β (P > 0.05). BAY11-7082 (an inhibitor of NF-κB) inhibited the NF-κB (p65) expression and prevented the increase of NOX4 expression and ROS production induced by TGF-β (P < 0.001), which has also verified reduced TGF-β induced cell migration by inhibiting the EMT process, and also reduced cell proliferation of A549 cells (P < 0.001). The current research confirmed the TGF-β mediated EMT process via NF-κB/NOX4/ROS signaling pathway, NF-κB and NOX4 are likely to be the potential therapeutic targets for lung cancer metastasis.
Collapse
|
31
|
Luo N, Yang C, Zhu Y, Chen Q, Zhang B. Diosmetin Ameliorates Nonalcoholic Steatohepatitis through Modulating Lipogenesis and Inflammatory Response in a STAT1/CXCL10-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:655-667. [PMID: 33404223 DOI: 10.1021/acs.jafc.0c06652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is an inflammatory lipotoxic disorder characterized by lipid accumulation and inflammation. Diosmetin (Dios), a flavonoid, has an active effect against nonalcoholic fatty liver disease, whereas its effect on NASH remains elusive. To investigate the effects of Dios on lipogenesis and inflammatory response and explore the molecular mechanisms of Dios on NASH, mice induced by high-fat diet (HFD), HepG2 cells stimulated by palmitic acid (PA), transcriptome sequencing, and molecular biological experiments were used. We show, by pathological analysis (HE, Oli Red O, and Masson staining) and biochemical parameters (TC, TG, LDL-C, ALT, and AST), Dios alleviated liver lipid accumulation and inflammatory injury. According to liver RNA-Seq analysis, CXCL10 and STAT1 were assumed to be the key target genes of Dios on NASH. Significantly, Dios regulated STAT1/CXCL10 signal pathway and further attenuated NASH via regulating the expression of LXRα/β, SREBP-1c, CHREBP, and NF-κB. In conclusion, Dios is proposed to alleviate NASH through suppression of lipogenesis and inflammatory response via a STAT1/CXCL10-dependent pathway.
Collapse
Affiliation(s)
- Nanxuan Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, P. R. China
| | - Changqing Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, P. R. China
| | - Yurong Zhu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, P. R. China
| | - Qianfeng Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, P. R. China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, P. R. China
| |
Collapse
|
32
|
Anderson ED, Alishahedani ME, Myles IA. Epithelial-Mesenchymal Transition in Atopy: A Mini-Review. FRONTIERS IN ALLERGY 2020; 1. [PMID: 34308414 PMCID: PMC8301597 DOI: 10.3389/falgy.2020.628381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Atopic diseases, particularly atopic dermatitis (AD), asthma, and allergic rhinitis (AR) share a common pathogenesis of inflammation and barrier dysfunction. Epithelial to mesenchymal transition (EMT) is a process where epithelial cells take on a migratory mesenchymal phenotype and is essential for normal tissue repair and signal through multiple inflammatory pathways. However, while links between EMT and both asthma and AR have been demonstrated, as we outline in this mini-review, the literature investigating AD and EMT is far less well-elucidated. Furthermore, current studies on EMT and atopy are mostly animal models or ex vivo studies on cell cultures or tissue biopsies. The literature covered in this mini-review on EMT-related barrier dysfunction as a contributor to AD as well as the related (perhaps resultant) atopic diseases indicates a potential for therapeutic targeting and carry treatment implications for topical steroid use and environmental exposure assessments. Further research, particularly in vivo studies, may greatly advance the field and translate into benefit for patients and families.
Collapse
Affiliation(s)
- Erik D Anderson
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Mohammadali E Alishahedani
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Hu Z, Cai B, Wang M, Wen X, Geng A, Hu X, Xue R, Mao Z, Jiang Y, Wan X. Diosmetin enhances the sensitivity of radiotherapy by suppressing homologous recombination in endometrial cancer. Cell Cycle 2020; 19:3115-3126. [PMID: 33064975 DOI: 10.1080/15384101.2020.1831257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy is an essential treatment for endometrial cancer (EC), especially in advanced, metastatic, and recurrent cases. Combining radiotherapy, which mainly causes DNA double-strand breaks (DSBs), with small molecules targeting aberrantly activated homologous recombination (HR) repair pathways holds great potential for treating ECs in advanced stages. Here, we demonstrate that diosmetin (DIO), a natural flavonoid, suppresses HR, therefore inhibiting cell proliferation and enhancing the sensitivity of EC to radiotherapy. Clonogenic experiments revealed that combining DIO and X-ray significantly inhibited the viability of EC cells compared to cells treated with diosmetin or X-ray alone. The survival fraction of EC cells decreased to 40% when combining 0.4 Gy X-ray and 4 μM DIO; however, each treatment alone only caused death in approximately 15% and 22% of cancer cells, respectively. Further mechanistic studies showed that diosmetin inhibited the recruitment of RPA2 and RAD51, two critical factors involved in the HR repair pathway, upon the occurrence of DSBs. Thus, we propose that a combination of diosmetin and irradiation is a promising therapeutic strategy for treating endometrial cancer.
Collapse
Affiliation(s)
- Zhiyi Hu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China
| | - Bailian Cai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China
| | - Mengfei Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China
| | - Xiaoli Wen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China
| | - Anke Geng
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China.,Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University , Shanghai, China
| | - Xiang Hu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China
| | - Renhao Xue
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China.,Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University , Shanghai, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University , Shanghai, China
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University , Shanghai, China.,Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University , Shanghai, China
| |
Collapse
|
34
|
Li J, Liu J, Yue W, Xu K, Cai W, Cui F, Li Z, Wang W, He J. Andrographolide attenuates epithelial-mesenchymal transition induced by TGF-β1 in alveolar epithelial cells. J Cell Mol Med 2020; 24:10501-10511. [PMID: 32705806 PMCID: PMC7521220 DOI: 10.1111/jcmm.15665] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/07/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022] Open
Abstract
Andrographolide (Andro), a component from Chinese medicinal herb Andrographis paniculata, could alleviate pulmonary fibrosis in rodents. Yet, whether and how Andro mitigates epithelial-mesenchymal transition (EMT) induced by TGF-β1 remain unknown. This study aimed to explore the effect of Andro on TGF-β1-induced EMT in human alveolar epithelial cells (AECs) and the mechanisms involved. We illustrated that Andro inhibited TGF-β1-induced EMT and EMT-related transcription factors in alveolar epithelial A549 cells. Andro also reduced TGF-β1-induced cell migration and synthesis of pro-fibrotic factors (ie CCN-2, TGF-β1), matrix metalloproteinases (ie MMP-2, MMP-9) and extracellular matrix (ECM) components (ie collagen 1), implying the inhibiting effect of Andro on TGF-β1-induced EMT-like cell behaviours. Mechanistically, Andro treatment not only repressed TGF-β1-induced Smad2/3 phosphorylation and Smad4 nuclear translocation, but also suppressed TGF-β1-induced Erk1/2 phosphorylation and nuclear translocation in A549 cells. And treatment with ALK5 inhibitor (SB431542) or Erk1/2 inhibitors (SCH772984 and PD98059) remarkably reduced EMT evoked by TGF-β1. In addition, Andro also reduced TGF-β1-induced intracellular ROS generation and NOX4 expression, and elevated antioxidant superoxide dismutase 2 (SOD2) expression, demonstrating the inhibiting effect of Andro on TGF-β1-induced oxidative stress, which is closely linked to EMT. Furthermore, Andro remarkably attenuated TGF-β1-induced down-regulation of sirtuin1 (Sirt1) and forkhead box O3 (FOXO3), implying that Andro protects AECs from EMT partially by activating Sirt1/FOXO3-mediated anti-oxidative stress pathway. In conclusion, Andro represses TGF-β1-induced EMT in AECs by suppressing Smad2/3 and Erk1/2 signalling pathways and is also closely linked to the activation of sirt1/FOXO3-mediated anti-oxidative stress pathway.
Collapse
Affiliation(s)
- Jingpei Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weifeng Yue
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weipeng Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuoyi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Gong Y, Yang Y. Activation of Nrf2/AREs-mediated antioxidant signalling, and suppression of profibrotic TGF-β1/Smad3 pathway: a promising therapeutic strategy for hepatic fibrosis - A review. Life Sci 2020; 256:117909. [PMID: 32512009 DOI: 10.1016/j.lfs.2020.117909] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis (HF) is a wound-healing response that occurs during chronic liver injury and features by an excessive accumulation of extracellular matrix (ECM) components. Activation of hepatic stellate cell (HSC), the leading effector in HF, is responsible for overproduction of ECM. It has been documented that transforming growth factor-β1 (TGF-β1) stimulates superfluous accumulation of ECM and triggers HSCs activation mainly via canonical Smad-dependent pathway. Also, the pro-fibrogenic TGF-β1 is correlated with generation of reactive oxygen species (ROS) and inhibition of antioxidant mechanisms. Moreover, involvement of oxidative stress (OS) can be clearly elucidated as a fundamental event in liver fibrogenesis. Nuclear factor erythroid 2-related factor 2-antioxidant response elements (Nrf2-AREs) pathway, a group of OS-mediated transcription factors with diverse downstream targets, is associated with the induction of diverse detoxifying enzymes and the most pivotal endogenous antioxidative system. More specifically, Nrf2-AREs pathway has recently assigned as a new therapeutic target for cure of HF. The overall goal of this review will focus on recent findings about activation of Nrf2-AREs-mediated antioxidant and suppression of profibrotic TGF-β1/Smad3 pathway in the liver, providing an overview of recent advances in transcriptional repressors that dislocated during HF formation, and highlighting possible novel therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
36
|
Fan Q, Jian Y. MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Biosci Rep 2020; 40:BSR20192645. [PMID: 32065213 PMCID: PMC7048677 DOI: 10.1042/bsr20192645] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022] Open
Abstract
Asthma is a common chronic airway disease with increasing prevalence. MicroRNAs act as vital regulators in cell progressions and have been identified to play crucial roles in asthma. The objective of the present study is to clarify the molecular mechanism of miR-203a-3p in the development of asthma. The expression of miR-203a-3p and Sine oculis homeobox homolog 1 (SIX1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of SIX1, fibronectin, E-cadherin, vimentin, phosphorylated-drosophila mothers against decapentaplegic 3 (p-Smad3) and Smad3 were measured by Western blot. The interaction between miR-203a-3p and SIX1 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-203a-3p was down-regulated and SIX1 was up-regulated in asthma serums, respectively. Transforming growth factor-β1 (TGF-β1) treatment induced the reduction of miR-203a-3p and the enhancement of SIX1 in BEAS-2B and 16HBE cells in a time-dependent manner. Subsequently, functional experiments showed the promotion of epithelial-mesenchymal transition (EMT) induced by TGF-β1 treatment could be reversed by miR-203a-3p re-expression or SIX1 deletion in BEAS-2B and 16HBE cells. SIX1 was identified as a target of miR-203a-3p and negatively regulated by miR-203a-3p. Then rescue assay indicated that overexpressed miR-203a-3p ameliorated TGF-β1 induced EMT by regulating SIX1 in BEAS-2B and 16HBE cells. Moreover, miR-203a-3p/SIX1 axis regulated TGF-β1 mediated EMT process in bronchial epithelial cells through phosphorylating Smad3. These results demonstrated that MiR-203a-3p modulated TGF-β1-induced EMT in asthma by regulating Smad3 pathway through targeting SIX1.
Collapse
Affiliation(s)
- Qi Fan
- Department of Emergency Medicine, Jingzhou Central Hospital, Jingzhou, Hubei, China
| | - Yu Jian
- Department of Emergency Medicine, Jingzhou Central Hospital, Jingzhou, Hubei, China
| |
Collapse
|
37
|
Inhibition of TGF-β Signaling in Gliomas by the Flavonoid Diosmetin Isolated from Dracocephalum peregrinum L. Molecules 2020; 25:molecules25010192. [PMID: 31906574 PMCID: PMC6982745 DOI: 10.3390/molecules25010192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Dracocephalum peregrinum L., a traditional Kazakh medicine, has good expectorant, anti-cough, and to some degree, anti-asthmatic effects. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a natural flavonoid found in traditional Chinese herbs, is the main flavonoid in D. peregrinum L. and has been used in various medicinal products because of its anticancer, antimicrobial, antioxidant, estrogenic, and anti-inflammatory effects. The present study aimed to investigate the effects of diosmetin on the proliferation, invasion, and migration of glioma cells, as well as the possible underlying mechanisms. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound, and Transwell assays were used to demonstrate the effects of diosmetin in glioma. Protein levels of Bcl-2, Bax, cleaved caspase-3, transforming growth factor-β (TGF-β), E-cadherin, and phosphorylated and unphosphorylated smad2 and smad3 were determined by Western blots. U251 glioma cell development and progression were measured in vivo in a mouse model. Results: Diosmetin inhibited U251 cell proliferation, migration, and invasion in vitro, the TGF-β signaling pathway, and Bcl-2 expression. In contrast, there was a significant increase in E-cadherin, Bax, and cleaved caspase-3 expression. Furthermore, it effectively reduced the tumorigenicity of glioma cells and promoted apoptosis in vivo. Conclusion: The results of this study suggest that diosmetin suppresses the growth of glioma cells in vitro and in vivo, possibly by activating E-cadherin expression and inhibiting the TGF-β signaling pathway.
Collapse
|
38
|
Fayi MA, Alamri A, Rajagopalan P. IOX-101 Reverses Drug Resistance Through Suppression of Akt/mTOR/NF-κB Signaling in Cancer Stem Cell-Like, Sphere-Forming NSCLC Cell. Oncol Res 2019; 28:177-189. [PMID: 31771696 PMCID: PMC7851539 DOI: 10.3727/096504019x15746768080428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Drug discovery research to fight lung cancer is incessantly challenged by drug resistance. In this study, we used drug-resistant lung cancer stem like cells (A549-CS) to compare the efficacy of standard drugs like cisplatin (DDP) and gemcitabine (GEM) with a novel arylidene derivative IOX-101. A549-CS was derived from regular A549 cells by growing in special media. Resistance proteins were detected using Western blotting. Cell proliferations were assessed by MTT assay. Cytokine release was enumerated using enzyme-linked immunosorbent assay. The effect of drugs on apoptosis and cell cycle was studied with flow cytometry protocols. Apoptosis-related proteins, caspases, and other signaling protein expressions like Akt and mammalian target of rapamycin (mTOR) were assessed by Western blotting. Expression of CD133 and nuclear factor κB (NF-κB) phosphorylation was assessed using flow cytometry. A549-CS showed significant increase in CD133 expression in comparison with A549 cells. Expression of resistance markers like MDR-1, lung resistance protein (LRP), and GST-II were detected in A549-CS. While DDP and GEM had relatively lower efficacy in A549-CS, IOX-101 inhibited the proliferation of both A549 and A549-CS with GI50 values of 268 and 296.5 nM, respectively. IOX-101 increased the sub-G0 phase in the cell cycle of A549-CS and increased the percentage of apoptotic cells. Western blot analysis revealed activation of caspases, Bax, and reduction in Bcl-2 levels. Further mechanistic investigation revealed IOX-101 to deactivate Akt, mTOR, and NF-κB signaling in A549-CS cells. Additionally, IOX-101 treatment to A549-CS also reversed MDR-1 and LRP expressions. Collectively, our results demonstrate efficacy of IOX-101 in A549-CS, which was resistant against the tested standard drugs. The activity was mediated by suppressing Akt/mTOR/NF-κB signaling.
Collapse
Affiliation(s)
- Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid UniversityAbhaSaudi Arabia
| | - Ahmad Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid UniversityAbhaSaudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
39
|
Tetrandrine Ameliorates Airway Remodeling of Chronic Asthma by Interfering TGF- β1/Nrf-2/HO-1 Signaling Pathway-Mediated Oxidative Stress. Can Respir J 2019; 2019:7930396. [PMID: 31781316 PMCID: PMC6875008 DOI: 10.1155/2019/7930396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background Imbalanced oxidative stress and antioxidant defense are involved in airway remodeling in asthma. It has been demonstrated that Tetrandrine has a potent role in antioxidant defense in rheumatoid arthritis and hypertension. However, the correlation between Tetrandrine and oxidative stress in asthma is utterly blurry. This study aimed to investigate the role of Tetrandrine on oxidative stress-mediated airway remolding. Materials and Methods Chronic asthma was established by ovalbumin (OVA) administration in male Wistar rats. Histopathology was determined by HE staining. Immunofluorescence was employed to detect the expression of α-SMA and Nrf-2. Level of oxidative stress and matrix metalloproteinases were examined by ELISA kits. Cell viability and cell cycle of primary airway smooth muscle cells (ASMCs) were evaluated by CCK8 and flow cytometry, respectively. Signal molecules were detected using western blot. Results Tetrandrine effectively impairs OVA-induced airway inflammatory and airway remodeling by inhibiting the expression of CysLT1 and CysLTR1. The increase of oxidative stress and subsequent enhancement of MMP9 and TGF-β1 expression were rescued by the administration of Tetrandrine in the rat model of asthma. In in vitro experiments, Tetrandrine markedly suppressed TGF-β1-evoked cell viability and cell cycle promotion of ASMCs in a dose-dependent manner. Furthermore, Tetrandrine promoted Nrf-2 nuclear transcription and activated its downstream HO-1 in vivo and in vitro. Conclusion Tetrandrine attenuates airway inflammatory and airway remodeling in rat model of asthma and TGF-β1-induced cell proliferation of ASMCs by regulating oxidative stress in primary ASMCs, suggesting that Tetrandrine possibly is an effective candidate therapy for asthma.
Collapse
|
40
|
Yang T, Chen YY, Liu JR, Zhao H, Vaziri ND, Guo Y, Zhao YY. Natural products against renin-angiotensin system for antifibrosis therapy. Eur J Med Chem 2019; 179:623-633. [PMID: 31279295 DOI: 10.1016/j.ejmech.2019.06.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
|
41
|
Chen X, Xu L, Guo S, Wang Z, Jiang L, Wang F, Zhang J, Liu B. Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MS n. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:58-71. [PMID: 31177049 DOI: 10.1016/j.jchromb.2019.05.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/29/2023]
Abstract
Diosmin (diosmetin-7-O-rutinoside) and its aglycone diosmetin, natural bioflavonoids distributing in a variety of citrus fruits and Chinese herbal medicines, possessed positive effects against hepatic, renal, lung, gastric, cerebral and cardiac injury. However, the in vivo metabolic profiles of diosmin and diosmetin in urine, plasma and feces still remain ambiguous. In this study, metabolites of diosmin and diosmetin were identified using an UHPLC-LTQ-Orbitrap MSn strategy coupled with multiple metabolite templates, extracted ion chromatograms (EICs) and diagnostic product ions (DPIs). As a result, 46 diosmetin metabolites and 64 diosmin metabolites were respectively identified in rat biological samples. Methylation, demethylation, hydroxylation, glycosylation, glucuronidation, diglucuronidation and sulfation were common metabolic pathways of diosmetin and diosmin, while demethoxylation, decarbonylation, dihydroxylation and dehydroxylation were particular metabolic pathways of diosmin comparing with that of diosmetin. Diosmetin was not detected in all the biological samples, suggesting that it was quickly transformed into other metabolites in vivo. Diosmin and diosmetin-7-O-glucoside identified in urine and feces as well as their subsequent metabolites accounted for a substantial part of all the diosmin metabolic products. Metabolic profiles of diosmetin and diosmin indicated that they were primarily excreted through the urine route possibly originating from the dominant role of their phase II metabolism in vivo. Our results have provided a better understanding of the similarities and differences in pharmacodynamics and pharmacokinetics of diosmetin and diosmin in the future.
Collapse
Affiliation(s)
- Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lulu Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zijian Wang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fei Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Jiayu Zhang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
42
|
Li Y, Li Y, Xu X. The long noncoding RNA cardiac hypertrophy-related factor plays oncogenic roles in hepatocellular carcinoma by downregulating microRNA-211. J Cell Biochem 2019; 120:13361-13371. [PMID: 30916824 DOI: 10.1002/jcb.28611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most major type of primary hepatic cancer. This study aimed to explore the possible oncogenic effects of the long noncoding RNA cardiac hypertrophy-related factor (CHRF) on HCC, as well as the underlying possible mechanism. METHODS The expression levels of CHRF and microRNA-211 (miR-211) in HCC tissues and/or cell lines HepG2 and Huh-7 were measured using quantitative reverse transcription polymerase chain reaction. Cell transfection was conducted to change the expression levels of CHRF and miR-211 in cells. Cell viability and apoptosis were assessed using the cell counting kit-8 assay and annexin V-phycoerythrin staining, respectively. The pull-down assay and RNA immunoprecipitation were performed to analyze the association between CHRF and miR-211. The expression of the key factors involving in cell proliferation, cell apoptosis, and epithelial-mesenchymal transition (EMT) process, as well as the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways, were evaluated by Western blot analysis. RESULTS CHRF was highly expressed in HCC tissues and positively associated with the TNM stage, differentiation, and size of tumors. Overexpression of CHRF promoted HepG2 cell viability, proliferation, and EMT process. CHRF knockdown had opposite effects. Moreover, CHRF negatively regulated the expression of miR-21, and miR-21 was a direct target of CHRF. Overexpression of miR-211 reversed the effects of CHRF on HepG2 and Huh-7 cell viability, proliferation, and EMT process. Furthermore, overexpression of CHRF activated the PI3K/AKT and Wnt/β-catenin pathways in HepG2 cells by downregulating miR-211. CONCLUSION CHRF played oncogenic roles in HCC. The overexpression of CHRF promoted HepG2 and Huh-7 cell viability, proliferation, and EMT process by downregulating miR-211 and then activating the PI3K/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Yichun Li
- Department of Hepatobiliary Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Yannan Li
- Department of Gynecology, Jining Hospital of TCM, Jining, Shandong, China
| | - Xiangsu Xu
- Department of Hepatobiliary Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
43
|
Salehi B, Varoni EM, Sharifi-Rad M, Rajabi S, Zucca P, Iriti M, Sharifi-Rad J. Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:125-136. [PMID: 30668422 DOI: 10.1016/j.phymed.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The plant kingdom represents an unlimited source of phytotherapeutics with promising perspectives in the field of anticancer drug discovery. PURPOSE In this view, epithelial-mesenchymal transition (EMT) represents a novel and major target in anticancer therapy. Therefore, this narrative review aims to provide an updated overview on the bioactive phytochemicals with anti-EMT activity. CONCLUSION Among the plant products reviewed, phenylpropanoids were the most investigated at preclinical phase, thus exhibiting a promising potential as anticancer drugs, though an evidence-based clinical efficacy is still lacking.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
44
|
Das B, Sarkar N, Bishayee A, Sinha D. Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. Semin Cancer Biol 2018; 56:196-218. [PMID: 30472212 DOI: 10.1016/j.semcancer.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological phenomenon that plays a primordial role for initiation of metastasis. It renders cancer cells with increased self-renewal and tumor-initiating capabilities and exacerbated resistance to apoptosis and chemotherapy. Hence, regulation of EMT stands out to be an important strategy in controlling the behavior of malignant cells. Despite the enormous amount of preclinical data on the implication of EMT in cancer progression, there is still lack of routine clinical translation at therapeutic levels. The need of EMT-modulating drugs with high efficacy and low cytotoxicity has led to studies involving the evaluation of the efficacy of a plethora of various classes of phytochemicals present in dietary sources of fruits and vegetables. This review summarizes the role of these different classes of phytochemicals, their natural/synthetic analogs, and their nano-formulations in regulation of EMT in various preclinical models through attenuation of primary signaling pathways. Numerous proteins, transcription factors and enzymes targeted by various classes of phytochemicals in repression of EMT has been presented in this review. Additionally, we have critically analyzed the existing literature and provided views on new direction for accelerating the discovery of novel drug candidates which could be cautiously administered without concomitant effects.
Collapse
Affiliation(s)
- Bornita Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Nivedita Sarkar
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
45
|
Mohamed R, Dayati P, Mehr RN, Kamato D, Seif F, Babaahmadi-Rezaei H, Little PJ. Transforming growth factor-β1 mediated CHST11 and CHSY1 mRNA expression is ROS dependent in vascular smooth muscle cells. J Cell Commun Signal 2018; 13:225-233. [PMID: 30417274 DOI: 10.1007/s12079-018-0495-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor (TGF)-β1 mediates glycosaminoglycan (GAG) chain hyperelongation on secreted proteoglycans and these modifications are associated with increased lipid binding in the vessel wall and the development of atherosclerosis. In vascular smooth muscle cells (VSMCs), TGF-β1 regulated GAG elongation via extracellular signal-regulated kinase (ERK) and p38 as well as Smad2 linker region phosphorylation. In this study, our aim was to identify the TGF-β1 mediated signalling pathway involving reactive oxygen species (ROS) and Smad2 linker region phosphorylation that regulate the mRNA expression of GAG synthesizing enzymes, chondroitin 4-O-sulfotransferase 1 (CHST11) and chondroitin sulfate synthase 1 (CHSY1) which are the rate limiting enzymes involved in GAG chain elongation. Signalling molecules were assessed by western blotting, quantitative real-time PCR was used for analysis of gene expression and intracellular ROS level was measured by a fluorescence based assay. TGF-β1 induced ROS production in VSMCs. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) inhibitors, diphenyleneiodonium (DPI) and apocynin blocked TGF-β1 mediated Smad2 linker region phosphorylation. TGF-β1 treatment increased the mRNA levels of CHST11 and CHSY1. Pharmacological inhibition of Nox blocked TGF-β1 mediated mitogen activated protein kinases (MAPKs) phosphorylation and TGF-β1 stimulated CHST11 and CHSY1 mRNA expression. These findings demonstrated that TGF-β1 mediated expression of CHST11 and CHSY1 can occur via Nox-dependent pathways and Smad2 linker region phosphorylation.
Collapse
Affiliation(s)
- Raafat Mohamed
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Parisa Dayati
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Niayesh Mehr
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Danielle Kamato
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, Guangdong Pr., China
| | - Faezeh Seif
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia. .,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, Guangdong Pr., China.
| |
Collapse
|
46
|
Tang Y, Kim YS, Choi EJ, Hwang YJ, Yun YS, Bae SM, Park PJ, Kim EK. Taurine Attenuates Epithelial-Mesenchymal Transition-Related Genes in Human Prostate Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1203-1212. [PMID: 28849534 DOI: 10.1007/978-94-024-1079-2_96] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Prostate cancer is the most common non-cutaneous cancers among men and the second leading cause of cancer-related deaths among men. Aberrant activation of the epithelial to mesenchymal transition (EMT) has been exhibited to be one of the most common causes of treatment failure and death in cancer patients. In cancer cells with metastatic competence, the E-cadherin switch is a well-established hallmark. Suppression of E-cadherin through its transcriptional repressor SNAIL is thus a determining factor for EMT. TWIST1 is an important transcription factor in EMT, which is present under both physiologic (embryogenesis) and pathologic (metastasis) conditions, and enhances the invasiveness and migration ability of cells. In this study, we investigated the inhibitory effects of taurine on EMT-related genes, such as E-cadherin, N-cadherin, TWIST1, ZEB1, SNAIL, and vimentin. EMT markers were detected by RT-PCR and western blotting. The results showed that taurine down-regulated the expression of N-cadherin, TWIST1, ZEB1, SNAIL, and vimentin. In contrast, taurine increased E-cadherin expression. Our findings indicate that taurine has EMT inhibitory effects on human prostate cancer cells.
Collapse
Affiliation(s)
- Yujiao Tang
- Division of Food Bioscience, Konkuk University, Chungju, South Korea
- Division Korea Nokyong Research Center, Konkuk University, Chungju, South Korea
| | - Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, South Korea
| | - Eun-Ju Choi
- Division of Sport Science, Konkuk University, Chungju, South Korea
| | - Young Joung Hwang
- Department of Food Science and Culinary, International University of Korea, Jinju, South Korea
| | - Yeong Sik Yun
- Division of Food Bioscience, Konkuk University, Chungju, South Korea
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Gyeongnam, South Korea
| | - Pyo-Jam Park
- Division Korea Nokyong Research Center, Konkuk University, Chungju, South Korea
- Department of Biotechnology, Konkuk University, Chungju, South Korea
| | - Eun-Kyung Kim
- Division of Food Bioscience, Konkuk University, Chungju, South Korea.
- Division Korea Nokyong Research Center, Konkuk University, Chungju, South Korea.
| |
Collapse
|
47
|
Identification of active compound combination contributing to anti-inflammatory activity of Xiao-Cheng-Qi Decoction via human intestinal bacterial metabolism. Chin J Nat Med 2018; 16:513-524. [PMID: 30080651 DOI: 10.1016/s1875-5364(18)30088-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Human intestinal bacteria play an important role in the metabolism of herbal medicines, leading to the variations in their pharmacological profile. The present study aimed to investigate the metabolism of Xiao-Cheng-Qi decoction (XCQD) by human intestinal bacteria and to discover active component combination (ACC) contributing to the anti-inflammatory activity of XCQD. The water extract of XCQD was anaerobically incubated with human intestinal bacteria suspensions for 48 h at 37 °C. A liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) method was performed for identification of the metabolites. In addition, the anti-inflammatory effects of XCQD and biotransformed XCQD (XCQD-BT) were evaluated in vitro with cytokines in RAW264.7 cells induced by lipopolysaccharide (LPS). A total of 51 compounds were identified in XCQD and XCQD-BT. Among them, 20 metabolites were proven to be transformed by human intestinal bacteria. Significantly, a combination of 14 compounds was identified as ACC from XCQD-BT, which was as effective as XCQD in cell models of inflammation. In conclusion, this study provided an applicable method, based on intestinal bacterial metabolism, for identifying combinatory compounds responsible for a certain pharmacological activity of herbal medicines.
Collapse
|
48
|
Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci 2018; 218:25-30. [PMID: 30092299 DOI: 10.1016/j.lfs.2018.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and epithelial-mesenchymal transition (EMT) play a critical role in transforming growth factor (TGF)-β1-mediated fibrotic airway remodeling in asthma. Polydatin (PD) is a small natural molecule in Chinese medicine; it is isolated from Polygonum cuspidatum and has antioxidative properties. In this study, we aimed to determine whether PD was protective against ROS-induced pulmonary fibrosis in asthma. Ovalbumin (OVA) was used to induce asthma in a mouse model that was treated with or without PD. We also created nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown BEAS-2B cells and investigated whether PD reversed TGF-β1-induced pulmonary epithelial cell EMT by promotion of Nrf2-mediated antioxidation. Immunofluorescence showed that ROS and TGF-β1 expression was significantly increased in lung tissue from the OVA-induced asthma model. PD treatment inhibited activity of ROS and TGF-β1. Immunohistochemistry showed that PD treatment decreased OVA-induced lung ROS, TGF-β1 expression and fibroblasts. Western blotting showed that PD treatment reversed OVA-induced NADPH oxidase (NOX)1/4 expression by promoting Nrf2-mediated heme oxygenase-1 and NADPH dehydrogenase (quinone)-1 expression. PD treatment suppressed OVA-induced EMT and lung fibroblast protein expression in lung tissue. Nrf2 downregulation suppressed the protective effect of PD by promoting TGF-β1-induced ROS and EMT and accumulation of extracellular-matrix-related protein. All these data indicate that PD has potential therapeutic effects in asthma by promoting Nrf2-mediated antioxidation.
Collapse
|
49
|
Yang J, Li J, Wang Q, Xing Y, Tan Z, Kang Q. Novel NADPH oxidase inhibitor VAS2870 suppresses TGF‑β‑dependent epithelial‑to‑mesenchymal transition in retinal pigment epithelial cells. Int J Mol Med 2018; 42:123-130. [PMID: 29620174 PMCID: PMC5979836 DOI: 10.3892/ijmm.2018.3612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
NADPH oxidases (NOXs) are important in the pathophysiology of fibrotic diseases. The expression and activity of NOXs are regulated by growth factors, including transforming growth factor (TGF-β). The proliferation of retinal pigment epithelial (RPE) cells following epithelial- to-mesenchymal transition (EMT) is a major pathological change involved in proliferative vitreoretinopathy (PVR). The aim of the present study was to determine the effects of the novel NOX inhibitor VAS2870 on the TGF-β-dependent expression of NOX4 and associated cellular events in RPE cells. Cell viability was examined using a Cell Counting Kit-8 assay and cell cycle progression was detected by flow cytometric analysis. Immunofluorescence analysis and western blot analysis were performed to assess EMT. It was found that TGF-β increased the expression of NOX4 and that pre-incubation with VAS2870 eliminated this effect. Additionally, TGF-β promoted RPE migration and increased EMT. Pre-incubation with VAS2870 significantly prevented TGF-β2-induced EMT by decreasing the levels of α-smooth muscle actin and E-cadherin, and also inhibited the migratory ability of the RPE cells, as demonstrated by scratch assays. Finally, VAS2870 suppressed the proliferation of RPE cells, and led to G1-phase cell cycle arrest and a significant downregulation of the expression of cyclin D1. In conclusion, the pharmacological inhibition of NOX may be a promising tool for the treatment of PVR.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yao Xing
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zizhu Tan
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
50
|
Wang C, Liao Y, Wang S, Wang D, Wu N, Xu Q, Jiang W, Qiu M, Liu C. Cytoprotective effects of diosmetin against hydrogen peroxide-induced L02 cell oxidative damage via activation of the Nrf2-ARE signaling pathway. Mol Med Rep 2018; 17:7331-7338. [PMID: 29568961 DOI: 10.3892/mmr.2018.8750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is considered a crucial mediator in the pathogenesis of various liver diseases. The flavone diosmetin has been reported to exhibit antioxidant activities; however, the hepatoprotective effects of diosmetin against oxidative stress, and the underlying molecular mechanisms, remain unknown. The present study aimed to investigate the potential hepatoprotective effects of diosmetin on hydrogen peroxide (H2O2)‑induced oxidative damage in L02 cells and attempted to evaluate the role of the nuclear factor erythroid 2‑related factor 2 (Nrf2)/antioxidant response element pathway in this process. L02 cells were divided into groups: Control (DMSO, diosmetin), H2O2, Trolox or tertiary butylhydroquinone and diosmetin (different doses). Protective effects in L02 cells were determined by CCK‑8, cell apoptosis and lactate dehydrogenase leakage assays. Flow cytometry and inverted fluorescence microscope were used to measure the intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Protein expression levels were of Nrf2, heme oxygenase‑1 (HO‑1) and NAD(P)H quinone oxidoreductase‑1 (NQO1) were determined by western blotting and mRNA levels were determined by reverse transcription‑quantitative polymerase chain reaction. The results revealed that H2O2 induced notable injury to L02 cells, as demonstrated by decreased cell viability, increased lactate dehydrogenase release, apoptotic rate and intracellular ROS production, and by the loss of MMP. Conversely, diosmetin (20‑40 µM) significantly reversed the damaging effects of H2O2, which indicated that diosmetin may exhibit potent hepatoprotective potential against H2O2‑induced oxidative damage. Furthermore, pretreatment with diosmetin elevated mRNA and protein expression levels of Nrf2, HO‑1 and NQO1. The present study is the first, to the best of our knowledge, to demonstrate that activation of the Nrf2/NQO1‑HO‑1 signaling pathway maybe involved in the cytoprotective effects of diosmetin against oxidative stress. Therefore, diosmetin may be considered a promising therapeutic agent for the treatment of various liver diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Chunjing Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yaping Liao
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shengnan Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Dan Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Nana Wu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qingao Xu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Wanwan Jiang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Menran Qiu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Changqing Liu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|