1
|
Jafari M, Farhadi F, Baradaran Rahimi V, Rahmanian-Devin P, Askari N, Askari VR. Mechanistic insights on lycopene usage against diabetes and associated complications. J Diabetes Metab Disord 2025; 24:57. [PMID: 39868352 PMCID: PMC11759726 DOI: 10.1007/s40200-025-01561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025]
Abstract
Lycopene is a tetraterpene compound belonging to carotenoids that are widely present in tomatoes and similar products. It is known as a powerful anti-oxidant and a non-provitamin A carotenoid. Lycopene has been found to effectively improve diabetes mellitus and its complications, such as cardiac complications, disorders caused by oxidative stress, and liver and neurological disorders. Furthermore, free radicals have been shown to disrupt the action of insulin by changing the physical state of the target cell membrane, while carotenoids improve insulin secretion and function in blood sugar regulation by neutralizing free radicals. It, therefore, seems that targeted clinical studies are needed to investigate the therapeutic effect of lycopene against metabolic disorders induced by diabetes. This review aims to summarize information on the sources and potential uses of lycopene and the possible mechanisms involved in the reduction of the above diseases. Its protective effects, in terms of toxicity and safety, are also discussed. The literature sources used in this review were PubMed, Google Scholar, Scopus, and Web of Science databases.
Collapse
Affiliation(s)
- Mandana Jafari
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Faeghe Farhadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Askari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
3
|
Guo W, Zhang J, Feng Y. Treatment of neuropathic pain by traditional Chinese medicine: An updated review on their effect and putative mechanisms of action. Phytother Res 2024; 38:2962-2992. [PMID: 38600617 DOI: 10.1002/ptr.8180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuropathic pain (NP) is a common chronic pain with heterogeneous clinical features, and consequent lowering of quality of life. Currently, although conventional chemical drugs can effectively manage NP symptoms in the short term, their long-term efficacy is limited, and they come with significant side effects. In this regard, traditional Chinese medicine (TCM) provides a promising avenue for treating NP. Numerous pharmacological and clinical studies have substantiated the effectiveness of TCM with multiple targets and mechanisms. We aimed to outline the characteristics of TCM, including compound prescriptions, single Chinese herbs, active ingredients, and TCM physical therapy, for NP treatment and discussed their efficacy by analyzing the pathogenesis of NP. Various databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang database, were searched. We focused on recent research progress in NP treatment by TCM. Finally, we proposed the future challenges and emerging trends in the treatment of NP. TCM demonstrates significant clinical efficacy in NP treatment, employing multi-mechanisms. Drawing from the theory of syndrome differentiation, four types of dialectical treatments for NP by compound TCM prescriptions were introduced: promoting blood circulation and removing blood stasis; promoting blood circulation and promote Qi flow; warming Yang and benefiting Qi; soothing the liver and regulating Qi. Meanwhile, 33 single Chinese herbs and 25 active ingredients were included. In addition, TCM physical therapy (e.g., acupuncture, massage, acupoint injection, and fumigation) also showed good efficacy in NP treatment. TCM, particularly through the use of compound prescriptions and acupuncture, holds bright prospects in treating NP owing to its diverse holistic effects. Nonetheless, the multi-targets of TCM may result in possible disadvantages to NP treatment, and the pharmacological mechanisms of TCM need further evaluation. Here, we provide an overview of NP treatment via TCM, based on the pathogenesis and the potential therapeutic mechanisms, thus providing a reference for further studies.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Reyes C, Mokalled MH. Astrocyte-Neuron Interactions in Spinal Cord Injury. ADVANCES IN NEUROBIOLOGY 2024; 39:213-231. [PMID: 39190077 PMCID: PMC11684398 DOI: 10.1007/978-3-031-64839-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.
Collapse
Affiliation(s)
- Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
5
|
Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms? Nutrients 2022; 14:nu14153183. [PMID: 35956359 PMCID: PMC9370407 DOI: 10.3390/nu14153183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Carotenoids are organic, liposoluble pigments found in nature, which are responsible for the characteristic colors of ripe tomatoes, carrots, peppers, and crustaceans, among others. Palliative care provided to patients with an incurable disease is aimed at improving the patient’s quality of life through appropriate treatment of symptoms accompanying the disease. Palliative care patients with burdensome symptoms related to advanced-stage cancers are especially interested in the use of natural dietary supplements and herbal remedies to reduce symptoms’ intensity and ameliorate the quality of life. Carotenoids seem to be a group of natural compounds with particularly promising properties in relieving symptoms, mainly due to their strong antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, carotenoids have been used in folk medicine to treat various diseases and alleviate the accompanying symptoms. In this narrative review, the authors decided to determine whether there is any scientific evidence supporting the rationale for carotenoid supplementation in advanced-stage cancer patients, with particular emphasis on the adjuvant treatment of cancer-related symptoms, such as neuropathic pain and cancer-related cachexia.
Collapse
|
6
|
Al-Maweri SA, Halboub E, Al-Qadhi G, Al-Wesabi M, Al-Sharani HM, Parveen S, Alhashimi N, Almeslet A, Alhajj MN. Efficacy of lycopene for management of oral potentially malignant disorders: A systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 135:79-95. [PMID: 36167720 DOI: 10.1016/j.oooo.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the available evidence on the efficacy of lycopene in the management of oral potentially malignant disorders (OPMDs). STUDY DESIGN PubMed, Scopus, Web of Science, Google Scholar, China National Knowledge Infrastructure, and ProQuest databases were searched up to April 20, 2022. All clinical trials that assessed the efficacy of lycopene (I) on the signs/symptoms (O) of patients with OPMDs (P) in comparison to either active control or placebo (C) were included. Meta-analysis was conducted using the RevMan software (Cochrane Collaboration, London, UK). RESULTS A total of 27 clinical trials (20 on oral submucosa fibrosis [OSF], 5 on oral lichen planus [OLP], and 2 on leukoplakia) were included. Overall, lycopene was efficacious in reducing signs and symptoms of OSF, OLP, and leukoplakia. The pooled data revealed comparable efficacy of lycopene and prednisolone in reducing pain and promoting clinical resolution of OLP. Additionally, the pooled data reported comparable efficacy of lycopene and conventional controls in improving the mouth opening and tongue protrusion in patients with OSF. CONCLUSIONS The results reveal promising effects of lycopene in alleviating signs and symptoms of OSF, OLP, and leukoplakia. However, owing to the observed heterogeneity and short follow-up periods, further well-designed studies with long-term therapy and follow-up are highly recommended.
Collapse
|
7
|
Shen CL, Castro L, Fang CY, Castro M, Sherali S, White S, Wang R, Neugebauer V. Bioactive compounds for neuropathic pain: An update on preclinical studies and future perspectives. J Nutr Biochem 2022; 104:108979. [PMID: 35245654 DOI: 10.1016/j.jnutbio.2022.108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Among different types of chronic pain, neuropathic pain (NP), arising from damage to the nervous system, including peripheral fibers and central neurons, is notoriously difficult to treat and affects 7-10% of the general population. Currently available treatment options for NP are limited and opioid analgesics have severe side effects and can result in opioid use disorder. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of NP. Here, we assessed the effects of commonly consumed bioactive compounds (ginger, curcumin, omega-3 polyunsaturated fatty acids, epigallocatechin gallate, resveratrol, soy isoflavones, lycopene, and naringin) on NP and NP-related neuroinflammation. Cellular studies demonstrated that these bioactive compounds reduce inflammation via suppression of NF-κB and MAPK signaling pathways that regulate apoptosis/cell survival, antioxidant, and anti-inflammatory responses. Animal studies strongly suggest that these regularly consumed bioactive compounds have a pronounced anti-NP effect as shown by decreased mechanical allodynia, mechanical hyperalgesia, thermal hyperalgesia, and cold hyperalgesia. The proposed molecular mechanisms include (1) the enhancement of neuron survival, (2) the reduction of neuronal hyperexcitability by activation of antinociceptive cannabinoid 1 receptors and opioid receptors, (3) the suppression of sodium channel current, and (4) enhancing a potassium outward current in NP-affected animals, triggering a cascade of chemical changes within, and between neurons for pain relief. Human studies administered in this area have been limited. Future randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in patients with NP.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | - Luis Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Chih-Yu Fang
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Maribel Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Samir Sherali
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Steely White
- Department of Microbiology, Texas Tech University, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
8
|
Miranpuri GS, Bali P, Nguyen J, Kim JJ, Modgil S, Mehra P, Buttar S, Brown G, Yutuc N, Singh H, Wood A, Singh J, Anand A. Role of Microglia and Astrocytes in Spinal Cord Injury Induced Neuropathic Pain. Ann Neurosci 2022; 28:219-228. [PMID: 35341227 PMCID: PMC8948321 DOI: 10.1177/09727531211046367] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injuries incite varying degrees of symptoms in patients, ranging
from weakness and incoordination to paralysis. Common amongst spinal cord
injury (SCI) patients, neuropathic pain (NP) is a debilitating medical
condition. Unfortunately, there remain many clinical impediments in treating
NP because there is a lack of understanding regarding the mechanisms behind
SCI-induced NP (SCINP). Given that more than 450,000 people in the United
States alone suffer from SCI, it is unsatisfactory that current treatments
yield poor results in alleviating and treating NP. Summary: In this review, we briefly discussed the models of SCINP along with the
mechanisms of NP progression. Further, current treatment modalities are
herein explored for SCINP involving pharmacological interventions targeting
glia cells and astrocytes. Key message: The studies presented in this review provide insight for new directions
regarding SCINP alleviation. Given the severity and incapacitating effects
of SCINP, it is imperative to study the pathways involved and find new
therapeutic targets in coordination with stem cell research, and to develop
a new gold-standard in SCINP treatment.
Collapse
Affiliation(s)
- Gurwattan S Miranpuri
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Parul Bali
- Department of Biological Sciences, Indian Institute of Science Education & Research Mohali, India
| | - Justyn Nguyen
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jason J Kim
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Shweta Modgil
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Priya Mehra
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Seah Buttar
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Greta Brown
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Noemi Yutuc
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Harpreet Singh
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Aleksandar Wood
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akshay Anand
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,CCRYN- Collaborative Centre for Mind Body Intervention through Yoga.,Centre of Phenomenology and Cognitive Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Zhang FF, Wang H, Zhou YM, Yu HY, Zhang M, Du X, Wang D, Zhang F, Xu Y, Zhang JG, Zhang HT. Inhibition of phosphodiesterase-4 in the spinal dorsal horn ameliorates neuropathic pain via cAMP-cytokine-Cx43 signaling in mice. CNS Neurosci Ther 2022; 28:749-760. [PMID: 35156776 PMCID: PMC8981432 DOI: 10.1111/cns.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
Background The spinal phosphodiesterase‐4 (PDE4) plays an important role in chronic pain. Inhibition of PDE4, an enzyme catalyzing the hydrolysis of cyclic adenosine monophosphate AMP (cAMP), produces potent antinociceptive activity. However, the antinociceptive mechanism remains largely unknown. Connexin43 (Cx43), a gap junction protein, has been shown to be involved in controlling pain transduction at the spinal level; restoration of Cx43 expression in spinal astrocytes to the normal levels reduces nerve injury‐induced pain. Here, we evaluate the novel mechanisms involving spinal cAMP‐Cx43 signaling by which PDE4 inhibitors produce antinociceptive activity. Methods First, we determined the effect of PDE4 inhibitors rolipram and roflumilast on partial sciatic nerve ligation (PSNL)‐induced mechanical hypersensitivity. Next, we observed the role of cAMP‐Cx43 signaling in the effect of PDE4 inhibitors on PSNL‐induced mechanical hypersensitivity. Results Single or repeated, intraperitoneal or intrathecal administration of rolipram or roflumilast significantly reduced mechanical hypersensitivity in mice following PSNL. In addition, repeated intrathecal treatment with either of PDE4 inhibitors reduced PSNL‐induced downregulation of cAMP and Cx43, and upregulation of proinflammatory cytokines tumor necrosis factor‐α (TNF‐α) and interleukin‐1β. Furthermore, the antinociceptive effects of PDE4 inhibitors were attenuated by the protein kinase A (PKA) inhibitor H89, TNF‐α, or Cx43 antagonist carbenoxolone. Finally, PSNL‐induced upregulation of PDE4B and PDE4D, especially the PDE4B subtype, was reduced by treatment with either of the PDE4 inhibitors. Conclusions The results suggest that the antinociceptive effect of PDE4 inhibitors is contributed by increasing Cx43 expression via cAMP‐PKA‐cytokine signaling in the spinal dorsal horn.
Collapse
Affiliation(s)
- Fang-Fang Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hai-Yang Yu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Melanie Zhang
- Department of Neurobiology, Northwestern University Feinberg School of Medicine, Evanston, Illinois, USA
| | - Xian Du
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Dong Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Ji-Guo Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
11
|
Pretreatment with High Mobility Group Box-1 Monoclonal Antibody Prevents the Onset of Trigeminal Neuropathy in Mice with a Distal Infraorbital Nerve Chronic Constriction Injury. Molecules 2021; 26:molecules26072035. [PMID: 33918407 PMCID: PMC8038245 DOI: 10.3390/molecules26072035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent pain following orofacial surgery is not uncommon. High mobility group box 1 (HMGB1), an alarmin, is released by peripheral immune cells following nerve injury and could be related to pain associated with trigeminal nerve injury. Distal infraorbital nerve chronic constriction injury (dIoN-CCI) evokes pain-related behaviors including increased facial grooming and hyper-responsiveness to acetone (cutaneous cooling) after dIoN-CCI surgery in mice. In addition, dIoN-CCI mice developed conditioned place preference to mirogabalin, suggesting increased neuropathic pain-related aversion. Treatment of the infraorbital nerve with neutralizing antibody HMGB1 (anti-HMGB1 nAb) before dIoN-CCI prevented both facial grooming and hyper-responsiveness to cooling. Pretreatment with anti-HMGB1 nAb also blocked immune cell activation associated with trigeminal nerve injury including the accumulation of macrophage around the injured IoN and increased microglia activation in the ipsilateral spinal trigeminal nucleus caudalis. The current findings demonstrated that blocking of HMGB1 prior to nerve injury prevents the onset of pain-related behaviors, possibly through blocking the activation of immune cells associated with the nerve injury, both within the CNS and on peripheral nerves. The current findings further suggest that blocking HMGB1 before tissue injury could be a novel strategy to prevent the induction of chronic pain following orofacial surgeries.
Collapse
|
12
|
Fedullo AL, Ciccotti M, Giannotta P, Alviti F, Bernardi M, Raguzzini A, Toti E, Sciarra T, Peluso I. Hormetic Effects of Bioactive Compounds from Foods, Beverages, and Food Dressing: The Potential Role in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6615752. [PMID: 33747346 PMCID: PMC7943269 DOI: 10.1155/2021/6615752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a damage or trauma to the spinal cord resulting in a total or partial loss of motor and sensory function. SCI is characterized by a disequilibrium between the production of reactive oxygen species and the levels of antioxidant defences, causing oxidative stress and neuroinflammation. This review is aimed at highlighting the hormetic effects of some compounds from foods, beverages, and food dressing that are able to reduce oxidative stress in patients with SCI. Although curcumin, ginseng, and green tea have been proposed for SCI management, low levels of antioxidant vitamins have been reported in individuals with SCI. Mediterranean diet includes food rich in vitamins and antioxidants. Moreover, food dressing, including spices, herbs, and extra virgin olive oil (EVOO), contains multiple components with hormetic effects. The latter involves the activation of the nuclear factor erythroid-derived 2, consequently increasing the antioxidant enzymes and decreasing inflammation. Furthermore, EVOO improves the bioavailability of carotenoids and could be a delivery system for bioactive compounds. In conclusion, Mediterranean dressing in addition to plant foods can have an important effect on redox balance in individuals with SCI.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | | | | | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Board of Physical Medicine and Rehabilitation, Sapienza University of Rome, Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome 00185, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| |
Collapse
|
13
|
Ma LT, Bai Y, Li J, Qiao Y, Liu Y, Zheng J. Elemene Emulsion Injection Administration Reduces Neuropathic Pain by Inhibiting Astrocytic NDRG2 Expression within Spinal Dorsal Horn. Chin J Integr Med 2021; 27:912-918. [PMID: 33420586 DOI: 10.1007/s11655-021-3438-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the mechanisms underlying elemene-induced analgesia in rats with spared nerve injury (SNI). METHODS Sixty-five rats were equally divided into 5 groups using a random number table: naive group, sham group, SNI group, SNI + elemene (40 mg·kg-1·d-1) group and naive + elemene (40 mg·kg-1·d-1) group. An SNI rat model was established and the intervention were given respectively for 14 consecutive days. Von Frey filament tests and elevated plus-maze (EPM) tests were used to evaluate the effect of elemene on the mechanical threshold and anxiety, respectively. Immunoblotting and immunostaining were used to measure the expression of glial fibrillary acidic protein (GFAP) and NMYC downstream-regulated gene 2 (NDRG2) within the lumbar spinal dorsal horn (SDH). RESULTS The SNI rat model exhibited a significant decrease in paw withdrawal threshold and exploratory behaviour in the EPM (P<0.05). Consecutive administration of elemene alleviated SNI-induced mechanical allodynia and anxiety in rats (P<0.05). Immunohistochemical data showed that elemene decreased SNI-induced upregulation of NDRG2 within the SDH (P<0.05). Double immunofluorescent staining data further showed that elemene decreased SNI-induced upregulation of the number of GFAP immunoreactive (-ir), NDRG-ir, and GFAP/NDRG2 double-labelled cells within the SDH (P<0.05). Immunoblotting data showed that elemene decreased SNI-induced upregulation of GFAP and NDRG2 within the SDH (P<0.05). CONCLUSION Elemene possibly alleviated neuropathic pain by downregulating the expression of NDRG2 in spinal astrocytes in a rat model of SNI.
Collapse
Affiliation(s)
- Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China.,Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, 110016, China
| | - Jie Li
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yu Qiao
- Laser Medical Center, Hainan Hospital, People's Liberation Army General Hospital, Sanya, Hainan Province, 572013, China
| | - Yang Liu
- Health Center of 31658 of the People's Liberation Army, Xining, 810000, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
14
|
Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochem Int 2020; 140:104823. [DOI: 10.1016/j.neuint.2020.104823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
|
15
|
Li Q, Wang YQ, Chu YX. The role of connexins and pannexins in orofacial pain. Life Sci 2020; 258:118198. [PMID: 32758624 DOI: 10.1016/j.lfs.2020.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Trigeminal neuralgia is characterized by extensive spreading of pain, referred to as ectopic pain, which describes the phenomenon of the pain passing from the injured regions to uninjured regions. Patients with orofacial pain often show no response to commonly used analgesics, and the exact mechanism of ectopic pain remains unclear, which restricts the development of specific drugs. The present review aims to summarize the contribution of the two families of transmembrane proteins, connexins (Cxs) and pannexins (Panxs), to the induction and spreading of orofacial pain and to provide potential targets for orofacial pain treatment. Cxs and Panxs have recently been shown to play essential roles in intercellular signal propagation in sensory ganglia, and previous studies have provided evidence for the contribution of several subtypes of Cxs and Panxs in various orofacial pain models. Upregulation of the expression of Cxs and Panxs in the trigeminal ganglia is observed in most cases after trigeminal injury, and regulating their expression or activity can improve pain-like behaviors in animals. It is speculated that after trigeminal injury, pain-related signals are transmitted to adjacent neurons and satellite glial cells in the trigeminal ganglia directly through gap junctions and simultaneously through hemichannels and pannexons through both autocrine and paracrine mechanisms. This review highlights recent discoveries in the regulation of Cxs and Panxs in different orofacial pain models and presents a hypothetical mechanism of ectopic pain in trigeminal neuralgia. In addition, the existing problems in current research are discussed.
Collapse
Affiliation(s)
- Qian Li
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Dai WL, Zhang L, Han L, Yang X, Hu L, Miao C, Song L, Xiao H, Liu JH, Liu WT. Regulation of the K ATP-JNK gap junction signaling pathway by immunomodulator astragaloside IV attenuates neuropathic pain. Reg Anesth Pain Med 2020; 45:955-963. [PMID: 32963077 DOI: 10.1136/rapm-2020-101411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Gap junctions play a pivotal role in contributing to the formation of astroglial networks and in chronic pain. However, the mechanisms underlying the dysfunction of astroglial gap junctions in chronic pain have not been fully elucidated. METHODS Chronic constriction injury (CCI) of the sciatic nerve was used to establish rat neuropathic pain model. C6 cells were used to perform experiments in vitro. Von Frey hairs and Hargreave's method were used to determine the withdrawal threshold of rats. Protein expression was detected by immunofluorescence and western blotting. RESULTS Astragaloside IV (AST IV) significantly attenuated neuropathic pain and suppressed the excitation of spinal astrocytes in rats with CCI. The antinociceptive effect of AST IV was reversed by the gap junction decoupler carbenoxolone (CBX). AST IV inhibited the high expression of phosphorylated connexin 43 (p-Cx43) and p-c-Jun N-terminal kinase (p-JNK) in spinal cord of rats with CCI. JNK inhibitor alleviated neuropathic pain, which was reversed by CBX. JNK inhibitor decreased the high expression of p-Cx43 in both rats with CCI and tumor necrosis factor-alpha (TNF-α)-treated C6 cells. Additionally, the analgesic effect of AST IV was reversed by the adenosine triphosphate-sensitive potassium (KATP) channel blocker, glibenclamide (Glib). Glib abolished the inhibitory effects of AST IV on p-JNK and p-Cx43 both in vivo and in vitro. KATP channel opener (KCO) mimicked the inhibitory effects of AST IV on p-JNK and p-Cx43 in TNF-α-treated C6 cells. CONCLUSION Our results indicate that the sciatic nerve CCI induces the dysfunction of gap junctions in the spinal cord by activating KATP/JNK signaling to contribute to neuropathic pain. AST IV attenuates neuropathic pain via regulating the KATP-JNK gap junction axis.
Collapse
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Han
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Miao
- Department of pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China .,Institute of Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Yin Q, Wang JF, Xu XH, Xie H. Effect of lycopene on pain facilitation and the SIRT1/mTOR pathway in the dorsal horn of burn injury rats. Eur J Pharmacol 2020; 889:173365. [PMID: 32712090 DOI: 10.1016/j.ejphar.2020.173365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
To explore the effect of intrathecal injection of lycopene on pain facilitation, glial activation, and the SIRT1/mTOR pathway in the dorsal horn of rats with burn injury pain (BIP). Here we found that the mechanical pain threshold increased in the lycopene group compared with that of the control group, (P < 0.05). Compared with expression in the sham group, mTOR, pS6, p4EBP, GFAP, and Iba-1 decreased and SIRT1 increased in the lycopene group (P < 0.01). Glial activation in the spinal dorsal horn of BIP rats was alleviated by lycopene (P < 0.01). The SIRT1 and mTOR were mainly distributed in neurons in the spinal dorsal horn in the BIP model. Intrathecal injection of 3-MA (a mTOR agonist) or EX-527 (an inhibitor of Sirt1) partially antagonized lycopene-induced analgesia. Intrathecal injection of rapamycin (an mTOR inhibitor) or SRT1720 (an agonist of Sirt1) induced analgesia in BIP rats. 3-MA abrogated the SRT1720-induced analgesic effects. The present data indicated that the SIRT1/mTOR pathway changed in the spinal dorsal horn of BIP rats; Lycopene alleviated the pain sensitization of BIP rats by regulating the SIRT1/mTOR pathway and glial activation in the spinal dorsal horn.
Collapse
Affiliation(s)
- Qin Yin
- The Second Affliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | | | - Xiao-Hua Xu
- The People's Hospital of Kizilsu Kirghiz Autonomous Prefecture, Xinjiang 845350, PR China
| | - Hong Xie
- The Second Affliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, China.
| |
Collapse
|
18
|
Morioka N, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Role of Connexins in Chronic Pain and Their Potential as Therapeutic Targets for Next-Generation Analgesics. Biol Pharm Bull 2019; 42:857-866. [PMID: 31155584 DOI: 10.1248/bpb.b19-00195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pain, including inflammatory, neuropathic pain, is a serious clinical issue. There are increasing numbers of patients with chronic pain due to the growing number of elderly and it is estimated that about 25% of the global population will develop chronic pain. Chronic pain patients are refractory to medications used to treat acute pain such as opioids and non-steroidal anti-inflammatory drugs. Furthermore, the complexity and diversity of chronic pain mechanisms hinder the development of new analgesics. Thus, a better understanding of the mechanism of chronic pain is needed, which would facilitate the development of novel analgesics based on novel mechanisms. With this goal, connexins (Cxs) could be targeted for the development of new analgesics. Connexins are proteins with 20 subtypes, and function as channels, gap junctions between cells, and hemichannels that sample the extracellular space and release molecules such as neurotransmitters. Furthermore, Cxs could have functions independent of channel activity. Recent studies have shown that Cxs could be crucial in the induction and maintenance of chronic pain, and modulation of the activity or the expression of Cxs ameliorates nociceptive hypersensitivity in multiple chronic pain models. This review will cite novel findings on the role of of Cxs in the nociceptive transduction pathway under the chronic pain state and antinociceptive effects of various molecules modulating activity or expression of Cxs. Also, the potential of Cx modulation as a therapeutic strategy for intractable chronic pain will be discussed.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences.,Institute of Pharmacology, Taishan Medical University
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| |
Collapse
|
19
|
Sarrouilhe D, Mesnil M, Dejean C. Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder. Curr Med Chem 2019; 26:3775-3791. [DOI: 10.2174/0929867325666180327103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
Background:Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.Objective:This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.Methods:The method applied in this review includes a systematic compilation of the relevant literature.Results and Conclusion:The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculte de Medecine et Pharmacie, Universite de Poitiers, 6 rue de la Miletrie, Bat D1, TSA 51115, 86073 Poitiers, Cedex 9, France
| | - Marc Mesnil
- STIM, ERL 7003, CNRS-Universite de Poitiers, Pole Biologie Sante, Bat B36, TSA 51106, 1 rue Georges Bonnet, 86073 Poitiers, Cedex 9, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, 370 avenue Jacques Coeur, 86021 Poitiers Cedex, France
| |
Collapse
|
20
|
Wang A, Xu C. The role of connexin43 in neuropathic pain induced by spinal cord injury. Acta Biochim Biophys Sin (Shanghai) 2019; 51:555-561. [PMID: 31056639 DOI: 10.1093/abbs/gmz038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is caused by the damage or dysfunction of the nervous system. In many neuropathic pain models, there is an increase in the number of gap junction (GJ) channels, especially the upregulation of the expression of connexin43 (Cx43), leading to the secretion of various types of cytokines and involvement in the formation of neuropathic pain. GJs are widely distributed in mammalian organs and tissues, and Cx43 is the most abundant connexin (Cx) in mammals. Astrocytes are the most abundant glial cell type in the central nervous system (CNS), which mainly express Cx43. More importantly, GJs play an important role in regulating cell metabolism, signaling, and function. Many existing literatures showed that Cx43 plays an important role in the nervous system, especially in the CNS under normal and pathological conditions. However, many internal mechanisms have not yet been thoroughly explored. In this review, we summarized the current understanding of the role and association of Cx and pannexin channels in neuropathic pain, especially after spinal cord injury, as well as some of our own insights and thoughts which suggest that Cx43 may become an emerging therapeutic target for future neuropathic pain, bringing new hope to patients.
Collapse
Affiliation(s)
- Anhui Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
21
|
Xing L, Yang T, Cui S, Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front Mol Neurosci 2019; 12:23. [PMID: 30787868 PMCID: PMC6372977 DOI: 10.3389/fnmol.2019.00023] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system (CNS), astrocytes form networks interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. When unopposed by an adjoining hemichannel, astrocytic connexins can act as hemichannels to control the release of small molecules such as ATP and glutamate into the extracellular space. Accruing evidence indicates that astrocytic connexins are crucial for the coordination and maintenance of physiologic CNS activity. Here we provide an update on the role of astrocytic connexins in neurodegenerative disorders, glioma, and ischemia. In addition, we address the regulation of Cx43 in chronic pain.
Collapse
Affiliation(s)
- LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
23
|
|
24
|
Morioka N, Fujii S, Kondo S, Zhang FF, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Downregulation of spinal astrocytic connexin43 leads to upregulation of interleukin-6 and cyclooxygenase-2 and mechanical hypersensitivity in mice. Glia 2017; 66:428-444. [DOI: 10.1002/glia.23255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Shiori Fujii
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Syun Kondo
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Fang Fang Zhang
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road; Taian Shandong 271016 China
| | - Kazuki Miyauchi
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoki Nakamura
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse IRP, Triad Suite 3305, 333 Cassell Drive; Baltimore MD 21224
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoshihiro Nakata
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| |
Collapse
|
25
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
26
|
Park G, Horie T, Iezaki T, Okamoto M, Fukasawa K, Kanayama T, Ozaki K, Onishi Y, Sugiura M, Hinoi E. Daily oral intake of β-cryptoxanthin ameliorates neuropathic pain. Biosci Biotechnol Biochem 2017; 81:1014-1017. [PMID: 28110620 DOI: 10.1080/09168451.2017.1280661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
β-cryptoxanthin, a xanthophyll carotenoid, exerts preventive effects on various lifestyle-related diseases. Here, we found that daily oral administration of β-cryptoxanthin significantly ameliorated the development of tactile allodynia following spinal nerve injury but was ineffective in mechanical allodynia in an inflammatory pain model in mice. Our results suggest that β-cryptoxanthin supplementation would be beneficial for the prophylaxis of neuropathic pain.
Collapse
Affiliation(s)
- Gyujin Park
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Tetsuhiro Horie
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Takashi Iezaki
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Maika Okamoto
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Kazuya Fukasawa
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Takashi Kanayama
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Kakeru Ozaki
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Yuki Onishi
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| | - Minoru Sugiura
- b Citrus Research Division , Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization , Shizuoka , Japan
| | - Eiichi Hinoi
- a Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences , Kanazawa University Graduate School of Natural Science and Technology , Kanazawa , Japan
| |
Collapse
|
27
|
Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7917528. [PMID: 27891521 PMCID: PMC5116524 DOI: 10.1155/2016/7917528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.
Collapse
|