1
|
Nakagawa H, Saito Y. Roles of Natriuretic Peptides and the Significance of Neprilysin in Cardiovascular Diseases. BIOLOGY 2022; 11:1017. [PMID: 36101398 PMCID: PMC9312343 DOI: 10.3390/biology11071017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) activate the guanylyl cyclase A receptor (GC-A), which synthesizes the second messenger cGMP in a wide variety of tissues and cells. C-type natriuretic peptide (CNP) activates the cGMP-producing guanylyl cyclase B receptor (GC-B) in chondrocytes, endothelial cells, and possibly smooth muscle cells, cardiomyocytes, and cardiac fibroblasts. The development of genetically modified mice has helped elucidate the physiological roles of natriuretic peptides via GC-A or GC-B. These include the hormonal effects of ANP/BNP in the vasculature, autocrine effects of ANP/BNP in cardiomyocytes, and paracrine effects of CNP in the vasculature and cardiomyocytes. Neprilysin (NEP) is a transmembrane neutral endopeptidase that degrades the three natriuretic peptides. Recently, mice overexpressing NEP, specifically in cardiomyocytes, revealed that local cardiac NEP plays a vital role in regulating natriuretic peptides in the heart tissue. Since NEP inhibition is a clinically accepted approach for heart failure treatment, the physiological roles of natriuretic peptides have regained attention. This article focuses on the physiological roles of natriuretic peptides elucidated in mice with GC-A or GC-B deletion, the significance of NEP in natriuretic peptide metabolism, and the long-term effects of angiotensin receptor-neprilysin inhibitor (ARNI) on cardiovascular diseases.
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, Kashihara 634-8522, Nara, Japan;
| | - Yoshihiko Saito
- Nara Prefecture Seiwa Medical Center, Mimuro 636-0802, Nara, Japan
| |
Collapse
|
2
|
Tauber P, Sinha F, Berger RS, Gronwald W, Dettmer K, Kuhn M, Trum M, Maier LS, Wagner S, Schweda F. Empagliflozin Reduces Renal Hyperfiltration in Response to Uninephrectomy, but Is Not Nephroprotective in UNx/DOCA/Salt Mouse Models. Front Pharmacol 2021; 12:761855. [PMID: 34992532 PMCID: PMC8724563 DOI: 10.3389/fphar.2021.761855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Large-scale clinical outcome studies demonstrated the efficacy of SGLT2 inhibitors in patients with type II diabetes. Besides their therapeutic efficacy in diabetes, significant renoprotection was observed in non-diabetic patients with chronic kidney disease (CKD), suggesting the existence of glucose-independent beneficial effects of SGLT2 inhibitors. However, the relevant mechanisms by which SGLT2 inhibition delays the progression of renal injury are still largely unknown and speculative. Previous studies showed that SGLT2 inhibitors reduce diabetic hyperfiltration, which is likely a key element in renoprotection. In line with this hypothesis, this study aimed to investigate the nephroprotective effects of the SGLT2 inhibitor empagliflozin (EMPA) in different mouse models with non-diabetic hyperfiltration and progressing CKD to identify the underlying diabetes-independent cellular mechanisms. Non-diabetic hyperfiltration was induced by unilateral nephrectomy (UNx). Since UNx alone does not result in renal damage, renal disease models with varying degrees of glomerular damage and albuminuria were generated by combining UNx with high NaCl diets ± deoxycorticosterone acetate (DOCA) in different mouse strains with and without genetic predisposition for glomerular injury. Renal parameters (GFR, albuminuria, urine volume) were monitored for 4–6 weeks. Application of EMPA via the drinking water resulted in sufficient EMPA plasma concentration and caused glucosuria, diuresis and in some models renal hypertrophy. EMPA had no effect on GFR in untreated wildtype animals, but significantly reduced hyperfiltration after UNx by 36%. In contrast, EMPA did not reduce UNx induced hyperfiltration in any of our kidney disease models, regardless of their degree of glomerular damage caused by DOCA/salt treatment. Consistent with the lack of reduction in glomerular hyperfiltration, EMPA-treated animals developed albuminuria and renal fibrosis to a similar extent as H2O control animals. Taken together, the data clearly indicate that blockade of SGLT2 has the potential to reduce non-diabetic hyperfiltration in otherwise untreated mice. However, no effects on hyperfiltration or progression of renal injury were observed in hypervolemic kidney disease models, suggesting that high salt intake and extracellular volume might attenuate the protective effects of SGLT2 blockers.
Collapse
Affiliation(s)
- Philipp Tauber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Philipp Tauber,
| | - Frederick Sinha
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Raffaela S. Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Nakagawa H, Kumazawa T, Onoue K, Nakada Y, Nakano T, Ishihara S, Minamino N, Hosoda H, Iwata N, Ueda T, Seno A, Nishida T, Soeda T, Okayama S, Watanabe M, Kawakami R, Saito Y. Local Action of Neprilysin Exacerbates Pressure Overload Induced Cardiac Remodeling. Hypertension 2021; 77:1931-1939. [PMID: 33840200 DOI: 10.1161/hypertensionaha.120.16445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Takuya Kumazawa
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Kenji Onoue
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Yasuki Nakada
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Tomoya Nakano
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Satomi Ishihara
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Naoto Minamino
- Omics Research Center (N.M.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroshi Hosoda
- Departments of Regenerative Medicine and Tissue Engineering (H.H.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Nobuhisa Iwata
- Department of Genome-based Drug Discovery, Nagasaki University, Japan (N.I.)
| | - Tomoya Ueda
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Ayako Seno
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Taku Nishida
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Tsunenari Soeda
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Satoshi Okayama
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Makoto Watanabe
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Rika Kawakami
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Yoshihiko Saito
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| |
Collapse
|
4
|
Chen Y, Harty GJ, Zheng Y, Iyer SR, Sugihara S, Sangaralingham SJ, Ichiki T, Grande JP, Lee HC, Wang XL, Burnett JC. CRRL269. Circ Res 2019; 124:1462-1472. [PMID: 30929579 PMCID: PMC6512967 DOI: 10.1161/circresaha.118.314164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Acute kidney injury (AKI) has a high prevalence and mortality in critically ill patients. It is also a powerful risk factor for heart failure incidence driven by hemodynamic changes and neurohormonal activation. However, no drugs have been approved by the Food and Drug Administration. Endogenous pGC-A (particulate guanylyl cyclase A receptor) activators were reported to preserve renal function and improve mortality in AKI patients, although hypotension accompanied by pGC-A activators have limited their therapeutic potential. OBJECTIVE We investigated the therapeutic potential of a nonhypotensive pGC-A activator/designer natriuretic peptide, CRRL269, in a short-term, large animal model of ischemia-induced AKI and also investigated the potential of uCNP (urinary C-type natriuretic peptide) as a biomarker for AKI. METHODS AND RESULTS We first showed that CRRL269 stimulated cGMP generation, suppressed plasma angiotensin II, and reduced cardiac filling pressures without lowering blood pressure in the AKI canine model. We also demonstrated that CRRL269 preserved glomerular filtration rate, increased renal blood flow, and promoted diuresis and natriuresis. Further, CRRL269 reduced kidney injury and apoptosis as evidenced by ex vivo histology and tissue apoptosis analysis. We also showed, compared with native pGC-A activators, that CRRL269 is a more potent inhibitor of apoptosis in renal cells and induced less decreases in intracellular Ca2+ concentration in vascular smooth muscle cells. The renal antiapoptotic effects were at least mediated by cGMP/PKG pathway. Further, CRRL269 inhibited proapoptotic genes expression using a polymerase chain reaction gene array. Additionally, we demonstrated that AKI increased uCNP levels. CONCLUSIONS Our study supports developing CRRL269 as a novel renocardiac protective agent for AKI treatment.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Gail J. Harty
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Shinobu Sugihara
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - S. Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Xiao Li Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|