1
|
Mansour A, Nagi K, Dallaire P, Lukasheva V, Le Gouill C, Bouvier M, Pineyro G. Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δ-Opioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacol Transl Sci 2021; 4:1483-1498. [PMID: 34661070 PMCID: PMC8506601 DOI: 10.1021/acsptsci.1c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/29/2022]
Abstract
![]()
Prolonged exposure
to opioid receptor agonists triggers adaptations
in the adenylyl cyclase (AC) pathway that lead to enhanced production
of cyclic adenosine monophosphate (cAMP) upon withdrawal. This cellular
phenomenon contributes to withdrawal symptoms, hyperalgesia and analgesic
tolerance that interfere with clinical management of chronic pain
syndromes. Since δ-opioid receptors (DOPrs) are a promising
target for chronic pain management, we were interested in finding
out if cell-based signaling profiles as generated for drug discovery
purposes could inform us of the ligand potential to induce sensitization
of the cyclase path. For this purpose, signaling of DOPr agonists
was monitored at multiple effectors. The resulting signaling profiles
revealed marked functional selectivity, particularly for Met-enkephalin
(Met-ENK) whose signaling bias profile differed from those of synthetic
ligands like SNC-80 and ARM390. Signaling diversity among ligands
was systematized by clustering agonists according to similarities
in Emax and Log(τ) values for the
different responses. The classification process revealed that the
similarity in Gα/Gβγ, but not in β-arrestin
(βarr), responses was correlated with the potential of Met-ENK,
deltorphin II, (d-penicillamine2,5)-enkephalin (DPDPE), ARM390,
and SNC-80 to enhance cAMP production, all of which required Ca2+ mobilization to produce this response. Moreover, superactivation
by Met-ENK, which was the most-effective Ca2+ mobilizing
agonist, required Gαi/o activation, availability of Gβγ
subunits at the membrane, and activation of Ca2+ effectors
such as calmodulin and protein kinase C (PKC). In contrast, superactivation by (N-(l-tyrosyl)-(3S)-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-l-phenylalanyl-l-phenylalanine (TIPP), which was set
in a distinct category through clustering, required activation of
Gαi/o subunits but was independent of the Gβγ dimer
and Ca2+ mobilization, relying instead on Src and Raf-1
to induce this cellular adaptation.
Collapse
Affiliation(s)
- Ahmed Mansour
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul Dallaire
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Viktoriya Lukasheva
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| |
Collapse
|
2
|
Yadlapalli JSK, Albayati ZAF, Breen PJ, Dobretsov M, Penthala NR, Hendrickson HP, Crooks PA. A pharmacokinetic study of morphine-6-O-sulfate in rat plasma and brain. Drug Dev Res 2021; 82:802-814. [PMID: 33427316 DOI: 10.1002/ddr.21785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/10/2022]
Abstract
Morphine-6-O-sulfate (M6S), a polar, zwitterionic sulfate ester of morphine, is a powerful and safe analgesic in several rat models of pain. A sensitive liquid chromatography-tandem mass spectrometry bioanalytical method was developed and validated for the simultaneous determination of M6S and morphine (MOR) in rat plasma and brain after M6S administration. Morphine-d6 was used as internal standard. Multiple reaction monitoring was used for detection and quantitation of M6S, MOR, and morphine-d6 in the turbo ion spray positive mode. The chromatographic separation was carried out on an Alltech Altima C18 column. The analytical method was validated for linearity, precision, accuracy, specificity, and stability over a concentration range of 3-8000 ng/ml in rat plasma and 10-10,000 ng/ml in brain samples for both M6S and MOR. The validated method was applied to determine the PK profile of M6S in plasma after i.v., i.p., and oral dosing in male Sprague-Dawley rats. Rats were administered M6S by i.p. administration (5.6 and 10.0 mg/kg) or orally (10 and 30 mg/kg) and bioavailability compared to an i.v. injection (1 mg/kg) of M6S. The in vivo results indicate that M6S is not a prodrug of morphine, since M6S is not biotransformed into MOR in plasma after either i.p. or oral administration, and MOR was not detected in brain. The bioavailability of M6S was >93% and about 5% after i.p. and oral dosing, respectively. The low oral bioavailability of M6S may be due to poor permeation of the intestinal epithelial membrane. After i.p.-administration, M6S appears to reach brain tissues in low, but significant, concentrations.
Collapse
Affiliation(s)
- Jai Shankar K Yadlapalli
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zaineb A F Albayati
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Philip J Breen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maxim Dobretsov
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Neurobiology and Developmental Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Howard P Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
3
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
4
|
Bagheri Tudashki H, Haddad Y, Charfi I, Couture R, Pineyro G. Ligand-specific recycling profiles determine distinct potential for chronic analgesic tolerance of delta-opioid receptor (DOPr) agonists. J Cell Mol Med 2020; 24:5718-5730. [PMID: 32279433 PMCID: PMC7214178 DOI: 10.1111/jcmm.15234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
δ-opioid receptor (DOPr) agonists have analgesic efficacy in chronic pain models but development of tolerance limits their use for long-term pain management. Although agonist potential for inducing acute analgesic tolerance has been associated with distinct patterns of DOPr internalization, the association between trafficking and chronic tolerance remains ill-defined. In a rat model of streptozotocin (STZ)-induced diabetic neuropathy, deltorphin II and TIPP produced sustained analgesia following daily (intrathecal) i.t. injections over six days, whereas similar treatment with SNC-80 or SB235863 led to progressive tolerance and loss of the analgesic response. Trafficking assays in murine neuron cultures showed no association between the magnitude of ligand-induced sequestration and development of chronic tolerance. Instead, ligands that supported DOPr recycling were also the ones producing sustained analgesia over 6-day treatment. Moreover, endosomal endothelin-converting enzyme 2 (ECE2) blocker 663444 prevented DOPr recycling by deltorphin II and TIPP and precipitated tolerance by these ligands. In conclusion, agonists, which support DOPr recycling, avoid development of analgesic tolerance over repeated administration.
Collapse
Affiliation(s)
| | - Youssef Haddad
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Iness Charfi
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Rejean Couture
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Graciela Pineyro
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| |
Collapse
|
5
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
6
|
Yadlapalli JSK, Bommagani SB, Mahelona RD, Wan A, Gannon BM, Penthala NR, Dobretsov M, Crooks PA, Fantegrossi WE. Evaluation of morphine-like effects of the mixed mu/delta agonist morphine-6- O-sulfate in rats: Drug discrimination and physical dependence. Pharmacol Res Perspect 2018; 6:e00403. [PMID: 29930811 PMCID: PMC6009770 DOI: 10.1002/prp2.403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Morphine-6-O-sulfate (M6S) is as a mixed-action mu/delta (μ/δ) opioid receptor agonist with high potency and analgesic efficacy. These studies used assays of drug discrimination and schedule-controlled responding to assess abuse-liability, tolerance, and physical dependence as compared to morphine in rats. Attempts to train 0.3 mg/kg (IP) M6S from saline failed, but all rats rapidly acquired the discrimination when the training dose was changed to 3.0 mg/kg morphine, and substitution tests showed that morphine and fentanyl both fully substituted for the training dose, M6S and M3A6S (3-O-acetyl ester of M6S) only partially substituted, and salvinorin A did not elicit morphine-like effects. Tolerance to response rate-decreasing effects was studied in rats administered either 1.0 or 3.0 mg/kg morphine or M6S before food-reinforced operant sessions. At both unit doses, tolerance to M6S-elicited rate suppression developed more slowly than tolerance to morphine-induced reductions in response rates. To assess dependence, rats were maintained on 1.0 mg/kg morphine or 1.0 mg/kg M6S until food-reinforced response rates were stable for at least 5 days. Rats were then administered saline or increasing doses of the opioid antagonist naltrexone (NTX) (0.3, 1.0, 3.0, or 10.0 mg/kg) in order to determine antagonist-precipitated withdrawal. NTX precipitated withdrawal was similar in both morphine-maintained and M6S-maintained rats. In conclusion, the mixed μ/δ agonist activity of M6S failed to completely protect against the development of physical dependence, but delayed tolerance development to behavioral effects and resulted in decreased morphine-like subjective effects, perhaps implying a decreased abuse liability over μ agonists.
Collapse
Affiliation(s)
- Jai Shankar K. Yadlapalli
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Shoban Babu Bommagani
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Ryan D. Mahelona
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Anqi Wan
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Brenda M. Gannon
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Narsimha R. Penthala
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Maxim Dobretsov
- Department of AnesthesiologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Peter A. Crooks
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - William E. Fantegrossi
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| |
Collapse
|