1
|
Wang X, Xie C, Lu C. Identification and Analysis of Gene Biomarkers for Ovarian Cancer. Genet Test Mol Biomarkers 2024; 28:70-81. [PMID: 38416665 DOI: 10.1089/gtmb.2023.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Objective: To identify potential diagnostic markers for ovarian cancer (OC) and explore the contribution of immune cells infiltration to the pathogenesis of OC. Methods: As the study cohort, two gene expression datasets of human OC (GSE27651 and GSE26712, taken as the metadata) taken from the Gene Expression Omnibus (GEO) database were combined, comprising 228 OC and 16 control samples. Analysis was performed to identify the differentially expressed genes between the OC and control samples, while support vector machine analysis using the recursive feature elimination algorithm and least absolute shrinkage and selection operator regression were performed to identify candidate biomarkers that could discriminate OC. In addition, immunohistochemistry staining was performed to verify the diagnostic value and protein expression levels of the candidate biomarkers. The GSE146553 dataset (OC n = 40, control n = 3) was used to further validate the diagnostic values of those biomarkers. Further, the proportions of various immune cells infiltration in the OC and control samples were evaluated using the CIBERSORT algorithm. Results: CLEC4M, PFKP, and SCRIB were identified as potential diagnostic markers for OC in both the metadata (area under the receiver operating characteristic curve [AUC] = 0.996, AUC = 1.000, AUC = 1.000) and GSE146553 dataset (AUC = 0.983, AUC = 0.975, AUC = 0.892). Regarding immune cell infiltration, there was an increase in the infiltration of follicular helper dendritic cells, and a decrease in the infiltration of M2 macrophages and neutrophils, as well as activated natural killer (NK) cells and T cells in OC. CLEC4M showed a significantly positive correlation with neutrophils (r = 0.57, p < 0.001) and resting NK cells (r = 0.42, p = 0.0047), but a negative correlation with activated dendritic cells (r = -0.33, p = 0.032). PFKP displayed a significantly positive correlation with activated NK cells (r = 0.36, p = 0.016) and follicular helper T cells (r = 0.32, p = 0.035), but a negative correlation with the naive B cells (r = -0.3, p = 0.049) and resting NK cells (r = -0.41, p = 0.007). SCRIB demonstrated a significantly positive correlation with plasma cells (r = 0.39, p = 0.01), memory B cells (r = 0.34, p = 0.025), and follicular helper T cells (r = 0.31, p = 0.04), but a negative correlation with neutrophils (r = -0.46, p = 0.002) and naive B cells (r = -0.48, p = 0.0012). Conclusion: CLEC4M, PFKP, and SCRIB were identified and verified as potential diagnostic biomarkers for OC. This work and identification of the three biomarkers may provide guidance for future studies into the mechanism and treatment of OC.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Chengmao Xie
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Xie C, Yin Z, Liu Y. Analysis of characteristic genes and ceRNA regulation mechanism of endometriosis based on full transcriptional sequencing. Front Genet 2022; 13:902329. [PMID: 35938015 PMCID: PMC9353714 DOI: 10.3389/fgene.2022.902329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Endometriosis is a common gynecological disorder that usually causes infertility, pelvic pain, and ovarian masses. This study aimed to mine the characteristic genes of endometriosis, and explore the regulatory mechanism and potential therapeutic drugs based on whole transcriptome sequencing data and resources from public databases, providing a theoretical basis for the diagnosis and treatment of endometriosis. Methods: The transcriptome data of the five eutopic (EU) and ectopic (EC) endometrium samples were obtained from Beijing Obstetrics and Gynecology Hospital, Beijing, China, and dinified as the own data set. The expression and clinical data of EC and EU samples in GSE25628 and GSE7305 datasets were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds). Differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify the endometriosis-related differentially expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted by the “clusterProfiler” R package. Then, characteristic genes for endometriosis were identified by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithm. The expression of characteristic genes was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western-blot. The receiver operating characteristic (ROC) curve was used to evaluate the discriminatory ability of characteristic genes. We assessed the abundance of infiltrating immune cells in each sample using MCP-counter and ImmuCellAI algorithms. The competitive endogenous RNA (ceRNA) regulatory network of characteristic genes was created by Cytoscape and potential targeting drugs were obtained in the CTD database. Results: 44 endometriosis-related differentially expressed genes were obtained from GSE25628 and the own dataset. Subsequently, LASSO and SVM-RFE algorithms identified four characteristic genes, namely ACLY, PTGFR, ADH1B, and MYOM1. The results of RT-PCR and western-blot were consistent with those of sequencing. The result of ROC curves indicated that the characteristic genes had powerful abilities in distinguishing EC samples from EU samples. Infiltrating immune cells analysis suggested that there was a certain difference in immune microenvironment between EC and EU samples. The characteristic genes were significantly correlated with specific differential immune cells between EC and EU samples. Then, a ceRNA regulatory network of characteristic genes was constructed and showed a total of 7, 11, 11, and 1 miRNA associated with ACLY, ADH1B, PTGFR, and MYOM1, respectively. Finally, we constructed a gene-compound network and mined 30 drugs targeting ACLY, 33 drugs targeting ADH1B, 13 drugs targeting MYOM1, and 12 drugs targeting PTGFR. Conclusion: Comprehensive bioinformatic analysis was used to identify characteristic genes, and explore ceRNA regulatory network and potential therapeutic agents for endometriosis. Altogether, these findings provide new insights into the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
| | | | - Yong Liu
- *Correspondence: Chengmao Xie, ; Yong Liu,
| |
Collapse
|
3
|
Xie C, Lu C, Liu Y, Liu Z. Diagnostic gene biomarkers for predicting immune infiltration in endometriosis. BMC Womens Health 2022; 22:184. [PMID: 35585523 PMCID: PMC9118874 DOI: 10.1186/s12905-022-01765-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the potential diagnostic markers and extent of immune cell infiltration in endometriosis (EMS). METHODS Two published profiles (GSE7305 and GSE25628 datasets) were downloaded, and the candidate biomarkers were identified by support vector machine recursive feature elimination analysis and a Lasso regression model. The diagnostic value and expression levels of biomarkers in EMS were verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting, then further validated in the GSE5108 dataset. CIBERSORT was used to estimate the composition pattern of immune cell components in EMS. RESULTS One hundred and fifty-three differential expression genes (DEGs) were identified between EMS and endometrial with 83 upregulated and 51 downregulated genes. Gene sets related to arachidonic acid metabolism, cytokine-cytokine receptor interactions, complement and coagulation cascades, chemokine signaling pathways, and systemic lupus erythematosus were differentially activated in EMS compared with endometrial samples. Aquaporin 1 (AQP1) and ZW10 binding protein (ZWINT) were identified as diagnostic markers of EMS, which were verified using qRT-PCR and western blotting and validated in the GSE5108 dataset. Immune cell infiltrate analysis showed that AQP1 and ZWINT were correlated with M2 macrophages, NK cells, activated dendritic cells, T follicular helper cells, regulatory T cells, memory B cells, activated mast cells, and plasma cells. CONCLUSION AQP1 and ZWINT could be regarded as diagnostic markers of EMS and may provide a new direction for the study of EMS pathogenesis in the future.
Collapse
Affiliation(s)
- Chengmao Xie
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
4
|
Woollett LA, Catov JM, Jones HN. Roles of maternal HDL during pregnancy. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159106. [PMID: 34995789 DOI: 10.1016/j.bbalip.2021.159106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND High density lipoproteins (HDL) were first linked to cardiovascular disease (CVD) over 30 years ago when an inverse relationship was shown between CVD and HDL-cholesterol levels. It is now apparent that HDL composition and function, not cholesterol levels, are the pertinent measurements describing HDL's role in various disease processes, especially those with subclinical or overt inflammation. SCOPE OF REVIEW Pregnancy is also an inflammatory state. When inflammation becomes excessive during pregnancy, there is an increased risk for adverse outcomes that affect the health of the mother and fetus, including preterm birth and preeclampsia. Though studies on HDL during pregnancy are limited, recent evidence demonstrates that HDL composition and function change during pregnancy and in women with adverse outcomes. GENERAL SIGNIFICANCE In this review, we will discuss how HDL may play a role in maintaining a healthy pregnancy and how impairments in function could lead to pregnancies with adverse outcomes.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical School, Cincinnati, OH, United States of America.
| | - Janet M Catov
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, PA, United States of America.
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States of America; Center for Research in Perinatal Outcomes, Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
5
|
Ding N, Liu N, Yang L, Han X, Lin L, Long Y. ABCA1 plays an anti-inflammatory role by affecting TLR4 at the feto-maternal interface. Life Sci 2020; 259:118390. [PMID: 32896556 DOI: 10.1016/j.lfs.2020.118390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
AIMS This study aimed to evaluate the function and pathway of ATP-binding cassette transporter member A1 (ABCA1)-induced anti-inflammatory response in cells at the feto-maternal interface. MAIN METHODS The primary amniotic mesenchymal cells (AMCs), chorion cells and decidual cells were isolated from placental membranes of women with uncomplicated pregnancies at full-term (not in labor) using enzymatic digestion. Flow cytometry was used to measure the purity of isolated cells. Immunofluorescence assay was performed to detect the location of ABCA1 and toll-like receptor 4 (TLR4). Reverse transcription PCR and western blotting analyses were used to examine ABCA1, TLR4 and inflammatory factor expression in primary cells. ELISA was used to detect cytokine secretions from the primary cells. KEY FINDINGS ABCA1 and TLR4 were mainly located in the cell nucleus and cytoplasm of feto-maternal interface cells. ABCA1 expression remained the highest in chorion cells, medium in decidual cells, and weakest in AMCs. Upregulated expression of ABCA1 decreased expression of TLR4 and the levels of pro-inflammatory factors, but increased cytoprotective factors in all cell types. In contrast, downregulated expression of ABCA1 increased the expression of TLR4 and pro-inflammatory factors, but decreased the levels of cytoprotective factors. Downregulated ABCA1 expression followed by decreased TLR4 expression using a small interference RNA (siRNA) induced reduction of interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) in all cell types. SIGNIFICANCE ABCA1 at feto-maternal interface acts as an anti-inflammatory role by reducing the expression of TLR4 in uncomplicated pregnancies. ABCA1 might be a potential therapeutic target for preventing gestational diseases.
Collapse
Affiliation(s)
- Ning Ding
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Na Liu
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Lei Yang
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Xiaoyan Han
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Li Lin
- Department of Gynecology and Obstetrics, Peking University International Hospital, Beijing 102206, China
| | - Yan Long
- Department of Gynecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China.
| |
Collapse
|
6
|
Genome-wide identification of ABC transporters in monogeneans. Mol Biochem Parasitol 2019; 234:111234. [PMID: 31715209 DOI: 10.1016/j.molbiopara.2019.111234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 01/05/2023]
Abstract
ATP-Binding Cassette (ABC) transporters are proteins that actively mediate the transport of a wide variety of molecules, including drugs. Thus, in parasitology, ABC transporters have gained attention as potential targets for therapeutic drugs. Among the parasitic Platyhelminthes, ABC transporters have been identified and classified in a few species of Trematoda and Cestoda but not in Monogenea. Monogeneans are mainly ectoparasites of marine and freshwater fish, although they can also be found on other aquatic organisms. Severe epizootics caused by monogeneans have been reported around the world, mainly in confined and/or overcrowded fish. The purpose of this study was to identify the ABC transporters in four species of monogeneans (Gyrodactylus salaris, Protopolystoma xenopodis, Eudiplozoon nipponicum and Neobenedenia melleni) for which genomic resources are publicly available. For comparative purposes, ABC transporters were also identified in endoparasitic (Schistosoma mansoni and Echinococcus granulosus) and free-living (Macrostomun lignano and Schmidtea mediterranea) platyhelminths. Thirty-two putative ABC transporters were identified in the genome of G. salaris, 40 in the genome of P. xenopodis, 46 in the transcriptome of E. nipponicum and 9 in a rather limited ESTs set available for N. melleni. Of the eight ABC subfamilies (A-H) known in metazoans, subfamily H was the only one not found in any monogenean species. In contrast, ABCC was the best represented subfamily. Phylogenetic analyses showed a few cases of one-to-one orthologous relationships, which agree with results from other metazoan species. We found some monogenean ABC members related to subfamilies B, C and G involved in drug resistance in humans. This information may be useful for future functional studies on ABC transporters in monogeneans.
Collapse
|
7
|
Lv Y, Yang J, Gao A, Sun S, Zheng X, Chen X, Wan W, Tang C, Xie W, Li S, Guo D, Peng T, Zhao G, Zhong L. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:471-483. [PMID: 30950489 DOI: 10.1093/abbs/gmz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 11/13/2022] Open
Abstract
Sortilin is closely associated with hyperlipidemia and the risk of atherosclerosis (AS). The role of sortilin and the underlying mechanism in peripheral macrophage are not fully understood. In this study, we investigated the effect of macrophage sortilin on ATP-binding cassette transporter A1 (ABCA1) expression, ABCA1-mediated cholesterol efflux, and aortic AS. Macrophage sortilin expression was upregulated by oxidized low-density lipoproteins (ox-LDLs) in both concentration- and time-dependent manners. Its expression reached the peak level when cells were incubated with 50 μg/ml ox-LDL for 24 h. Overexpression of sortilin in macrophage reduced cholesterol efflux, leading to an increase in intracellular total cholesterol, free cholesterol, and cholesterol ester. Sortilin was found to bind with ABCA1 protein and suppress macrophage ABCA1 expression, resulting in a decrease in cholesterol efflux from macrophages. The inhibitory effect of sortilin in cholesterol efflux was partially reversed by treatment with chloroquine, a lysosomal inhibitor. On the contrary, the ABCA1 protein level and ABCA1-mediated cholesterol efflux is increased by sortilin short hairpin RNA transfection. The fecal and biliary cholesterol 3H-sterol from cholesterol-laden mouse peritoneal macrophage was reduced by sortilin overexpression through lentivirus vector (LV)-sortilin in low-density lipoprotein receptor knockout mice, which was prevented by co-treatment with chloroquine. Treatment with LV-sortilin reduced plasma high-density lipoprotein and increased plasma ox-LDL levels. Accordingly, aortic lipid deposition and plaque area were exacerbated, and ABCA1 expression was reduced in mice in response to infection with LV-sortilin alone. These effects of LV-sortilin were partially reversed by chloroquine. Sortilin enhances lysosomal degradation of ABCA1 protein and suppresses ABCA1-mediated cholesterol efflux from macrophages, leading to foam cell formation and AS development.
Collapse
Affiliation(s)
- Yuncheng Lv
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Anbo Gao
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Sha Sun
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Xilong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Canada
| | - Xi Chen
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Wei Wan
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Medical Research Center, University of South China, Hengyang, China
| | - Wei Xie
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Dongming Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Guojun Zhao
- Department of Histology and Embryology, Guilin Medical University, Guilin, China
| | - Liyuan Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| |
Collapse
|
8
|
Han T, Lv Y, Wang S, Hu T, Hong H, Fu Z. PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes. J Pharmacol Sci 2019; 139:1-8. [DOI: 10.1016/j.jphs.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
|
9
|
Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int J Mol Sci 2018; 19:ijms19082334. [PMID: 30096856 PMCID: PMC6121295 DOI: 10.3390/ijms19082334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear. We isolated primary trophoblasts from term placentae to test the hypotheses that (1) apoA-1/ABCA1 dispatches cholesterol mainly towards the fetus to support fetal developmental maturation at term, and (2) differentiated syncytiotrophoblasts (STB) exert higher cholesterol transport activity than undifferentiated cytotrophoblasts (CTB). As experimental models, we used (1) trophoblast monolayers grown on Transwell® system consisting of apical (maternal-like) and basal (fetal-like) compartments, and (2) trophoblasts grown on conventional culture plates at CTB and STB stages. Surprisingly, apoA-1-mediated cholesterol efflux operated almost exclusively at the apical-maternal side, where ABCA1 was also localized by immunofluorescence. We found greater cholesterol efflux capacity in STB, which was increased by liver-X-receptor agonist treatment and decreased by ABCA1 inhibition. We conclude that at term the apoA-1/ABCA1 pathway is rather involved in cholesterol transport to the mother than in transfer to the fully developed fetus.
Collapse
Affiliation(s)
- Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Stefan Müller
- Department of BioMedical Research, University of Bern, CH-3012 Bern, Switzerland.
| | - Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
10
|
Gene expression profiles of HTR8-S/Vneo cells after changes in ABCA1 expression. Funct Integr Genomics 2018; 18:725-735. [PMID: 29931611 DOI: 10.1007/s10142-018-0621-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
ABCA1 is expressed in placental trophoblasts, such that when the expression level of ABCA1 changes, the function of trophoblasts dramatically changes. However, the mechanism by which ABCA1 affects the function of trophoblast cells remains unclear. Here, we used biochemical and transcriptomic to uncover the potential mechanism of the effect of ABCA1 on trophoblast function. HTR8/SVneo cells were either treated with the agonist T0901317 or transfected with siRNA to regulate ABCA1 expression levels. A human gene expression microarray was used to analyze the expression spectrum of ABCA1. Microarray results were confirmed by Western blotting and RT-PCR. Immunofluorescence allowed detection of the cellular localization of ABCA1, CCL8, CXCL10, CXCL11, and S1PR1 in HTR8/SVneo cells. Co-immunoprecipitation was used to test interactions among these proteins. Concomitant with an increase in ABCA1 expression, S1PR1 expression increased, whereas expression of CCL8, CXCL10, and CXCL11 decreased significantly; opposite effects were observed with a decrease in ABCA1 expression. Thus, changes in ABCA1 expression may lead to changes in downstream gene expression. Whereas the interaction between ABCA1 and S1PR1 was direct, interactions among ABCA1 and CCL8, CXCL10, and CXCL11 were indirect. We propose that, in conjunction with S1PR1, ABCA1 regulates expression levels of CCL8, CXCL10, and CXCL11; this may lead to changes in the immune function of trophoblastic cells. Thus, we suspect that the effect of ABCA1 on trophoblast function may involve many biological processes, molecular function changes, and the activation of multiple signaling pathways.
Collapse
|