1
|
Wang N, Chen J, Dang Y, Zhao X, Tibenda JJ, Li N, Zhu Y, Wang X, Zhao Q, Sun L. Research progress of traditional Chinese medicine in the treatment of ischemic stroke by regulating mitochondrial dysfunction. Life Sci 2024; 357:123045. [PMID: 39251017 DOI: 10.1016/j.lfs.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease with increasing incidence and mortality rates in recent years. The pathogenesis of IS is highly complex, with mitochondrial dysfunction playing a critical role in its onset and progression. Thus, preserving mitochondrial function is a pivotal aspect of treating ischemic brain injury. In response, there has been growing interest among scholars in the regulation of mitochondrial function through traditional Chinese medicine (TCM), including herb-derived compounds, individual herbs, and herbal prescriptions. This article reviews recent research on the mechanisms of mitochondrial dysfunction in IS and explores the potential of TCM in treating this condition by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xinlin Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Yafei Zhu
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| | - Lei Sun
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
3
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Tang H, Wen J, Qin T, Chen Y, Huang J, Yang Q, Jiang P, Wang L, Zhao Y, Yang Q. New insights into Sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke. Front Cell Neurosci 2023; 17:1228761. [PMID: 37622049 PMCID: PMC10445043 DOI: 10.3389/fncel.2023.1228761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, the majority of patients are currently unable to benefit from intravenous thrombolysis or intravascular mechanical thrombectomy due to the limited treatment windows and serious complications. Silent mating type information regulation 2 homolog 1 (Sirt1), a nicotine adenine dinucleotide-dependent enzyme, has emerged as a potential therapeutic target for ischemic stroke due to its ability to maintain brain homeostasis and possess neuroprotective properties in a variety of pathological conditions for the central nervous system. Animal and clinical studies have shown that activation of Sirt1 can lessen neurological deficits and reduce the infarcted volume, offering promise for the treatment of ischemic stroke. In this review, we summarized the direct evidence and related mechanisms of Sirt1 providing neuroprotection against cerebral ischemic stroke. Firstly, we introduced the protein structure, catalytic mechanism and specific location of Sirt1 in the central nervous system. Secondly, we list the activators and inhibitors of Sirt1, which are primarily divided into three categories: natural, synthetic and physiological. Finally, we reviewed the neuroprotective effects of Sirt1 in ischemic stroke and discussed the specific mechanisms, including reducing neurological deficits by inhibiting various programmed cell death such as pyroptosis, necroptosis, ferroptosis, and cuproptosis in the acute phase, as well as enhancing neurological repair by promoting angiogenesis and neurogenesis in the later stage. Our review aims to contribute to a deeper understanding of the critical role of Sirt1 in cerebral ischemic stroke and to offer novel therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Qin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Yang X, Xu L, Zhao H, Xie T, Wang J, Wang L, Yang J. Curcumin protects against cerebral ischemia-reperfusion injury in rats by attenuating oxidative stress and inflammation: a meta-analysis and mechanism exploration. Nutr Res 2023; 113:14-28. [PMID: 36996692 DOI: 10.1016/j.nutres.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Accumulating evidence has suggested that curcumin may protect against cerebral ischemia-reperfusion injury (CIRI). However, biological mechanisms vary across studies, limiting the clinical applicability of these findings. We performed a meta-analysis on publications evaluating curcumin administration in rat models of CIRI. Furthermore, we sought to test the hypothesis that curcumin alleviates CIRI through diminishing oxidation and inflammation. We searched PubMed, Embase, Web of Science, and Cochrane from the starting date of each database to May 2022 for experimental rat studies exploring the use of curcumin after ischemia reperfusion. Included articles were assessed for bias using SYRCLE's risk of bias tool. Data were aggregated by a random effects model. Curcumin administration significantly reduced neurological deficit score (20 studies; pooled mean difference [MD] = -1.57; 95% CI, -1.78 to -1.36, P < .00001), infarct volume (18 studies; pooled MD = -17.56%; 95% CI, -20.92% to -14.20%; P < 0.00001), and brain water content (8 studies, pooled MD = -11.29%, 95% CI: -16.48%, -6.11%, P < .00001). Compared with control, the levels of superoxide dismutase, glutathione, and glutathione peroxidase were significantly higher, whereas the levels of reactive oxygen species, malondialdehyde, interleukin-1β, interleukin-6, interleukin-8, and nuclear factor kappa B were significantly lower (P < .05). Subgroup analysis raised the possibility that intervention affections differed by curcumin's dose. To our knowledge, this is the first meta-analysis of curcumin's neuroprotection and mechanisms in rat CIRI models. Our analysis suggests the neuroprotective potential of curcumin in CIRI via antioxidant activity and anti-inflammatory effect. More research is required to further confirm the effectiveness and safety of curcumin on ischemic stroke therapy.
Collapse
Affiliation(s)
- Xuyi Yang
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Liang Xu
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Hui Zhao
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Tinghui Xie
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Jiabing Wang
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianwei Yang
- General Practice, Zhejiang Taizhou Hospital, Linhai, China.
| |
Collapse
|
6
|
Liu L, Chen D, Zhou Z, Yuan J, Chen Y, Sun M, Zhou M, Liu Y, Sun S, Chen J, Zhao L. Traditional Chinese medicine in treating ischemic stroke by modulating mitochondria: A comprehensive overview of experimental studies. Front Pharmacol 2023; 14:1138128. [PMID: 37033646 PMCID: PMC10073505 DOI: 10.3389/fphar.2023.1138128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Ischemic stroke has been a prominent focus of scientific investigation owing to its high prevalence, complex pathogenesis, and difficulties in treatment. Mitochondria play an important role in cellular energy homeostasis and are involved in neuronal death following ischemic stroke. Hence, maintaining mitochondrial function is critical for neuronal survival and neurological improvement in ischemic stroke, and mitochondria are key therapeutic targets in cerebral stroke research. With the benefits of high efficacy, low cost, and high safety, traditional Chinese medicine (TCM) has great advantages in preventing and treating ischemic stroke. Accumulating studies have explored the effect of TCM in preventing and treating ischemic stroke from the perspective of regulating mitochondrial structure and function. In this review, we discuss the molecular mechanisms by which mitochondria are involved in ischemic stroke. Furthermore, we summarized the current advances in TCM in preventing and treating ischemic stroke by modulating mitochondria. We aimed to provide a new perspective and enlightenment for TCM in the prevention and treatment of ischemic stroke by modulating mitochondria.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Daohong Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziyang Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mengdi Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shiqi Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiao Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- *Correspondence: Ling Zhao, ; Jiao Chen,
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- *Correspondence: Ling Zhao, ; Jiao Chen,
| |
Collapse
|
7
|
Marques MS, Marinho MAG, Vian CO, Horn AP. The action of curcumin against damage resulting from cerebral stroke: a systematic review. Pharmacol Res 2022; 183:106369. [PMID: 35914679 DOI: 10.1016/j.phrs.2022.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
Abstract
Stroke is the second leading cause of morbidity and mortality globally. Treatments for stroke are limited, and preventive treatments are scarce. Curcumin (CUR) has several biological effects, as described in the literature, which highlight its antioxidant and neuroprotective effects. Therefore, this qualitative systematic review aimed to investigate the effects of CUR on damage caused by stroke in rodent models. A systematic search was performed on three databases PubMed, Scopus, and Web of Science. In addition, the risk-of-bias and quality of the studies were assessed using SYRCLE and Collaborative Approach for Meta-Analysis and Review of Animal Data from Experimental Studies, respectively. The selection, inclusion, and exclusion criteria were established by the authors. At the end of our systematic search of the three databases, we found a total of 728 articles. After excluding duplicates and triplicates and reading the abstracts, keywords, and full texts, 53 articles were finally included in this systematic review. CUR exerts several beneficial effects against the damage caused by both ischemic and hemorrhagic stroke, via different pathways. However, because of its low bioavailability, Free-form CUR only exerted significant effects when it was administered at high concentrations. In contrast, when CUR was administered using nanostructured systems, positive responses were observed even at low concentrations. The mechanisms of action of CUR, free or in nanostructure, are extremely important for the recovery of injured brain tissue after a stroke; CUR has neuroprotective, antioxidant, anti-inflammatory, and anti-apoptotic effects and helps to maintain the integrity of the blood-brain barrier. Finally, we concluded that CUR presents an extremely important and significant response profile against the damage caused by stroke, making it a possible therapeutic candidate for individuals affected by this disease.
Collapse
Affiliation(s)
- M S Marques
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil.
| | - M A G Marinho
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - C O Vian
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - A P Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| |
Collapse
|
8
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
9
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
10
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
11
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Czuczwar SJ. Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer's Disease Proteinopathy: Possible Therapeutic Role of Curcumin. Nutrients 2022; 14:nu14020248. [PMID: 35057429 PMCID: PMC8779038 DOI: 10.3390/nu14020248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
For thousands of years, mankind has been using plant extracts or plants themselves as medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal substances that are virtually non-toxic, readily available, and have an impact on well-being and health. It has been noted that dietary curcumin is one of the regulators that may positively influence changes in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and for Alzheimer’s disease. Additionally, it has been shown that one of the potential mechanisms of severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability, apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and improves neurological and behavioral deficits. The available data suggest that curcumin may be a new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative disorders such as post-ischemic neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6086-540
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | | |
Collapse
|
12
|
Mnafgui K, Ghazouani L, Hajji R, Tlili A, Derbali F, da Silva FI, Araújo JL, de Oliveira Schinoff B, Bachega JFR, da Silva Santos AL, Allouche N. Oleuropein Protects Against Cerebral Ischemia Injury in Rats: Molecular Docking, Biochemical and Histological Findings. Neurochem Res 2021; 46:2131-2142. [PMID: 34008118 DOI: 10.1007/s11064-021-03351-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
This study was designed to evaluate the underlying protective mechanisms of oleuropein involved in alleviating brain damage in a rat model of ischemic stroke. Male Wistar rats were divided into four groups; Control, stroke (MCAO), MCAO + clopidogrel (Clop) and MCAO + oleuropein (Ole). Results showed that the MCAO group evidenced significant brain edema (+ 9%) as well as increases of plasma cardiac markers such as lactate deshydrogenase (LDH), creatine kinase (CK-MB), fibrinogen and Trop-T by 11 %, 43%, 168 and 590%, respectively, as compared to the control group. Moreover, infarcted rats exhibited remarkable elevated levels of angiotensin converting enzyme (ACE), both in plasma and brain tissue, with astrocyte swelling and necrotic neurons in the infarct zone, hyponatremia, and increased rate of thiobarbituric acid-reactive substances (TBARS) by 89% associated with decreases in the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat) by 51%, 44 and 42%, respectively, compared to normal control rats. However, MCAO rats treated with oleuropein underwent mitigation of cerebral edema, correction of hyponatremia, remarkable decrease of plasma fibrinogen and cardiac dysfunctional enzymes, inhibition of ACE activity and improvement of oxidative stress status in brain tissue. Furthermore, in silico analysis showed considerable inhibitions of ACE, protein disulfide isomerase (PDI) and TGF-β1, an indicative of potent anti-embolic properties. Overall, oleuropein offers a neuroprotective effect against ischemic stroke through its antioxidative and antithrombotic activities.
Collapse
Affiliation(s)
- Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, 3052, Sfax, Tunisia.
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, University of Gafsa, 2112, Gafsa, Tunisia
| | - Raouf Hajji
- Service de Médecine Interne, Faculté de Médecine de Sousse, Hôpital de Sidi Bouzid, Université de Sousse, Sidi Bouzid 9100, 4200, Sousse, Tunisia
| | - Abir Tlili
- Faculty of Medicine of Monastir, 5000, Monastir, Tunisia
| | - Fatma Derbali
- Service de Médecine Interne, Faculté de Médecine de Sousse, Hôpital de Sidi Bouzid, Université de Sousse, Sidi Bouzid 9100, 4200, Sousse, Tunisia
| | - Francisco Ivan da Silva
- Department of Chemistry, Center for Natural Sciences, Federal University of Piauí, Campus Ministro Petrônio Portela, 64049-550, Teresina, PI, Brazil
| | - Joabe Lima Araújo
- Programa de Pós-Graduação em Nanociência e Nanobiotecnologia, Departamento de Genética e Morfologia, Universidade de Brasília, s/n Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brasil
| | - Bianca de Oliveira Schinoff
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - José Fernando Ruggiero Bachega
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Programa de pós-graduação em Biologia Celular e molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Antônia Laíres da Silva Santos
- Department of Chemistry, Center for Natural Sciences, Federal University of Piauí, Campus Ministro Petrônio Portela, 64049-550, Teresina, PI, Brazil
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
13
|
Subedi L, Gaire BP. Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms. ACS Chem Neurosci 2021; 12:2562-2572. [PMID: 34251185 DOI: 10.1021/acschemneuro.1c00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (Curcuma longa), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia. In the central nervous system (CNS), neuroprotective effects of curcumin have been experimentally validated in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and cerebral ischemia. Curcumin can exert pleiotropic effects in the postischemic brain including antioxidant, anti-inflammatory, antiapoptotic, vasculoprotective, and direct neuroprotective efficacies. Importantly, neuroprotective effects of curcumin has been reported in both ischemic and hemorrhagic stroke models. A broad-spectrum neuroprotective efficacy of curcumin suggested that curcumin can be an appealing therapeutic strategy to treat cerebral ischemia. In this review, we aimed to address the pharmacotherapeutic potential of curcumin in cerebral ischemia including its cellular and molecular mechanisms of neuroprotection revealing curcumin as an appealing therapeutic candidate for cerebral ischemia.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
14
|
Neves AR, van der Putten L, Queiroz JF, Pinheiro M, Reis S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J Biotechnol 2021; 331:108-117. [PMID: 33727082 DOI: 10.1016/j.jbiotec.2021.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/25/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
Curcumin is an anti-inflammatory and antioxidant compound with potent neuroprotective activity. Due to its poor water solubility, low bioavailability, rapid elimination and the challenges for crossing and transposing the blood-brain barrier (BBB), solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) loaded with curcumin were successfully produced and functionalized with transferrin, in order to mediate the transport of these particles through the BBB endothelium to the brain. The nanosystems revealed Z-averages under 200 nm, polydispersity index below 0.2 and zeta potential around -30 mV. Curcumin encapsulation around 65 % for SLNs and 80 % for NLCs was accomplished, while the functionalized nanoparticles presented a value around 70-75 %. A stability study revealed these characteristics remained unchanged for at least 3 months. hCMEC/D3 cells viability was firstly analysed by MTT and LDH assays, respectively, and a concentration of 10 μM of curcumin-loaded nanoparticles were then selected for the subsequent permeability assay. The permeability study was conducted using transwell devices with hCMEC/D3 cells monolayers and a 1.5-fold higher permeation of curcumin through the BBB was verified. Both SLNs and NLCs are promising for curcumin brain delivery, protecting the incorporated curcumin and targeting to the brain by the addition of transferrin to the nanoparticles surface.
Collapse
Affiliation(s)
- A R Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal; CQM, Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - L van der Putten
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - J F Queiroz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - M Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - S Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| |
Collapse
|
15
|
Gagliardi S, Morasso C, Stivaktakis P, Pandini C, Tinelli V, Tsatsakis A, Prosperi D, Hickey M, Corsi F, Cereda C. Curcumin Formulations and Trials: What's New in Neurological Diseases. Molecules 2020; 25:molecules25225389. [PMID: 33217959 PMCID: PMC7698610 DOI: 10.3390/molecules25225389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin’s pharmacological properties and its possible benefits for neurological diseases and dementia have been much debated. In vitro experiments show that curcumin modulates several key physiological pathways of importance for neurology. However, in vivo studies have not always matched expectations. Thus, improved formulations of curcumin are emerging as powerful tools in overcoming the bioavailability and stability limitations of curcumin. New studies in animal models and recent double-blinded, placebo-controlled clinical trials using some of these new formulations are finally beginning to show that curcumin could be used for the treatment of cognitive decline. Ultimately, this work could ease the burden caused by a group of diseases that are becoming a global emergency because of the unprecedented growth in the number of people aged 65 and over worldwide. In this review, we discuss curcumin’s main mechanisms of action and also data from in vivo experiments on the effects of curcumin on cognitive decline.
Collapse
Affiliation(s)
- Stella Gagliardi
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.G.); (C.P.)
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (C.M.); (V.T.); (D.P.); (F.C.)
| | | | - Cecilia Pandini
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.G.); (C.P.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Veronica Tinelli
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (C.M.); (V.T.); (D.P.); (F.C.)
| | - Aristides Tsatsakis
- Medical School, University of Crete, 70013 Heraklion, Greece; (P.S.); (A.T.)
| | - Davide Prosperi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (C.M.); (V.T.); (D.P.); (F.C.)
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Miriam Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia;
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (C.M.); (V.T.); (D.P.); (F.C.)
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milano, Italy
| | - Cristina Cereda
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.G.); (C.P.)
- Correspondence: ; Tel.: +39-0382380348
| |
Collapse
|
16
|
Abstract
Objectives: The beneficial effects of many substances have been discovered because of regular dietary consumption. This is also the case with curcumin, whose effects have been known for more than 4,000 years in Eastern countries such as China and India. A curcumin-rich diet has been known to counteract many human diseases, including cancer and diabetes, and has been shown to reduce inflammation. The effect of a curcumin treatment for neurological diseases, such as spinal muscular atrophy; Alzheimer's disease; Parkinson's disease; amyotrophic lateral sclerosis; multiple sclerosis; and others, has only recently been brought to the attention of researchers and the wider population.Methods: In this paper, we summarise the studies on this natural product, from its isolation two centuries ago to its characterisation a century later.Results: We describe its role in the treatment of neurological diseases, including its cellular and common molecular mechanisms, and we report on the clinical trials of curcumin with healthy people and patients.Discussion: Commenting on the different approaches adopted by the efforts made to increase its bioavailability.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Li Y, Sun J, Wu R, Bai J, Hou Y, Zeng Y, Zhang Y, Wang X, Wang Z, Meng X. Mitochondrial MPTP: A Novel Target of Ethnomedicine for Stroke Treatment by Apoptosis Inhibition. Front Pharmacol 2020; 11:352. [PMID: 32269527 PMCID: PMC7109312 DOI: 10.3389/fphar.2020.00352] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Mammalian mitochondrial permeability transition pore (MPTP), across the inner and outer membranes of mitochondria, is a nonspecific channel for signal transduction or material transfer between mitochondrial matrix and cytoplasm such as maintenance of Ca2+ homeostasis, regulation of oxidative stress signals, and protein translocation evoked by some of stimuli. Continuous MPTP opening has been proved to stimulate neuronal apoptosis in ischemic stroke. Meanwhile, inhibition of MPTP overopening-induced apoptosis has shown excellent efficacy in the treatment of ischemic stroke. Among of which, the potential molecular mechanisms of drug therapy for stroke has also been gradually revealed by researchers. The characteristics of multi-components or multi-targets for ethnic drugs also provide the possibility to treat stroke from the perspective of mitochondrial MPTP. The advantages mentioned above make it necessary for us to explore and clarify the new perspective of ethnic medicine in treating stroke and to determine the specific molecular mechanisms through advanced technologies as much as possible. In this review, we attempt to uncover the relationship between abnormal MPTP opening and neuronal apoptosis in ischemic stroke. We further summarized currently authorized drugs, ethnic medicine prescriptions, herbs, and identified monomer compounds for inhibition of MPTP overopening-induced ischemic neuron apoptosis. Finally, we strive to provide a new perspective and enlightenment for ethnic medicine in the prevention and treatment of stroke by inhibition of MPTP overopening-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Yangxin Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixia Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Zeng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Im JH, Yeo IJ, Hwang CJ, Lee KS, Hong JT. PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation. Biomol Ther (Seoul) 2020; 28:152-162. [PMID: 31813204 PMCID: PMC7059808 DOI: 10.4062/biomolther.2019.147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Jun Hyung Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung Sun Lee
- R&D Center, Ts Corporation, Incheon 22300, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
19
|
Ułamek-Kozioł M, Czuczwar SJ, Januszewski S, Pluta R. Substantiation for the Use of Curcumin during the Development of Neurodegeneration after Brain Ischemia. Int J Mol Sci 2020; 21:ijms21020517. [PMID: 31947633 PMCID: PMC7014172 DOI: 10.3390/ijms21020517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/21/2023] Open
Abstract
Currently available pharmacological treatment of post-ischemia-reperfusion brain injury has limited effectiveness. This review provides an assessment of the current state of neurodegeneration treatment due to ischemia-reperfusion brain injury and focuses on the role of curcumin in the diet. The purpose of this review was to provide a comprehensive overview of what was published about the benefits of curcumin influence on post-ischemic brain damage. Some data on the clinical benefits of curcumin treatment of post-ischemic brain in terms of clinical symptoms and adverse reactions have been reviewed. The data in this review contributes to a better understanding of the potential benefits of curcumin in the treatment of neurodegenerative changes after ischemia and informs scientists, clinicians, and patients, as well as their families and caregivers about the possibilities of such treatment. Due to the pleotropic properties of curcumin, including anti-amyloid, anti-tau protein hyperphosphorylation, anti-inflammatory, anti-apoptotic, and neuroprotective action, as well as increasing neuronal lifespan and promoting neurogenesis, curcumin is a promising candidate for the treatment of post-ischemic neurodegeneration with misfolded proteins accumulation. In this way, it may gain interest as a potential therapy to prevent the development of neurodegenerative changes after cerebral ischemia. In addition, it is a safe substance and inexpensive, easily accessible, and can effectively penetrate the blood–brain barrier and neuronal membranes. In conclusion, the evidence available in a review of the literature on the therapeutic potential of curcumin provides helpful insight into the potential clinical utility of curcumin in the treatment of neurological neurodegenerative diseases with misfolded proteins. Therefore, curcumin may be a promising supplementary agent against development of neurodegeneration after brain ischemia in the future. Indeed, there is a rational scientific basis for the use of curcumin for the prophylaxis and treatment of post-ischemic neurodegeneration.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
- Correspondence: ; Tel.: +48-22-6086-540/6086-469
| |
Collapse
|
20
|
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46:5-20. [PMID: 31580521 DOI: 10.1002/biof.1566] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) result from progressive deterioration of selectively susceptible neuron populations in different central nervous system (CNS) regions. NDs are classified in accordance with the primary clinical manifestations (e.g., parkinsonism, dementia, or motor neuron disease), the anatomic basis of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), and fundamental molecular abnormalities (e.g., mutations, mitochondrial dysfunction, and its related molecular alterations). NDs include the Alzheimer disease and Parkinson disease, among others. There is a growing evidence that mitochondrial dysfunction and its related mutations in the form of oxidative/nitrosative stress and neurotoxic compounds play major roles in the pathogenesis of various NDs. Curcumin, a polyphenol and nontoxic compound, obtained from turmeric, has been shown to have a therapeutic beneficial effect in various disorders especially on the CNS cells. It has been shown that curcumin has considerable neuro- and mitochondria-protective properties against broad-spectrum neurotoxic compounds and diseases/injury-associating NDs. In this article, we have reviewed the various effects of curcumin on mitochondrial dysfunction in NDs.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rouhullah Rafiee
- Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK. Benefits of curcumin in brain disorders. Biofactors 2019; 45:666-689. [PMID: 31185140 DOI: 10.1002/biof.1533] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Curcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti-inflammatory, anti-cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This review summarizes available data from several recent studies on curcumin in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Huntington's disease, Prions disease, stroke, Down's syndrome, autism, Amyotrophic lateral sclerosis, anxiety, depression, and aging. Recent advancements toward increasing the therapeutic efficacy of curcuma/curcumin formulation and the novel delivery strategies employed to overcome its minimal bioavailability and toxicity studies have also been discussed. This review also summarizes the ongoing clinical trials on curcumin for different neurodegenerative diseases and patent details of curcuma/curcumin in India.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif A Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Esther Manthiannem
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Jagadeeswari Padamati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Centre for Biomedical Research University of Delhi, Delhi, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
22
|
Zendedel E, Butler AE, Atkin SL, Sahebkar A. Impact of curcumin on sirtuins: A review. J Cell Biochem 2018; 119:10291-10300. [PMID: 30145851 DOI: 10.1002/jcb.27371] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Curcumin is a bioactive phytochemical that modulates several physiological and cellular processes leading to therapeutic effects against different diseases. Sirtuins are highly conserved nicotine adenine dinucleotide-dependent proteins that regulate the activity of target enzymes and transcription factors by deacetylation. Curcumin possesses both antioxidant and anti-inflammatory properties and has been shown to increase sirtuin-1 (SIRT1) by activating small molecules. Upregulation of SIRT1 by curcumin has been reported to confer protective effects against a range of neurological disorders including glutamate excitotoxicity, β-amyloid-induced cell death in cortical neurons, cerebral ischemic damage, and stroke. Activation of AMPK and SIRT1 by curcumin has also been noted to mediate the protective effects of curcumin against ischemia/reperfusion injury, cardiac fibrosis, diabetes, and lipid metabolism abnormalities. These protective effects of SIRT1 activation are partly mediated by the deacetylation of p53 and reduction of apoptosis. In this review, we summarize the role of SIRT1 in mediating the pharmacological effects of curcumin in several diseases.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Doha, Qatar
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Dhir A. Curcumin in epilepsy disorders. Phytother Res 2018; 32:1865-1875. [PMID: 29917276 DOI: 10.1002/ptr.6125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
Curcumin, a principal curcuminoid present in turmeric, has an antioxidant, anti-inflammatory and neuroprotective properties. Preclinical studies have indicated its beneficial effect for the treatment of epilepsy disorders. The molecule has an anti-seizure potential in preclinical studies, including chemical and electrical models of acute and chronic epilepsy. Curcumin also possesses an anti-epileptogenic activity as it reduces spontaneous recurrent seizures severity in a kainate model of temporal lobe epilepsy. The antioxidant and anti-inflammatory nature of curcumin might be responsible for its observed anti-seizure effects; nevertheless, the exact mechanism is not yet clear. The poor availability of curcumin to the brain limits its use in clinics. The application of nanoliposome and liposome technologies has been tested to enhance its brain availability and penetrability. Unfortunately, there are no randomized, double-blinded controlled clinical trials validating the use of curcumin in epilepsy. The present article analyzes different preclinical evidence illustrating the effect of curcumin in seizure models. The review encourages carrying out clinical trials in this important area of research. In conclusion, curcumin might be beneficial in patients with epilepsy disorders, if its bioavailability issues are resolved.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of Medicine, University of California, Davis, CA, 95817
| |
Collapse
|
24
|
Xie C, Gu A, Cai J, Wu Y, Chen R. Curcumin protects neural cells against ischemic injury in N2a cells and mouse brain with ischemic stroke. Brain Behav 2018; 8:e00921. [PMID: 29484272 PMCID: PMC5822585 DOI: 10.1002/brb3.921] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/04/2017] [Accepted: 12/21/2017] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Curcumin, a natural antioxidant isolated from Curcuma longa, has been reported to exert neuroprotective effect in animal models of ischemic stroke. However, the underlying mechanism is still not fully understood. The purpose of this study was to investigate the effect of curcumin treatment on neuronal apoptosis in the periinfarct cortex after cerebral ischemia/reperfusion (I/R) injury and in mouse N2a cells after oxygen-glucose deprivation/reoxygenation (OGD/R) injury and its underlying mechanism. Methods The cerebral I/R injury was established by 1-hr middle cerebral artery occlusion (MCAO) and reperfusion in mice. Infarct volume was determined by TTC staining, and neurological score was evaluated by mNSS. Cell morphology in the ischemic boundary zone were detected by HE staining. The number and apoptotic rate of neurons in ischemic boundary zone were assayed by immunohistochemistry and TUNEL, respectively. Mouse neuroblastoma N2a cells were subjected to OGD/R. Cell viability was assessed with CCK-8. The mitochondrial membrane potential was measured using JC-1 staining. The expression of Bax, Bcl-2, and caspase-3 was detected using Western blotting. Besides, cellular distribution of Bax was determined by immunofluorescence assays. Results Curcumin treatment reduced infarct volume, improved neurological function, alleviated the morphological damage of neurons, and increased neuronal survival rate after I/R injury in vivo. Moreover, curcumin treatment improved cell viability, reduced cell apoptosis, increased Bcl-2 protein levels while decreased Bax and caspase-3 expressions in mouse N2a cells after OGD/R injury. Besides, curcumin treatment inhibited Bax activation and maintained mitochondrial membrane integrity. Conclusion Curcumin promotes neuron survival in vivo and in vitro to exert neuroprotective effects against ischemia injury. Moreover, our results for the first time demonstrated curcumin inhibited ischemia-induced mitochondrial apoptosis via restricting Bax activation, which may be one of the possible mechanisms underlying the neuroprotective effects of curcumin.
Collapse
Affiliation(s)
- Cai‐Jun Xie
- Department of NeurosurgeryGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
| | - Ai‐Ping Gu
- Department of OphthalmologyGuangdong Second Provincial General HospitalGuangzhouChina
| | - Jun Cai
- Department of NeurosurgeryGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
| | - Yi Wu
- Department of OphthalmologyGuangdong Second Provincial General HospitalGuangzhouChina
| | - Rui‐Cong Chen
- Department of NeurosurgeryGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
| |
Collapse
|