1
|
Fu B, Luo N, Zeng Y, Chen Y, Wie LJ, Fang J. Bibliometric and visualized analysis of 2014-2024 publications on therapy for diabetic peripheral neuropathy. Front Neurosci 2024; 18:1434756. [PMID: 39568669 PMCID: PMC11576440 DOI: 10.3389/fnins.2024.1434756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Background This research aimed to examine the global developing patterns in the treatment of diabetic peripheral neuropathy (DPN) using a bibliometric analysis of published literature. Methods We extracted publication data from papers published between 2014 and 2024 using a specific topic search in the "Web of Science Core Collection" (WoSCC) database. Various metrics, such as the number of papers, citations, authors, countries, institutions, and references, were collected for analysis. To further explore the data, CiteSpace was employed to examine co-citation patterns among authors, identify collaborative efforts between countries and institutions, and uncover emerging trends using burst keywords and reference analysis. Results The study encompassed 2,488 publications that exhibited an increasing trend in annual output. Notably, the journal PAIN, the United States, the Pfizer institution, and the author Feldman, EvaL emerged as the most prolific contributors to this research domain. The term "placebo-controlled trial" was the most prominent burst keyword from 2014 to 2017, whereas "spinal cord stimulation" held this distinction in the recent 5-year span. Furthermore, the publication titled "Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis-2015" demonstrated the highest burst in terms of references. Conclusion This study is the first to objectively reveal the current hotspots and trends in DPN treatment. The results indicate that drug therapy remains the primary first-line treatment for DPN and that future research on DPN treatment will likely focus on "spinal cord stimulation" and "pain management." These findings provide valuable insights into DPN treatment.
Collapse
Affiliation(s)
- Baitian Fu
- The Third Clinical Medical School, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ning Luo
- The Third Clinical Medical School, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yichen Zeng
- The Third Clinical Medical School, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yutian Chen
- The Third Clinical Medical School, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Low Je Wie
- Institute of International Education of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- The Third Clinical Medical School, Zhejiang Chinese Medicine University, Hangzhou, China
| |
Collapse
|
2
|
Ju M, Deng T, Jia X, Gong M, Li Y, Liu F, Yin Y. The causal relationship between anti-diabetic drugs and gastrointestinal disorders: a drug-targeted mendelian randomization study. Diabetol Metab Syndr 2024; 16:141. [PMID: 38918852 PMCID: PMC11201305 DOI: 10.1186/s13098-024-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The incidence of diabetic gastrointestinal diseases is increasing year by year. This study aimed to investigate the causal relationship between antidiabetic medications and gastrointestinal disorders, with the goal of reducing the incidence of diabetes-related gastrointestinal diseases and exploring the potential repurposing of antidiabetic drugs. METHODS We employed a two-sample Mendelian randomization (TSMR) design to investigate the causal association between antidiabetic medications and gastrointestinal disorders, including gastroesophageal reflux disease (GERD), gastric ulcer (GU), chronic gastritis, acute gastritis, Helicobacter pylori infection, gastric cancer (GC), functional dyspepsia (FD), irritable bowel syndrome (IBS), ulcerative colitis (UC), Crohn's disease (CD), diverticulosis, and colorectal cancer (CRC). To identify potential inhibitors of antidiabetic drug targets, we collected single-nucleotide polymorphisms (SNPs) associated with metformin, GLP-1 receptor agonists, SGLT2 inhibitors, DPP-4 inhibitors, insulin, and its analogs, thiazolidinediones, sulfonylureas, and alpha-glucosidase inhibitors from published genome-wide association study statistics. We then conducted a drug-target Mendelian randomization (MR) analysis using inverse variance weighting (IVW) as the primary analytical method to assess the impact of these inhibitors on gastrointestinal disorders. Additionally, diabetes was selected as a positive control. RESULTS Sulfonylureas were found to significantly reduce the risk of CD (IVW: OR [95% CI] = 0.986 [0.978, 0.995], p = 1.99 × 10- 3), GERD (IVW: OR [95% CI] = 0.649 [0.452, 0.932], p = 1.90 × 10- 2), and chronic gastritis (IVW: OR [95% CI] = 0.991 [0.982, 0.999], p = 4.50 × 10- 2). However, they were associated with an increased risk of GU development (IVW: OR [95%CI] = 2 0.761 [1.259, 6.057], p = 1 0.12 × 10- 2). CONCLUSIONS The results indicated that sulfonylureas had a positive effect on the prevention of CD, GERD, and chronic gastritis but a negative effect on the development of gastric ulcers. However, our research found no causal evidence for the impact of metformin, GLP-1 agonists, SGLT2 inhibitors, DPP 4 inhibitors, insulin and its analogs, thiazolidinediones, or alpha-glucosidase inhibitors on gastrointestinal diseases.
Collapse
Affiliation(s)
- Mingyan Ju
- College of Acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuemin Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Menglin Gong
- College of Acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuying Li
- College of Acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanjie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Pecikoza U, Tomić M, Nastić K, Micov A, Stepanović-Petrović R. Synergism between metformin and analgesics/vitamin B12 in a model of painful diabetic neuropathy. Biomed Pharmacother 2022; 153:113441. [DOI: 10.1016/j.biopha.2022.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
|
4
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
5
|
Alkhudhayri S, Sajini R, Alharbi B, Qabbani J, Al‐Hindi Y, Fairaq A, Yousef A. Investigating the beneficial effect of aliskiren in attenuating neuropathic pain in diabetic Sprague-Dawley rats. Endocrinol Diabetes Metab 2021; 4:e00209. [PMID: 33855212 PMCID: PMC8029555 DOI: 10.1002/edm2.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives Worldwide, diabetic neuropathy (DN) is a major complication of diabetes mellitus. The direct renin inhibitor aliskiren is recognized as a treatment for cardiovascular disease in diabetic patients, but little is known about its potential benefits in cases of diabetic neuropathy. Accordingly, we investigated the effects of aliskiren (ALIS) and gliclazide (GLZ) and their combination therapy on peripheral neuropathy in streptozotocin-induced diabetic rats. Methods In total, 112 adult Sprague-Dawley rats were used for this study. Diabetes was induced using streptozotocin (STZ), whereas the control group was treated with an equal volume of citrate buffer. The diabetic rats were divided randomly into six groups according to the proposed treatment regime: diabetic control (DC), gliclazide (GLZ), aliskiren (ALIS), ramipril (RAM), (GLZ + ALIS) and (GLZ + RAM). Behavioural responses to thermal (hot-plate) and mechanical (tail-pinch) pain were evaluated. After eight weeks of daily treatments, the animals were fasted and sacrificed. The blood samples were collected, with the serum separated and subjected to various biochemical and enzyme analyses so as to assess the effect of the treatments on diabetic peripheral neuropathy. Results After 8 weeks, aliskiren alone and in combination with gliclazide therapy had a significant effect (P < .001) in reducing blood glucose levels and showed increased hot-plate and tail-flick latencies compared with the diabetic control group. The threshold of mechanical hyperalgesia was also significantly elevated (P < .001). Conclusions/Interpretations These data suggest that either aliskerin alone or in combination with gliclazide can protect against the development and progression of diabetic neuropathy.
Collapse
Affiliation(s)
| | - Rania Sajini
- Faculty of pharmacyUniversity of Umm Al‐QuraMakkahSaudi Arabia
| | | | - Jumana Qabbani
- Faculty of pharmacyUniversity of Umm Al‐QuraMakkahSaudi Arabia
| | - Yosra Al‐Hindi
- Faculty of PharmacyUniversity of Umm Al‐QuraMakkahSaudi Arabia
| | - Arwa Fairaq
- Faculty of PharmacyUniversity of Umm Al‐QuraMakkahSaudi Arabia
| | - Amal Yousef
- Faculty of MedicineCairo UniversityGizaEgypt
| |
Collapse
|
6
|
YÜRÜK D. Uzun dönem oral antidiyabetik ve insülin kullanımında nöropatik ağrı seyrinin karşılaştırılması. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2020. [DOI: 10.17944/mkutfd.750407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Voltammetric detection of gliclazide and glibenclamide with graphite screen-printed electrode modified with nanopetal-structured MoWS2. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03993-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Ungurianu A, Şeremet O, Gagniuc E, Olaru OT, Guţu C, Grǎdinaru D, Ionescu-Tȋrgovişte C, Marginǎ D, Dǎnciulescu-Miulescu R. Preclinical and clinical results regarding the effects of a plant-based antidiabetic formulation versus well established antidiabetic molecules. Pharmacol Res 2019; 150:104522. [PMID: 31698065 DOI: 10.1016/j.phrs.2019.104522] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/12/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a complex syndrome with debilitating long-term complications, comprising alterations of carbohydrate, protein and lipid metabolisms, along increased oxidative stress and chronic low-grade inflammation. Diet management and plant-based formulations can improve the metabolic status of patients, being used as adjuvants of classic antidiabetic therapy. The purpose of our study was to evaluate the impact of a plant-based antidiabetic formulation (PBAF), containing Vaccinium myrtillus, Ribes nigrum, Rosa canina and Capsicum annuum, on the increased oxidative burden found in diabetes mellitus, comparing it with the effects of metformin and gliclazide. Firstly, we characterized the individual plant-derived components of this formulation and also assessed their in vitro radical scavenging capacity. We devised a preclinical study protocol to examine the impact of the PBAF, along metformin and gliclazide, on tissue histology as well as on the redox status of tissue, mitochondria, serum and serum lipoproteins of alloxan-induced diabetic Wistar rats. Subsequently, we assessed their long-term impact on the redox status of serum and isolated serum lipoproteins of type 2 DM (T2DM) patients, taking into consideration their cardiometabolic profile. In the preclinical stage, we found that PBAF was able to enhance total serum antioxidant defense, while metformin yielded the best results regarding the advanced glycation and protein/lipid oxidation of serum and of serum lipoproteins. The latter also improved overall serum redox status and HDL redox function. Also, antidiabetic treatment seemed to increase mitochondrial redox activity, without overturning overall tissue redox balance. Histologically, liver and brain tissues of treated diabetic rats were fairly similar to those of non-diabetic rats. In T2DM patients, the most striking results involved the effects on serum lipoproteins. The tested PBAF exerted protective antioxidant effects on low-density and, especially, on high density lipoproteins. We conclude that this formulation might constitute a good addition to the well-established pharmacological approach of DM, contributing to the reduction of overall oxidative burden.
Collapse
Affiliation(s)
- Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Oana Şeremet
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Elvira Gagniuc
- University of Agronomic Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Splaiul Independenței 105, Bucharest, 050097, Romania
| | - Octavian Tudor Olaru
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Claudia Guţu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Daniela Grǎdinaru
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania
| | - Constantin Ionescu-Tȋrgovişte
- "N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Ion Movilă 5-7, Bucharest, 030167, Romania
| | - Denisa Marginǎ
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Traian Vuia 6, Bucharest, 020956, Romania.
| | - Rucsandra Dǎnciulescu-Miulescu
- "N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Ion Movilă 5-7, Bucharest, 030167, Romania; "Carol Davila" University of Medicine and Pharmacy, Faculty of Dentistry, Department of Department of Endocrinology, Calea Plevnei 17-23, Bucharest, 020021, Romania
| |
Collapse
|
9
|
Yu CG, Fu Y, Fang Y, Zhang N, Sun RX, Zhao D, Feng YM, Zhang BY. Fighting Type-2 Diabetes: Present and Future Perspectives. Curr Med Chem 2019; 26:1891-1907. [PMID: 28990512 DOI: 10.2174/0929867324666171009115356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/01/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Type-2 diabetes mellitus accounts for 80-90% of diabetic patients. So far, the treatment of diabetes mainly aims at elevating insulin level and lowering glucose level in the peripheral blood and mitigating insulin resistance. Physiologically, insulin secretion from pancreatic β cells is delicately regulated. Thus, how insulin-related therapies could titrate blood glucose appropriately and avoid the occurrence of hypoglycemia remains an important issue for decades. Similar question is addressed on how to attenuate vascular complication in diabetic subjects. METHODS We overviewed the evolution of each class of anti-diabetic drugs that have been used in clinical practice, focusing on their mechanisms, clinical results and cautions. RESULTS Glucagon-like peptide-1 receptor agonists stimulate β cells for insulin secretion in response to diet but not in fasting stage, which make them superior than conventional insulinsecretion stimulators. DPP-4 inhibitors suppress glucagon-like peptide-1 degradation. Sodium/ glucose co-transporter 2 inhibitors enhance glucose clearance through urine excretion. The appearance of these new drugs provides new information about glycemic control. We update the clinical findings of Glucagon-like peptide-1 receptor agonists, DPP-4 inhibitors and Sodium/glucose cotransporter 2 inhibitors in glycemic control and the risk or progression of cardiovascular disease in diabetic patients. Stem cell therapy might be an alternative tool for diabetic patients to improve β cell regeneration and peripheral ischemia. We summarize the clinical results of mesenchymal stem cells transplanted into patients with diabetic limb and foot. CONCLUSION A stepwise intensification of dual and triple therapy for individual diabetic patient is required to achieve therapeutic target.
Collapse
Affiliation(s)
- Cai-Guo Yu
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Ying Fu
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Yuan Fang
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Ning Zhang
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Rong-Xin Sun
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| | - Bao-Yu Zhang
- Beijing Key Laboratory of Diabetic Prevention and Research, Department of Endocrinology, Lu He hospital, Capital Medical University, Beijing 100149, China
| |
Collapse
|
10
|
Soltani S, Magri P, Rogalski M, Kadri M. Charge-transfer complexes of hypoglycemic sulfonamide with π-acceptors: Experimental and DFT-TDDFT studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Soltani S, Magri P, Rogalski M, Kadri M. UV-Vis, FTIR, 1H, 13C NMR spectra and thermal studies of charge transfer complexes formed in the reaction of Gliclazide with π- and σ-electron acceptors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:170-178. [PMID: 30015022 DOI: 10.1016/j.saa.2018.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Charge transfer interactions (CT) between a gliclazide (GLC) donor and a picric acid (PA) π acceptor or iodine σ acceptor, were studied in a chloroform solution and in the solid state. UV-vis spectroscopy elucidated the formation of the complexes, and allowed determination of the stoichiometry, stability constants (K), and thermodynamic quantities (ΔG°, ΔH°, and ΔS°), and spectroscopic properties such as the molar extinction coefficient (εCT), oscillator strength (f), transition dipole moment (μEN), and ionization potential (Ip). Beer's law was obeyed over the 2-8 and 4-12 μg mL-1 concentration ranges for GLC with PA (method A) and I2 (method B), respectively, with correlation coefficients of 0.9986 and 0.9989. The limits of detection (LOD) and limits of quantification (LOQ) have also been reported. The 1:1 stoichiometric CT complexes were synthesized and characterized by FTIR, 1H, and 13C NMR spectroscopy. The results indicated a favorable proton migration from PA to the donor molecule, and an interaction between the NH of GLC and iodine. Thermogravimetric analysis techniques (TGA/DTA) and differential scanning calorimetry (DSC) were used to determine the thermal stability of the synthesized CT complex. The kinetic parameters (ΔG*, ΔH*, and ΔS*) were calculated from thermal decomposition data using the Coats-Redfern method.
Collapse
Affiliation(s)
- Sara Soltani
- Laboratoire de Chimie Physique, Université 08 Mai 45, BP401, Guelma 24000, Algeria
| | - Pierre Magri
- Laboratoire de Chimie et de Physique Approches Multi-échelles des Milieux Complexes, Université de Lorraine, 1 Boulevard Arago, Technopole, 57070 Metz, France
| | - Marek Rogalski
- Laboratoire de Chimie et de Physique Approches Multi-échelles des Milieux Complexes, Université de Lorraine, 1 Boulevard Arago, Technopole, 57070 Metz, France
| | - Mekki Kadri
- Laboratoire de Chimie Physique, Université 08 Mai 45, BP401, Guelma 24000, Algeria.
| |
Collapse
|
12
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|