1
|
Xiaorong Y, Lu X, Fangyue X, Chao X, Jun G, Qiang W. Integrated multiomics characterization reveals cuproptosis-related hub genes for predicting the prognosis and clinical efficacy of ovarian cancer. Front Immunol 2024; 15:1452294. [PMID: 39600695 PMCID: PMC11588705 DOI: 10.3389/fimmu.2024.1452294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Background As a prevalent malignancy in women, ovarian cancer (OC) presents a challenge in clinical practice because of its poor prognosis and poor therapeutic efficacy. The mechanism by which cuproptosis activity is accompanied by immune infiltration in OC remains unknown. Here, we investigated cuproptosis-related OC subtypes and relevant immune landscapes to develop a risk score (RS) model for survival prediction. Methods Cuproptosis-related genes (CRGs) were identified to construct molecular subtypes via an unsupervised clustering algorithm based on the expression profiles of survival-related CRGs in the GEO database. Single-cell datasets were used to estimate immune infiltration among subtypes. The RS oriented from molecular subtypes was developed via LASSO Cox regression in the TCGA OC dataset and independently validated in the GEO and TCGA datasets. Hub markers from RS were identified in tissues and cell lines. The function of the key gene from RS was identified in vitro. Results We investigated cuproptosis activity and immune infiltration to establish three clinical subtypes of OC based the differentially expressed genes (DEGs) from CRGs to create an RS model validated for clinical efficacy and prognosis. Six hub genes from the RS served as ongenic markers in OC tissues and cell lines. The function of GAS1 in the RS model revealed that it exerts oncogenic effects. Conclusions Our study provides a novel RS model including 6 hub genes associated with cuproptosis and immune infiltration to predict OC prognosis as well as clinical efficacy.
Collapse
Affiliation(s)
- Yang Xiaorong
- Department of Gynecologic Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, China
| | - Xu Lu
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu Fangyue
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu Chao
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - Gao Jun
- Department of Gynecologic Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, China
| | - Wen Qiang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
2
|
Liao S, Deng J, Deng M, Chen C, Han F, Ye K, Wu C, Pan L, Lai M, Tang Z, Zhang H. AFDN Deficiency Promotes Liver Tropism of Metastatic Colorectal Cancer. Cancer Res 2024; 84:3158-3172. [PMID: 39047222 DOI: 10.1158/0008-5472.can-23-3140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Liver metastasis is a major cause of morbidity and mortality in patients with colorectal cancer. A better understanding of the biological mechanisms underlying liver tropism and metastasis in colorectal cancer could help to identify improved prevention and treatment strategies. In this study, we performed genome-wide CRISPR loss-of-function screening in a mouse colorectal cancer model and identified deficiency of AFDN, a protein involved in establishing and maintaining cell-cell contacts, as a driver of liver metastasis. Elevated AFDN expression was correlated with prolonged survival in patients with colorectal cancer. AFDN-deficient colorectal cancer cells preferentially metastasized to the liver but not in the lungs. AFDN loss in colorectal cancer cells at the primary site promoted cancer cell migration and invasion by disrupting tight intercellular junctions. Additionally, CXCR4 expression was increased in AFDN-deficient colorectal cancer cells via the JAK-STAT signaling pathway, which reduced the motility of AFDN-deficient colorectal cancer cells and facilitated their colonization of the liver. Collectively, these data shed light on the mechanism by which AFDN deficiency promotes liver tropism in metastatic colorectal cancer. Significance: A CRISPR screen reveals AFDN loss as a mediator of liver tropism in colorectal cancer metastasis by decreasing tight junctions in the primary tumor and increasing interactions between cancer cells and hepatocytes.
Collapse
Affiliation(s)
- Shaoxia Liao
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
| | - Jingwen Deng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengli Deng
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chaoyi Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Fengyan Han
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kehong Ye
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenxia Wu
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lvyuan Pan
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Maode Lai
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Li L, Zhao L, Yang J, Zhou L. Multifaceted effects of LRP6 in cancer: exploring tumor development, immune modulation and targeted therapies. Med Oncol 2024; 41:180. [PMID: 38898247 DOI: 10.1007/s12032-024-02399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Low-density lipoprotein receptor (LDLR)-related protein 6 (LRP6), a member of the LDLR superfamily of cell surface receptors, is most widely known as a crucial co-receptor in the activation of canonical Wnt/β-catenin signaling. This signaling pathway is implicated in multiple biological processes, such as lipoprotein metabolism, protease regulation, cell differentiation, and migration. LRP6 is frequently overexpressed in a variety of tumors, including liver cancer, colorectal cancer, and prostate cancer, and is generally considered an oncogene that promotes tumor proliferation, migration, and invasion. However, there are exceptions; some studies have reported that LRP6 inhibits lung metastasis of breast cancer through its ectodomain (LRP6N), and patients with low LRP6 expression tend to have a poor prognosis. Thus, the role of LRP6 in tumors remains controversial. Although limited studies have shown that LRP6 is associated with the expression and roles of a variety of immune cells in tumors, the interaction of LRP6 with the tumor microenvironment (TME) is not fully understood. Furthermore, it is crucial to acknowledge that LRP6 can engage with alternative pathways, including the mTORC1, CXCL12/CXCR4, and KRAS signaling pathways mentioned earlier, resulting in the regulation of biological functions independent of canonical Wnt/β-catenin signaling. Due to the potential of LRP6 as a molecular target for cancer therapy, various treatment modalities have been developed to directly or indirectly inhibit LRP6 function, demonstrating promising anti-cancer effects across multiple cancer types. This review will concentrate on exploring the expression, function, and potential therapeutic applications of LRP6 in different cancer types, along with its influence on the TME.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Hematology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Zhao
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China
| | - Jincai Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Lanxia Zhou
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
5
|
Fellhofer-Hofer J, Franz C, Vey JA, Kahlert C, Kalkum E, Mehrabi A, Halama N, Probst P, Klupp F. Chemokines as Prognostic Factor in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5374. [PMID: 38791414 PMCID: PMC11121014 DOI: 10.3390/ijms25105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Chemokines orchestrate many aspects of tumorigenic processes such as angiogenesis, apoptosis and metastatic spread, and related receptors are expressed on tumor cells as well as on inflammatory cells (e.g., tumor-infiltrating T cells, TILs) in the tumor microenvironment. Expressional changes of chemokines and their receptors in solid cancers are common and well known, especially in affecting colorectal cancer patient outcomes. Therefore, the aim of this current systematic review and meta-analysis was to classify chemokines as a prognostic biomarker in colorectal cancer patients. A systematic literature search was conducted in PubMed, CENTRAL and Web of Science. Information on the chemokine expression of 25 chemokines in colorectal cancer tissue and survival data of the patients were investigated. The hazard ratio of overall survival and disease-free survival with chemokine expression was examined. The risk of bias was analyzed using Quality in Prognosis Studies. Random effects meta-analysis was performed to determine the impact on overall respectively disease survival. For this purpose, the pooled hazard ratios (HR) and their 95% confidence intervals (CI) were used for calculation. Twenty-five chemokines were included, and the search revealed 5556 publications. A total of thirty-one publications were included in this systematic review and meta-analysis. Overexpression of chemokine receptor CXCR4 was associated with both a significantly reduced overall survival (HR = 2.70, 95%-CI: 1.57 to 4.66, p = 0.0003) as well as disease-free survival (HR = 2.68, 95%-CI: 1.41 to 5.08, p = 0.0026). All other chemokines showed either heterogeneous results or few studies were available. The overall risk of bias for CXCR4 was rated low. At the current level of evidence, this study demonstrates that CXCR4 overexpression in patients with colorectal cancer is associated with a significantly diminished overall as well as disease-free survival. Summed up, this systematic review and meta-analysis reveals CXCR4 as a promising prognostic biomarker. Nevertheless, more evidence is needed to evaluate CXCR4 and its antagonists serving as new therapeutic targets.
Collapse
Affiliation(s)
- Johanna Fellhofer-Hofer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Clemens Franz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Johannes A. Vey
- Institute of Medical Biometry (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Eva Kalkum
- Study Center of the German Society of Surgery (SDGC), University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Niels Halama
- National Center for Tumor Diseases, Medical Oncology and Internal Medicine VI, Tissue Imaging and Analysis Center, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- Helmholtz Institute for Translational Oncology (HI-TRON), Department of Cancer Immunology & Cancer Immunotherapy, German Cancer Research Center (DKFZ), 55131 Mainz, Germany
| | - Pascal Probst
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
- Department of Surgery, Cantonal Hospital Thurgau, Pfaffenholzstrasse 4, 8501 Frauenfeld, Switzerland
| | - Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| |
Collapse
|
6
|
Ouchida T, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Cx 4Mab-1: A Novel Anti-Mouse CXCR4 Monoclonal Antibody for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2024; 43:10-16. [PMID: 38126879 DOI: 10.1089/mab.2023.0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The CXC chemokine receptor 4 (CXCR4, CD184) is a member of the G protein-coupled receptor family that is expressed in most leukocytes. Overexpression of CXCR4 is associated with poor prognosis in not only hematopoietic malignancy but also solid tumors. Because CXCR4 is an attractive target for tumor therapy, reliable preclinical murine models using anti-CXCR4 monoclonal antibodies (mAbs) have been warranted. This study established a novel anti-mouse CXCR4 (mCXCR4) mAb using the Cell-Based Immunization and Screening method. Flow cytometric analysis showed that an anti-mCXCR4 mAb, Cx4Mab-1 (rat IgG2a, kappa), recognized mCXCR4-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR4) cells and endogenously mCXCR4-expressing mouse myeloma P3X63Ag8U.1 (P3U1) cells. Furthermore, Cx4Mab-1 did not recognize mCXCR4-knockout P3U1 cells. The dissociation constants of Cx4Mab-1 for CHO/mCXCR4 and P3U1 were determined as 6.4 × 10-9 M and 2.3 × 10-9 M, respectively, indicating that Cx4Mab-1 possesses a high affinity to both endogenous and exogenous mCXCR4-expressing cells. These results indicate that Cx4Mab-1 could be a useful tool for preclinical mouse models.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Guerrero P, Albarrán V, San Román M, González-Merino C, García de Quevedo C, Moreno J, Calvo JC, González G, Orejana I, Chamorro J, Martínez-Delfrade Í, Morón B, de Frutos B, Ferreiro MR. BRAF Inhibitors in Metastatic Colorectal Cancer and Mechanisms of Resistance: A Review of the Literature. Cancers (Basel) 2023; 15:5243. [PMID: 37958416 PMCID: PMC10649848 DOI: 10.3390/cancers15215243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Metastatic colorectal cancer (mCRC) with mutated BRAF exhibits distinct biological and molecular features that set it apart from other subtypes of CRC. Current standard treatment for these tumors involves a combination of chemotherapy (CT) and VEGF inhibitors. Recently, targeted therapy against BRAF and immunotherapy (IT) for cases with microsatellite instability (MSI) have been integrated into clinical practice. While targeted therapy has shown promising results, resistance to treatment eventually develops in a significant portion of responsive patients. This article aims to review the available literature on mechanisms of resistance to BRAF inhibitors (BRAFis) and potential therapeutic strategies to overcome them.
Collapse
Affiliation(s)
- Patricia Guerrero
- Department of Medical Oncology, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (V.A.); (M.S.R.); (C.G.-M.); (C.G.d.Q.); (J.M.); (J.C.C.); (G.G.); (I.O.); (J.C.); (Í.M.-D.); (B.M.); (B.d.F.); (M.R.F.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hong JM, Lee JW, Seen DS, Jeong JY, Huh WK. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21:257. [PMID: 37749552 PMCID: PMC10518940 DOI: 10.1186/s12964-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, β-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and β-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.
Collapse
Affiliation(s)
- Jong Min Hong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Seung Seen
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea.
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Hjazi A, Nasir F, Noor R, Alsalamy A, Zabibah RS, Romero-Parra RM, Ullah MI, Mustafa YF, Qasim MT, Akram SV. The pathological role of C-X-C chemokine receptor type 4 (CXCR4) in colorectal cancer (CRC) progression; special focus on molecular mechanisms and possible therapeutics. Pathol Res Pract 2023; 248:154616. [PMID: 37379710 DOI: 10.1016/j.prp.2023.154616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Colorectal cancer (CRC) is comprised of transformed cells and non-malignant cells including cancer-associated fibroblasts (CAF), endothelial vasculature cells, and tumor-infiltrating cells. These nonmalignant cells, as well as soluble factors (e.g., cytokines), and the extracellular matrix (ECM), form the tumor microenvironment (TME). In general, the cancer cells and their surrounding TME can crosstalk by direct cell-to-cell contact and via soluble factors, such as cytokines (e.g., chemokines). TME not only promotes cancer progression through growth-promoting cytokines but also provides resistance to chemotherapy. Understanding the mechanisms of tumor growth and progression and the roles of chemokines in CRC will likely suggest new therapeutic targets. In this line, a plethora of reports has evidenced the critical role of chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis in CRC pathogenesis. In the current review, we take a glimpse into the role of the CXCR4/CXCL12 axis in CRC growth, metastasis, angiogenesis, drug resistance, and immune escape. Also, a summary of recent reports concerning targeting CXCR4/CXCL12 axis for CRC management and therapy has been delivered.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Rabia Noor
- Amna Inayat Medical College, Lahore, Pakistan
| | - Ali Alsalamy
- College of Medical Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Shaik Vaseem Akram
- Uttaranchal Institute of Technology, Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
10
|
Park C, Lee JW, Kim K, Seen DS, Jeong JY, Huh WK. Simultaneous activation of CXC chemokine receptor 4 and histamine receptor H1 enhances calcium signaling and cancer cell migration. Sci Rep 2023; 13:1894. [PMID: 36732336 PMCID: PMC9895059 DOI: 10.1038/s41598-023-28531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
C-X-C chemokine receptor 4 (CXCR4) is widely overexpressed in various types of cancer and is involved in several cancer phenotypes including tumor growth, survival, and metastasis. The roles of histamine and histamine receptor H1 (HRH1) in cancer pathogenesis remain controversial. Here, we show that HRH1 is widely expressed in various cancer cell lines and cancer tissues and that coexpression of CXCR4 and HRH1 is associated with poor prognosis in breast cancer. Using bimolecular fluorescence complementation and bioluminescence resonance energy transfer donor saturation assays, we demonstrate that CXCR4 and HRH1 can assemble into a heteromeric complex. Simultaneous activation of CXCR4 and HRH1 synergistically increases calcium flux in MDA-MB-231 cells that endogenously express CXCR4 and HRH1 but not in cells deficient in CXCR4 or HRH1. Costimulation of CXCR4 and HRH1 also significantly enhances CXCL12-induced MDA-MB-231 cell migration, while histamine alone does not induce cell migration. Synergistic effects on calcium flux and cell migration are inhibited by the Gαi inhibitor pertussis toxin and the Gαq inhibitor YM254890, suggesting that the Gαi and Gαq pathways are involved in the synergy. Enhanced calcium signaling and cell migration are also observed in NCI-H23 and HeLa cells, which coexpress CXCR4 and HRH1. Taken together, our findings demonstrate an interplay between CXCR4 and HRH1, and suggest the possibility of the CXCR4-HRH1 heteromer as a potential therapeutic target for anticancer therapy.
Collapse
Affiliation(s)
- Chulo Park
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, 08790, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiheon Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Seung Seen
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, 08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, 08790, Republic of Korea.
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, 08790, Republic of Korea.
- Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Benčurová K, Friske J, Anderla M, Mayrhofer M, Wanek T, Nics L, Egger G, Helbich TH, Hacker M, Haug A, Mitterhauser M, Balber T. CAM-Xenograft Model Provides Preclinical Evidence for the Applicability of [ 68Ga]Ga-Pentixafor in CRC Imaging. Cancers (Basel) 2022; 14:cancers14225549. [PMID: 36428644 PMCID: PMC9688097 DOI: 10.3390/cancers14225549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Increased expression of CXCR4 has been associated with liver metastasis, disease progression, and shortened survival. Using in vitro cell binding studies and the in ovo model, we aimed to investigate the potential of [68Ga]Ga-Pentixafor, a radiotracer specifically targeting human CXCR4, for CRC imaging. Specific membrane binding and internalisation of [68Ga]Ga-Pentixafor was shown for HT29 cells, but not for HCT116 cells. Accordingly, [68Ga]Ga-Pentixafor accumulated specifically in CAM-xenografts derived from HT29 cells, but not in HCT116 xenografts, as determined by µPET/MRI. The CAM-grown xenografts were histologically characterised, demonstrating vascularisation of the graft, preserved expression of human CXCR4, and viability of the tumour cells within the grafts. In vivo viability was further confirmed by µPET/MRI measurements using 2-[18F]FDG as a surrogate for glucose metabolism. [68Ga]Ga-Pentixafor µPET/MRI scans showed distinct radiotracer accumulation in the chick embryonal heart, liver, and kidneys, whereas 2-[18F]FDG uptake was predominantly found in the kidneys and joints of the chick embryos. Our findings suggest that [68Ga]Ga-Pentixafor is an interesting novel radiotracer for CRC imaging that is worth further investigation. Moreover, this study further supports the suitability of the CAM-xenograft model for the initial preclinical evaluation of targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Katarína Benčurová
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Maximilian Anderla
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Manuela Mayrhofer
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, 4020 Linz, Austria
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wanek
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Theresa Balber
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
The lncRNA NEAT1 Inhibits miRNA-216b and Promotes Colorectal Cancer Progression by Indirectly Activating YY1. JOURNAL OF ONCOLOGY 2022; 2022:8130132. [PMID: 36262350 PMCID: PMC9576420 DOI: 10.1155/2022/8130132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022]
Abstract
Background Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) is commonly considered an oncogene in various cancers. The long noncoding RNA NEAT1 has been reported to be overexpressed in colorectal cancer (CRC). However, the exact role of NEAT1 in CRC remains unknown. Our research aimed to explore the function of NEAT1 in the tumorigenesis and the development of CRC. Methods Real-time quantitative PCR (qRT-PCR) was used to detect the NEAT1, miR-216b, and YIN-YANG-1 (YY1) mRNA levels in CRC tissues and cells, then immunohistochemistry (IHC) was used to detect the expression of YY1 in CRC tissues. Luciferase reporter, qPCR, western blot, and DNA pulldown assays were conducted to study the relationships between NEAT1, miR-216b, and YY1. Flow cytometry analysis was performed for cell cycle and apoptosis analyses, and a colony formation assay was performed to test cell proliferation. Transwell assays were performed to detect cell invasion and migration. Results The NEAT1 expression was significantly upregulated in CRC tissues compared with its expression in normal tissues, and downregulation of NEAT1 suppressed the proliferation, migration, and invasion of CRC cells. Moreover, we found NEAT1 decreased the miR-216b level directly, and the suppression of miR-216b could inhibit the function of downstream YY1. However, overexpression of YY1 accelerated CRC cell proliferation, migration, and invasion. Conclusion Our results indicated that NEAT1 acted as an oncogene in CRC and promoted the progression of CRC by directly sponging miR-216 b expression to activate the expression of YY1. The NEAT1/miR-216b/YY1 axis may be a novel therapeutic target for CRC.
Collapse
|
13
|
Characteristics of immunophenotypes and immunological in tumor microenvironment and analysis of immune implication of CXCR4 in gastric cancer. Sci Rep 2022; 12:5720. [PMID: 35388021 PMCID: PMC8986874 DOI: 10.1038/s41598-022-08622-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
The formation of gastric cancer (GC) is a complicated process involving multiple factors and multiple steps. The tumor–immune microenvironment is essential for the growth of GC and affects the prognosis of patients. We performed multiple machine learning algorithms to identify immunophenotypes and immunological characteristics in GC patients’ information from the TCGA database and extracted immune genes relevance of the GC immune microenvironment. C-X-C motif chemokine receptor 4 (CXCR4), belongs to the C-X-C chemokine receptor family, which can promote the invasion and migration of tumor cells. CXCR4 expression is significantly correlated to metastasis and the worse prognosis. In this work, we assessed the condition of immune cells and identified the connection between CXCR4 and GC immune microenvironment, as well as the signaling pathways that mediate the immune responses involved in CXCR4. The work showed the risk scores generated by CXCR4-related immunomodulators could distinguish risk groups consisting of differential expression genes and could use for the personalized prognosis prediction. The findings suggested that CXCR4 is involved in tumor immunity of GC, and CXCR4 is considered as a potential prognostic biomarker and immunotherapy target of GC. The prognostic immune markers from CXCR4-associated immunomodulators can independently predict the overall survival of GC.
Collapse
|
14
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
15
|
Almeida C, Teixeira AL, Dias F, Machado V, Morais M, Martins G, Palmeira C, Sousa ME, Godinho I, Batista S, Costa-Silva B, Medeiros R. Extracellular Vesicles Derived-LAT1 mRNA as a Powerful Inducer of Colorectal Cancer Aggressive Phenotype. BIOLOGY 2022; 11:biology11010145. [PMID: 35053143 PMCID: PMC8773288 DOI: 10.3390/biology11010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5410)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Gabriela Martins
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Carlos Palmeira
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
- Pathology and Experimental Therapeutic Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| | - Maria Emília Sousa
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Inês Godinho
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Sílvia Batista
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
16
|
Gu Y, Gu W, Xie R, Chen Z, Xu T, Fei Z. Role of CXCR4 as a Prognostic Biomarker Associated With the Tumor Immune Microenvironment in Gastric Cancer. Front Cell Dev Biol 2021; 9:654504. [PMID: 34568309 PMCID: PMC8457401 DOI: 10.3389/fcell.2021.654504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide, accounting for high rates of morbidity and mortality in the population. The tumor microenvironment (TME), which plays a crucial role in GC progression, may serve as an optimal prognostic predictor of GC. In this study, we identified CXC motif chemokine receptor 4 (CXCR4) as a TME-related gene among thousands of differentially expressed genes (DEGs). We showed that CXCR4 can be used to predict the effect of immunotherapy in patients with GC. Methods: GC samples obtained from The Cancer Genome Atlas (TCGA) were analyzed for the presence of stroma (stromal score), the infiltration of immune cells (immune score) in tumor tissues, and the tumor purity (estimate score) using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) algorithm. DEGs were sorted based on differences in the values of the three scores. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the biological processes and pathways enriched in these DEGs. The correlations of scores with clinicopathological features and overall survival (OS) of patients with GC were assessed by the Kaplan–Meier survival and Cox regression analyses. Through subsequent protein–protein interaction (PPI) network and univariate Cox regression analyses, CXCR4 was identified as a TME-related gene. Gene Set Enrichment Analysis (GSEA) was performed to assess the role of CXCR4 in the TME of GC. The CIBERSORT algorithm was used to further explore the correlation between tumor-infiltrating immune cells (TIICs) and CXCR4. Finally, the TISIDB database was used to predict the efficacy of immunotherapy in patients with GC. Results: We extracted 1231 TME-related DEGs and by an overlapping screening of PPI network and univariate Cox regression, CXCR4 was identified as a biomarker of TME, which deeply engaged in immune-related biological processes of gastric cancer and have close association with several immunocompetent cells. Conclusion: CXCR4 may be a useful biomarker of prognosis and an indicator of the TME in GC.
Collapse
Affiliation(s)
- Yuyang Gu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenyue Gu
- Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rongrong Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenghua Fei
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Kasperska A, Borowczak J, Szczerbowski K, Stec E, Ahmadi N, Szylber Ł. Current challenges in targeting tumor desmoplasia to improve the efficacy of immunotherapy. Curr Cancer Drug Targets 2021; 21:919-931. [PMID: 34525931 DOI: 10.2174/1568009621666210825101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Desmoplasia is crucial for the development, progression and treatment of immune-resistant malignancies. and treatment of immune-resistant malignancies. Targeting desmoplasia-related metabolic pathways appears to be an interesting approach to expand our stock of disposable anti-tumor agents.CXCL12/CXCR4 axis inhibition reduces fibrosis, alleviates immunosuppression and significantly enhances the efficacy of PD-1 immunotherapy. CD40L substitute therapy may increase the activity of T-cells, downregulate CD40+, prolong patients' survival and prevent cancer progression. Although FAPα antagonists used in preclinical models did not lead to permanent cure, an alleviation of immune-resistance, modification of desmoplasia and a decrease in angiogenesis were observed. Targeting DDR2 may enhance the effect of anti-PD-1 treatment in multiple neoplasm cell lines and has the ability to overcome the adaptation to BRAF-targeted therapy in melanoma. Reprogramming desmoplasia could potentially cooperate not only with present treatment, but also other potential therapeutic targets. We present the most promising metabolic pathways related to desmoplasia and discuss the emerging strategies to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Anna Kasperska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Ewa Stec
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Navid Ahmadi
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge. United Kingdom
| | - Łukasz Szylber
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| |
Collapse
|
18
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|
19
|
Sin RWY, Foo DCC, Iyer DN, Fan MSY, Li X, Lo OSH, Law WL, Ng L. A Pilot Study Investigating the Expression Levels of Pluripotency-Associated Genes in Rectal Swab Samples for Colorectal Polyp and Cancer Diagnosis and Prognosis. Stem Cells Int 2021; 2021:4139528. [PMID: 34335790 PMCID: PMC8324395 DOI: 10.1155/2021/4139528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Change in gene expression is inevitable in cancer development. With more studies demonstrating the contributions of cancer stem cells (CSCs) in colorectal cancer (CRC) development, this study is aimed at investigating whether rectal swab specimen serves as a tool for detection of dysregulation of CSC or stem cell (SC) markers and at evaluating its potential as a new promising screening method for high-risk patients. Expression levels of 15 pluripotency-associated genes were assessed by quantitative PCR in 53 rectal swab specimens referred for endoscopic screening. Dysregulated genes and joint panels based on such genes were examined for their diagnostic potentials for both polyp and CRC. Out of 15 genes, Oct4, CD26, c-MYC, and CXCR4 showed significantly differential expression among normal, polyp, and CRC patients. A panel of Oct4 and CD26 showed an AUC value of 0.80 (p = 0.003) in identifying CRC patients from polyp/normal subjects, with sensitivity and specificity of 84.6% and 69.2%. A panel of c-MYC and CXCR4 achieved CRC/polyp identification with an AUC value of 0.79 (p = 0.002), with a sensitivity of 82.8% and specificity of 80.0%. The sensitivity for polyp and CRC was 80.0% and 85.7%, respectively. Further analysis showed that higher c-MYC and CXCR4 level was detected in normal subjects who developed polyps after 5-6 years, in comparison with subjects with no lesion developed, and the AUC of the c-MYC and CXCR4 panel increased to 0.88 (p < 0.001), with sensitivity and specificity of 84.4% and 92.3%, respectively, when these patients were included in the polyp group. This study suggests that the Oct4 and CD26 panel is a promising biomarker for distinguishing CRC from normal and polyp patients, whereas the c-MYC and CXCR4 panel may identify polyp and CRC from normal individuals.
Collapse
Affiliation(s)
- Ryan Wai-Yan Sin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dominic Chi-Chung Foo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Deepak Narayanan Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Sau-Yee Fan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oswens Siu-Hung Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Lun Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Prognostic Significance of CXCR4 in Colorectal Cancer: An Updated Meta-Analysis and Critical Appraisal. Cancers (Basel) 2021; 13:cancers13133284. [PMID: 34209026 PMCID: PMC8269109 DOI: 10.3390/cancers13133284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary C-X-C chemokine receptor type 4 (CXCR4), a G-protein-coupled receptor, has been demonstrated to stimulate proliferation and invasiveness of many different tumors, including colorectal cancer. Through in vitro evidence, overexpression of CXCR4 has been identified as a negative prognostic factor in colorectal cancer. The identification of prognostic biomarkers can improve the prediction of disease evolution and disease characterization, and guide treatment efforts. This systematic review with a meta-analysis was conducted to pool hazard ratios from prognostic studies on CXCR4, provide an updated estimate of prognostic power of CXCR4, and analyze modalities of evaluating and reporting CXCR4 expression. Abstract Background: This study was conducted to provide an updated estimate of the prognostic power of C-X-C chemokine receptor type 4 (CXCR4) in colorectal cancer (CRC), and analyze modalities of evaluating and reporting its expression. Methods: A systematic review with meta-analysis was performed and described according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Studies were identified through PubMed and Google Scholar. The pooled hazard ratios (HRs) for overall survival (OS) or progression-free survival (PFS) with 95% confidence interval (CI) were estimated with the random-effect model. Results: Sixteen studies were selected covering a period from 2005 to 2020. An immunohistochemical evaluation of CXCR4 was performed in all studies. Only in three studies assessment of mRNA through RT–PCR was correlated with prognosis; in the remaining studies, the authors identified prognostic categories based on immunohistochemical expression. In pooled analyses, significant associations were found between positive or high or strong expression of CXCR4 and T stage ≥3 (P = 0.0001), and positive or high or strong expression of CXCR4 and left side primary tumor localization (P = 0.0186). The pooled HR for OS was 2.09 (95% CI: 1.30–2.88) in favor of high CXCR4 expression; for PFS, it was 1.42 (95% CI: 1.13–1.71) in favor of high CXCR4 expression. Conclusion: High CXCR4 expression is clearly associated with increased risk of death and progression in CRC. However, strong methodologic heterogeneity in CXCR4 assessment hinders direct translation into clinical practice; thus, a consensus to streamline detection and scoring of CXCR4 expression in CRC is indicated.
Collapse
|
21
|
Cano-Garrido O, Álamo P, Sánchez-García L, Falgàs A, Sánchez-Chardi A, Serna N, Parladé E, Unzueta U, Roldán M, Voltà-Durán E, Casanova I, Villaverde A, Mangues R, Vázquez E. Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4 + Cancers. Cancers (Basel) 2021; 13:2929. [PMID: 34208189 PMCID: PMC8230831 DOI: 10.3390/cancers13122929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
The accumulated molecular knowledge about human cancer enables the identification of multiple cell surface markers as highly specific therapeutic targets. A proper tumor targeting could significantly avoid drug exposure of healthy cells, minimizing side effects, but it is also expected to increase the therapeutic index. Specifically, colorectal cancer has a particularly poor prognosis in late stages, being drug targeting an appropriate strategy to substantially improve the therapeutic efficacy. In this study, we have explored the potential of the human albumin-derived peptide, EPI-X4, as a suitable ligand to target colorectal cancer via the cell surface protein CXCR4, a chemokine receptor overexpressed in cancer stem cells. To explore the potential use of this ligand, self-assembling protein nanoparticles have been generated displaying an engineered EPI-X4 version, which conferred a modest CXCR4 targeting and fast and high level of cell apoptosis in tumor CXCR4+ cells, in vitro and in vivo. In addition, when EPI-X4-based building blocks are combined with biologically inert polypeptides containing the CXCR4 ligand T22, the resulting biparatopic nanoparticles show a dramatically improved biodistribution in mouse models of CXCR4+ human cancer, faster cell internalization and enhanced target cell death when compared to the version based on a single ligand. The generation of biparatopic materials opens exciting possibilities in oncotherapies based on high precision drug delivery based on the receptor CXCR4.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
22
|
Cave DD, Hernando-Momblona X, Sevillano M, Minchiotti G, Lonardo E. Nodal-induced L1CAM/CXCR4 subpopulation sustains tumor growth and metastasis in colorectal cancer derived organoids. Am J Cancer Res 2021; 11:5686-5699. [PMID: 33897875 PMCID: PMC8058729 DOI: 10.7150/thno.54027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) is currently the third leading cause for cancer-related mortality. Cancer stem cells have been implicated in colorectal tumor growth, but their specific role in tumor biology, including metastasis, is still uncertain. Methods: Increased expression of L1CAM, CXCR4 and NODAL was identified in tumor section of patients with CRC and in patients-derived-organoids (PDOs). The expression of L1CAM, CXCR4 and NODAL was evaluated using quantitative real-time PCR, western blotting, immunofluorescence, immunohistochemistry and flow cytometry. The effects of the L1CAM, CXCR4 and NODAL on tumor growth, proliferation, migration, invasion, colony-formation ability, metastasis and chemoresistance were investigated both in vitro and in vivo. Results: We found that human colorectal cancer tissue contains cancer stem cells defined by L1CAMhigh/CXCR4high expression that is activated by Nodal in hypoxic microenvironment. This L1CAMhigh/CXCR4high population is tumorigenic, highly resistant to standard chemotherapy, and determines the metastatic phenotype of the individual tumor. Depletion of the L1CAMhigh/CXCR4high population drastically reduces the tumorigenic potential and the metastatic phenotype of colorectal tumors. Conclusion: In conclusion, we demonstrated that a subpopulation of migrating L1CAMhigh/CXCR4high is essential for tumor progression. Together, these findings suggest that strategies aimed at modulating the Nodal signaling could have important clinical applications to inhibit colorectal cancer-derived metastasis.
Collapse
|
23
|
Li S, Yang H, Li S, Zhao Z, Wang D, Fu W. High expression of regulator of G-protein signalling 1 is associated with the poor differentiation and prognosis of gastric cancer. Oncol Lett 2021; 21:322. [PMID: 33692854 PMCID: PMC7933750 DOI: 10.3892/ol.2021.12584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has highlighted that immune and stromal cells form the majority of the tumour microenvironment (TME), which plays important roles in tumour progression. The present study aimed to screen vital prognostic genes associated with the TME in gastric cancer (GC). The ESTIMATE algorithm was applied to calculate TME-related scores, and the relationship between clinicopathological variables and these scores was analysed. Heatmaps and Venn plots were then used to visualize and screen differentially expressed genes. Furthermore, functional enrichment analysis was performed, and a protein-protein interaction network was constructed. Kaplan-Meier curves were generated to evaluate survival differences for each hub gene. Reverse transcription quantitative PCR was employed to evaluate the expression of the three hub genes in the validation cohort. The association between gene expression, clinicopathological variables and survival was also evaluated. Higher stromal scores were associated with worse outcomes in patients with GC. In addition, higher scores were significantly associated with a higher tumour grade, American Joint Committee on Cancer stage and T stage with regard to immune scores, stromal scores and ESTIMATE scores, respectively. In total, 644 upregulated intersecting genes and 126 downregulated genes were identified. Moreover, 71 TME-associated hub genes were identified. Batch survival analysis revealed that higher expression of CXCR4, PTGFR and RGS1 was significantly associated with worse outcome. Subsequently, the relationship between high expression of RGS1 and poor prognosis was verified, and high expression of RGS1 was associated with poor differentiation. In conclusion, it was found that compared with immune cells, stromal cells may play a more important role in the prognosis of patients with GC. In addition, the influence of RGS1 expression on survival in GC patients was identified and verified, and high expression of RGS1 was found to be associated with a low differentiation degree of GC.
Collapse
Affiliation(s)
- Shilong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin General Surgery Institute, Tianjin 300052, P.R. China
| | - Huaxiang Yang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin General Surgery Institute, Tianjin 300052, P.R. China
| | - Shuliang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252600, P.R. China
| | - Zongxian Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin General Surgery Institute, Tianjin 300052, P.R. China
| | - Daohan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin General Surgery Institute, Tianjin 300052, P.R. China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin General Surgery Institute, Tianjin 300052, P.R. China
| |
Collapse
|
24
|
Oliveira ALCDSL, Zerillo L, Cruz LJ, Schomann T, Chan AB, de Carvalho TG, Souza SVDP, Araújo AA, de Geus-Oei LF, de Araújo Júnior RF. Maximizing the potency of oxaliplatin coated nanoparticles with folic acid for modulating tumor progression in colorectal cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111678. [PMID: 33545840 DOI: 10.1016/j.msec.2020.111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
One of the challenges of nanotechnology is to improve the efficacy of treatments for diseases, in order to reduce morbidity and mortality rates. Following this line of study, we made a nanoparticle formulation with a small size, uniform surfaces, and a satisfactory encapsulation coefficient as a target for colorectal cancer cells. The results of binding and uptake prove that using the target system with folic acid works: Using this system, cytotoxicity and cell death are increased when compared to using free oxaliplatin. The data show that the system maximized the efficiency of oxaliplatin in modulating tumor progression, increasing apoptosis and decreasing resistance to the drug. Thus, for the first time, our findings suggest that PLGA-PEG-FA increases the antitumor effectiveness of oxaliplatin by functioning as a facilitator of drug delivery in colorectal cancer.
Collapse
Affiliation(s)
- Ana Luiza C de S L Oliveira
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Luana Zerillo
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands.
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | | | - Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Shirley Vitória de P Souza
- Graduation Student at Biomedical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Aurigena A Araújo
- Postgraduate Program in Public Health and Pharmaceutical Science and Pharmacology, Department of Biophysics and Farmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Raimundo F de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands; Graduation Student at Biomedical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, 59064 741 Natal, RN, Brazil.
| |
Collapse
|
25
|
Gao L, Li X, Nie X, Guo Q, Liu Q, Qi Y, Liu J, Lin B. Construction of novel mRNA-miRNA-lncRNA regulatory networks associated with prognosis of ovarian cancer. J Cancer 2020; 11:7057-7072. [PMID: 33123295 PMCID: PMC7592000 DOI: 10.7150/jca.49557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Ovarian cancer (OC) is the most lethal malignancy in the female reproductive system. Growing evidences demonstrates that competing endogenous RNA (ceRNA) network play crucial roles in the occurrence and progression of tumors. Therefore, we aimed to explore and identify novel mRNA-miRNA-lncRNA ceRNA networks associated with prognosis of OC. Methods: The differentially expressed gene (DEGs) of four expression profiles datasets (GSE5438, GSE40595, GSE38666 and GSE26712) were collected from Gene Expression Omnibus (GEO) database and analyzed with NetworkAnalyst. Intersection of DEGs were further employed for Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis. Protein-protein interaction (PPI) network and hub genes of DEGs were also identified. The expression levels and survival analysis of the hub genes in OC and their upstream miRNAs and lncRNAs were performed by various bioinformatics databases. More importantly, ceRNA networks were constructed based on mRNA-miRNA-lncRNA in OC. Results: A total of 178 DEGs including 38 upregulated and 140 downregulated genes from intersected DEGs of four expression profiles were identified in OC. Functional enrichment analysis suggested that the commonly DEGs were enriched in regulating enzyme inhibitor activity, glycosaminoglycan and G protein-coupled receptor binding, cell morphogenesis, and involved in pathways including metabolic process, proteoglycans in cancer. Top 10 hub genes with higher connectivity degree were selected for subsequent expression and prognosis analysis. After take expression levels and prognostic roles of hub genes and their upstream miRNAs and lncRNAs in OC into consideration, 2 mRNAs (TACC3 and CXCR4), 2 miRNAs (hsa-miR-425-5p and hsa-miR-146a-5p) and 3 lncRNAs (FUT8-AS1, LINC00665 and LINC01535) were significantly associated with the poor prognosis of OC. The mRNA-miRNA-lncRNA networks (TACC3-hsa-miR-425-5p-FUT8-AS1 and CXCR4-hsa-miR-146a-5p-LINC00665/LINC01535) were eventually constructed in OC based on ceRNA mechanism. Conclusion: We successfully constructed novel ceRNA network associated with the prognosis of ovarian cancer, which may provide a new strategy for early diagnosis and therapeutic intervention of OC.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xin Nie
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qing Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yue Qi
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
26
|
Wu QY, Yang CK, Rong LJ, Li JC, Lei LM. Investigation of the association between C-X-C motif chemokine receptor subunits and tumor infiltration levels and prognosis in patients with early-stage pancreatic ductal adenocarcinoma. Oncol Lett 2020; 20:16. [PMID: 32774489 PMCID: PMC7406880 DOI: 10.3892/ol.2020.11877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the malignancies with the highest morality rate due to postoperative local invasion and distant metastasis. Although C-X-C motif chemokine receptor (CXCR) subunits have been reported as prognostic indicators in gastric cancer, the prognostic value of CXCR subunits in PDAC remains poorly understood. In the present study, the expression levels and biological functions of CXCR subunits were investigated using multiple publicly accessible bioinformatic platforms and databases. Survival analysis was used to evaluate the prognostic value of CXCR subunits in 112 early-stage PDAC cases by setting the median expression levels as the cut-off values. A nomogram was constructed to combine CXCR subunit expression levels and clinical data for prognosis prediction. Moreover, the association between CXCR subunit expression levels and tumor infiltration levels were detected in PDAC. The expression levels of CXCR subunits were elevated in PDAC tumor tissues. In the multivariate Cox proportional risk regression model, high CXCR2, CXCR4 and CXCR6 expression levels in early-stage PDAC were associated with a more favorable prognosis. Further, it was demonstrated that the differential expression levels of CXCR subunits in PDAC for combined survival analysis could contribute to risk stratification. The nomogram model demonstrated the contribution of CXCR subunits and clinical features in the prognosis of PDAC. Gene Set Enrichment Analysis suggested that CXCR subunits serve a role in immunomodulatory functions. The expression levels and somatic copy number alterations of CXCR subunits were associated with tumor infiltration levels in PDAC. CXCR subunits were associated with prognosis in patients with early-stage PDAC and may be potential drug targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Qiong-Yuan Wu
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530023, P.R.China
| | - Liang-Jun Rong
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| | - Jun-Chan Li
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| | - Long-Ming Lei
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| |
Collapse
|
27
|
Molina-Cerrillo J, San Román M, Pozas J, Alonso-Gordoa T, Pozas M, Conde E, Rosas M, Grande E, García-Bermejo ML, Carrato A. BRAF Mutated Colorectal Cancer: New Treatment Approaches. Cancers (Basel) 2020; 12:cancers12061571. [PMID: 32545884 PMCID: PMC7353017 DOI: 10.3390/cancers12061571] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Colon cancer is one of the most frequently diagnosed malignancies in adults, considering both its incidence and prevalence. Anatomically, the right colon is considered as being from the cecum to the splenic flexure, and the left colon is from the splenic flexure to the rectum. Sidedness is a surrogate of a wide spectrum of colorectal cancer (CRC) biology features (embryology, microbiome, methylation, microsatellite instability (MSI), BRAF, aging, KRAS, consensus molecular subtypes (CMS), etc.), which result in prognostic factors. Different molecular subtypes have been identified, according to genomic and transcriptomic criteria. A subgroup harboring a BRAF mutation has been described, and represents approximately 10% of the patients diagnosed with colon cancer. This subgroup has morphological, clinical, and therapeutic characteristics that differ substantially from patients who do not carry this genetic alteration. Unfortunately, there is no established standard of care for this particular cohort of patients. This manuscript aims to study the biology of this subgroup of colon cancer, to understand the current approach in clinical research.
Collapse
Affiliation(s)
- Javier Molina-Cerrillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (M.S.R.); (J.P.); (T.A.-G.); (M.P.); (A.C.)
- CIBERONC, The Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
- Correspondence: or
| | - María San Román
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (M.S.R.); (J.P.); (T.A.-G.); (M.P.); (A.C.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (M.S.R.); (J.P.); (T.A.-G.); (M.P.); (A.C.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (M.S.R.); (J.P.); (T.A.-G.); (M.P.); (A.C.)
- CIBERONC, The Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Miguel Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (M.S.R.); (J.P.); (T.A.-G.); (M.P.); (A.C.)
| | - Elisa Conde
- Biomarkers and Therapeutic Targets Group and Core Facility, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain; (E.C.); (M.L.G.-B.)
| | - Marta Rosas
- Pathology department, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center, 28033 Madrid, Spain;
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain; (E.C.); (M.L.G.-B.)
| | - Alfredo Carrato
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (M.S.R.); (J.P.); (T.A.-G.); (M.P.); (A.C.)
- CIBERONC, The Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| |
Collapse
|
28
|
Shengnan J, Dafei X, Hua J, Sunfu F, Xiaowei W, Liang X. Long non-coding RNA HOTAIR as a competitive endogenous RNA to sponge miR-206 to promote colorectal cancer progression by activating CCL2. J Cancer 2020; 11:4431-4441. [PMID: 32489462 PMCID: PMC7255378 DOI: 10.7150/jca.42308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the common malignant tumors, the incidence of which is on rise. LncHOTAIR, considered as an oncogene, contributed to the progression of a lot of cancers. However, the molecular mechanism and biological functions of the HOTAIR/miR-206/CCL2 axis have not been reported before. Here, our research aimed to explore HOTAIR/miR-206/CCL2 axis in CRC to demonstrate its role in predicting the poor prognosis of CRC. LncHOTAIR, miR-206 and CCL2 mRNA were detected in CRC tissues and cells by RT-PCR. The interactions among LncHOTAIR, miR-206 and CCL2 were explored by luciferase reporter assay, qRT-PCR, western blot and RNA interfere. Flow Cytometry Cell Analysis was performed to detect cell cycle and apoptosis as well as colony assay was prepared to test the cell proliferation. Immunohistochemical analysis was used to detect the CCL2 protein in CRC tissues. In our study, silence of LncHOTAIR by RNA interference could suppress the proliferation, migration and invasion of CRC cells. Mechanistically, LncHOTAIR downregulated miR-206 abundance which indicated that LncHOTAIR was considered as a competing endogenous RNA (ceRNA) by directly sponging miR-206 in CRC cells. In addition, further exploration suggested that miR-206 could inhibit the function of the downstream CCL2, the expression of which was repressed by LncHOTAIR/miR-206 signaling. Furthermore, we verified that the overexpression of CCL2 attenuated CRC cell proliferation, migration, invasion. Overall, this study firstly elucidated that LncHOTAIR played as oncogene in CRC via directly sponging miR-206 to activate the downstream CCL2, which would be considered as the novel therapeutic target in CRC.
Collapse
Affiliation(s)
| | - Xie Dafei
- Zhejiang Hospital, Hangzhou, 310013, China
| | - Jin Hua
- Zhejiang Hospital, Hangzhou, 310013, China
| | - Fan Sunfu
- Zhejiang Hospital, Hangzhou, 310013, China
| | | | - Xu Liang
- Zhejiang Hospital, Hangzhou, 310013, China
| |
Collapse
|
29
|
Chuan T, Li T, Yi C. Identification of CXCR4 and CXCL10 as Potential Predictive Biomarkers in Triple Negative Breast Cancer (TNBC). Med Sci Monit 2020; 26:e918281. [PMID: 31924747 PMCID: PMC6977636 DOI: 10.12659/msm.918281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Efficacious therapy for triple negative breast cancer (TNBC) continues to be a profound clinical challenge, but the key driven genes and convoluted signaling pathways are still unknown. MATERIAL AND METHODS A total of 223 samples (163 TNBC and 60 healthy breast tissues) were taken and deeply integrated analyzed by R software from 4 expression profiles in the study, including GSE53752, GSE45827, GSE65194, and GSE38959. We examined differentially expressed genes (DEGs) and screen for critical genes and pathways enrichment. The protein‑protein interaction (PPI) network of DEGs-associated was built through the STRING Version: 11.0 database and Cytoscape software to filter the hub gene. Then, we verified hug gene expression levels through the Oncomine database. Also, we analyzed the prognostic value of TNBC patient's hub genes using the Kaplan-Meier plotter database. RESULTS In our study, we filter out 365 DEGs, including 212 upregulated genes and 153 downregulated genes. Then, 10 hub genes were picked out by the intersection of 12 algorithms. At the same time, we discovered that CXCR4 and CXCL10 overexpression are favorable prognostic factors for recurrence-free survival of TNBC through the Kaplan-Meier plotter database. CONCLUSIONS Our research found that CXCR4 and CXCL10 overexpressed, and they were a favorable prognostic factor in patients with TNBC. CXCR4 and CXCL10 might be effective targets for TNBC therapy.
Collapse
Affiliation(s)
- Tian Chuan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Tian Li
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China (mainland)
| | - Cui Yi
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
30
|
Pakizehkar S, Ranji N, Sohi AN, Sadeghizadeh M. Polymersome‐assisted delivery of curcumin: A suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Safura Pakizehkar
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | | | - Majid Sadeghizadeh
- Department of Genetics, School of Biological SciencesTarbiat Modares University Tehran Iran
| |
Collapse
|
31
|
NSAID Use and Colorectal Cancer—Letter. Cancer Epidemiol Biomarkers Prev 2018; 27:1536. [DOI: 10.1158/1055-9965.epi-18-0761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
|
32
|
Berg KA, Clarke WP. Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity. Int J Neuropsychopharmacol 2018; 21:962-977. [PMID: 30085126 PMCID: PMC6165953 DOI: 10.1093/ijnp/pyy071] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
Constitutive receptor activity/inverse agonism and functional selectivity/biased agonism are 2 concepts in contemporary pharmacology that have major implications for the use of drugs in medicine and research as well as for the processes of new drug development. Traditional receptor theory postulated that receptors in a population are quiescent unless activated by a ligand. Within this framework ligands could act as agonists with various degrees of intrinsic efficacy, or as antagonists with zero intrinsic efficacy. We now know that receptors can be active without an activating ligand and thus display "constitutive" activity. As a result, a new class of ligand was discovered that can reduce the constitutive activity of a receptor. These ligands produce the opposite effect of an agonist and are called inverse agonists. The second topic discussed is functional selectivity, also commonly referred to as biased agonism. Traditional receptor theory also posited that intrinsic efficacy is a single drug property independent of the system in which the drug acts. However, we now know that a drug, acting at a single receptor subtype, can have multiple intrinsic efficacies that differ depending on which of the multiple responses coupled to a receptor is measured. Thus, a drug can be simultaneously an agonist, an antagonist, and an inverse agonist acting at the same receptor. This means that drugs have an additional level of selectivity (signaling selectivity or "functional selectivity") beyond the traditional receptor selectivity. Both inverse agonism and functional selectivity need to be considered when drugs are used as medicines or as research tools.
Collapse
Affiliation(s)
- Kelly A Berg
- Department of Pharmacology, University of Texas Health, San Antonio, Texas
| | - William P Clarke
- Department of Pharmacology, University of Texas Health, San Antonio, Texas,Correspondence: William P. Clarke, PhD, Department of Pharmacology, Mail Stop 7764, UT Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 ()
| |
Collapse
|