1
|
Tamura R. Drug Repositioning for Refractory Benign Tumors of the Central Nervous System. Int J Mol Sci 2023; 24:12997. [PMID: 37629179 PMCID: PMC10455557 DOI: 10.3390/ijms241612997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Drug repositioning (DR) is the process of identifying novel therapeutic potentials for already-approved drugs and discovering new therapies for untreated diseases. DR can play an important role in optimizing the pre-clinical process of developing novel drugs by saving time and cost compared with the process of de novo drug discovery. Although the number of publications related to DR has rapidly increased, most therapeutic approaches were reported for malignant tumors. Surgical resection represents the definitive treatment for benign tumors of the central nervous system (BTCNS). However, treatment options remain limited for surgery-, chemotherapy- and radiation-refractory BTCNS, as well as malignant tumors. Meningioma, pituitary neuroendocrine tumor (PitNET), and schwannoma are the most common BTCNS. The treatment strategy using DR may be applied for refractory BTCNS, such as Grade 2 meningiomas, neurofibromatosis type 2-related schwannomatosis, and PitNETs with cavernous sinus invasion. In the setting of BTCNS, stable disease can provide significant benefit to the patient. DR may provide a longer duration of survival without disease progression for patients with refractory BTCNS. This article reviews the utility of DR for refractory BTCNS.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Impact of metformin on the incidence of human cholangiocarcinoma in diabetic patients: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2023; 35:241-247. [PMID: 36708293 DOI: 10.1097/meg.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common liver cancer. Diabetes is a well-known risk factor; however, treatment with metformin has been reported to be protective for several cancers, but data on CCA are still sparse and heterogeneous. We performed this meta-analysis to investigate the role of metformin as a potential protective factor for CCA. In this systematic review and meta-analysis, we searched PubMed/MEDLINE and EMBASE databases, from the date of inception to November 2022, for studies analyzing CCA rate in patients taking metformin. Twenty-nine articles were initially identified, of which four were eligible and included in our systematic review and meta-analysis, from which we estimated the relative risk (RR). The rate of CCA was lower for diabetic patients taking metformin than diabetic patients without metformin intake when comparing two highest quality studies [RR, 0.38; 95% confidence interval (CI), 0.290-0.508; P < 0.001], and three studies with similar inclusion criteria (RR, 0.34; 95% CI, 0.51-0.35; P < 0.001) without significant statistical heterogeneity among them (I2 = 29.83%, P = 0,2326 and I2 = 35.08%; P = 0.2143, respectively). Our study demonstrated a significant impact of metformin in reducing the risk of CCA by nearly 62-66% in diabetic patients taking metformin.
Collapse
|
3
|
Chen J, Jin H, Zhou H, Liu K. Effects of Metformin on Risk and Prognosis of Biliary Tract Cancer: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:298. [PMID: 36837499 PMCID: PMC9967261 DOI: 10.3390/medicina59020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Background and Objectives: Metformin has been found to potentially reduce the risk and improve the prognosis of a variety of tumors, but these findings remain controversial in biliary tract cancer (BTC). Therefore, this systematic review and meta-analysis was conducted to investigate the association between metformin and BTC. Materials and Methods: Two independent researchers comprehensively searched PubMed, Embase, the Cochrane Library, and Web of Science for eligible studies published from their inception to 31 March 2022. Comparisons of risk, overall survival (OS), and disease-free survival (DFS) for patients with BTC were selected as the endpoints of interest and pooled by random or fixed-effects models. Results: Eleven studies with a total of 24,788,738 participants were eligible for this analysis. The overall pooled effects showed no significant differences in biliary tract cancer risk (hazard ratio (HR) = 0.82, 95% confidence interval (CI): 0.50-1.35, p = 0.436), OS (HR = 0.88, 95% CI: 0.74-1.04, p = 0.135), or DFS (HR = 1.03, 95% CI: 0.79-1.34, p = 0.829) between metformin users and non-users. When restricting participants to those with diabetes, a similar negative result was found, demonstrating that metformin use was not significantly associated with a lower risk of developing BTC compared with a lack of metformin use (HR = 0.65, 95% CI: 0.39-1.07, p = 0.089); notably, the included studies exhibited significant heterogeneity in the selection of participants and the definition of metformin users. Conclusions: Metformin may not be able to reduce the risk of BTC and improve prognosis in certain populations. Based on the limited quantity and quality of the included studies, the present results should be interpreted within their limitations, and further studies are warranted to determine the optimal timing, dose, duration, and scenario of metformin administration.
Collapse
Affiliation(s)
| | | | | | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Selenium Yeast and Fish Oil Combination Diminishes Cancer Stem Cell Traits and Reverses Cisplatin Resistance in A549 Sphere Cells. Nutrients 2022; 14:nu14153232. [PMID: 35956408 PMCID: PMC9370110 DOI: 10.3390/nu14153232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a prevalent chemotherapeutic agent used for non-small cell lung cancer (NSCLC) that is difficult to treat by targeted therapy, but the emergence of resistance severely limits its efficacy. Thus, an effective strategy to combat cisplatin resistance is required. This study demonstrated that, at clinically achievable concentrations, the combination of selenium yeast (Se-Y) and fish oil (FO) could synergistically induce the apoptosis of cancer stem cell (CSC)-like A549 NSCLC sphere cells, accompanied by a reversal of their resistance to cisplatin. Compared to parental A549 cells, sphere cells have higher cisplatin resistance and possess elevated CSC markers (CD133 and ABCG2), epithelial-mesenchymal transition markers (anexelekto (AXL), vimentin, and N-cadherin), and cytoprotective endoplasmic reticulum (ER) stress marker (glucose-regulated protein 78) and increased oncogenic drivers, such as yes-associated protein, transcriptional coactivator with PDZ-binding motif, β-catenin, and cyclooxygenase-2. In contrast, the proapoptotic ER stress marker CCAAT/enhancer-binding protein homologous protein and AMP-activated protein kinase (AMPK) activity were reduced in sphere cells. The Se-Y and FO combination synergistically counteracted the above molecular features of A549 sphere cells and diminished their elevated CSC-like side population. AMPK inhibition by compound C restored the side population proportion diminished by this nutrient combination. The results suggest that the Se-Y and FO combination can potentially improve the outcome of cisplatin-treated NSCLC with phenotypes such as A549 cells.
Collapse
|
5
|
Jafarzadeh E, Montazeri V, Aliebrahimi S, Sezavar AH, Ghahremani MH, Ostad SN. Combined regimens of cisplatin and metformin in cancer therapy: A systematic review and meta-analysis. Life Sci 2022; 304:120680. [PMID: 35662589 DOI: 10.1016/j.lfs.2022.120680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cancer cell resistance to chemotherapy agents is a challenging issue in treating patients with cancer. Findings suggest that a combination of drugs may have synergistic or additive effects. in the present study, we systematically reviewed the combined regimens of metformin with cisplatin in various treating cancers. METHODS A comprehensive systematic search was performed in PubMed, Scopus, Embase, and other relevant databases with the following keyword "metformin", "cisplatin", "combination", "using all their equivalents and similar terms. Pooled odds ratio (OR) and 95% confidence intervals of cell viability and tumor volume as primary outcomes were calculated using Der-Simonian and Laird method while random effects meta-analysis was used, taking into account clinical and statistical heterogeneity. RESULTS Overall, 44 studies were retrieved, Findings of the present meta-analysis showed that combined regimens of metformin plus cisplatin was significantly associated with decreased odds of tumor volume and cell viability for all cancers compared with cisplatin alone (pooled OR: 0.40; 95% CI: 0.27, 0.58) and (pooled OR: 0.49; 95% CI: 0.42, 0.58) respectively. The result was same for cell viability in lung cancer (pooled OR: 0.59; 95% CI: 0.49, 0.70). The tumor size reduction and the response rate were evident in the animal xenografts model. CONCLUSION Findings indicated that combining metformin with cisplatin is a practical therapeutic approach to increase treatment efficacy in the case of cell viability and tumor volume and minimize side effects. A combination of metformin with cisplatin could enhance treatment efficacy through synergistic inhibitory effects on the growth of cancer cells.
Collapse
Affiliation(s)
- Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Montazeri
- Department of Clinical Pharmacy, Virtual University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Medical Education, Virtual University of Medical Sciences, Tehran, Iran
| | - Ahmad Habibian Sezavar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Xu Y, Li X, Wang H. Protective Roles of Apigenin Against Cardiometabolic Diseases: A Systematic Review. Front Nutr 2022; 9:875826. [PMID: 35495935 PMCID: PMC9051485 DOI: 10.3389/fnut.2022.875826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Apigenin is a flavonoid with antioxidant, anti-inflammatory, and anti-apoptotic activity. In this study, the potential effects of apigenin on cardiometabolic diseases were investigated in vivo and in vitro. Potential signaling networks in different cell types induced by apigenin were identified, suggesting that the molecular mechanisms of apigenin in cardiometabolic diseases vary with cell types. Additionally, the mechanisms of apigenin-induced biological response in different cardiometabolic diseases were analyzed, including obesity, diabetes, hypertension and cardiovascular diseases. This review provides novel insights into the potential role of apigenin in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yajie Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xue Li,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui Wang,
| |
Collapse
|
7
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
8
|
Metformin Use and Survival in Patients with Advanced Extrahepatic Cholangiocarcinoma: A Single-Center Cohort Study in Fuyang, China. Gastroenterol Res Pract 2021; 2021:9468227. [PMID: 34745255 PMCID: PMC8570903 DOI: 10.1155/2021/9468227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/16/2021] [Indexed: 12/16/2022] Open
Abstract
Aims Metformin is an oral antidiabetic agent that has been widely prescribed for the treatment of type II diabetes. In recent years, anticancer properties of metformin have been revealed for numerous human malignancies. However, there are few indications available regarding the feasibility and safety of these studies in an advanced extrahepatic cholangiocarcinoma (EHCC) population. This study is aimed at evaluating the feasibility, safety, and value of metformin use and survival in patients with advanced EHCC. Methods All patients with advanced EHCC observed at Fuyang People's Hospital between January 2015 and November 2020 were included in the study. Case data, clinical information, and imaging results were abstracted from the self-administered questionnaire and electronic medical record. All patients were divided into study subjects and control subjects, and the study subjects were given metformin, 0.5 g, three times a day, while control subjects were without metformin. The metformin use and survival time of the subjects were asked by telephone, out-patient, or door-to-door visit, after they left the hospital. Results One hundred and thirty-three study cases and 589 controls were included in the analysis. This study showed that metformin use cannot improve the overall survival rate of patients with advanced EHCC ([95% CI]: -17.05-0.375, t = −1.889, P value = 0.061), but the survival time of patients with drainage treatment from control group (n = 496) was significantly shorter than that of patients with drainage treatment from the study group (n = 113), and the difference was statistically significant (z = −2.230, P value = 0.026). There were significant differences between metformin used before or after the diagnosis of advanced EHCC (OR[95% CI], 3.432[2.617-4.502]; P value = 0.001) in survival time. And there was significant difference between the duration of metformin use and survival prognosis (OR[95% CI], 2.967[1.383-6.368]; P = 0.005). Conclusion Metformin can improve the survival of advanced EHCC patients who underwent drainage treatment, especially for metformin use after diagnosis of advanced EHCC and long duration of metformin.
Collapse
|
9
|
Loilome W, Dokduang H, Suksawat M, Padthaisong S. Therapeutic challenges at the preclinical level for targeted drug development for Opisthorchis viverrini-associated cholangiocarcinoma. Expert Opin Investig Drugs 2021; 30:985-1006. [PMID: 34292795 DOI: 10.1080/13543784.2021.1955102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelium with the highest incidence found in Thailand. Some patients are considered suitable for adjuvant therapy and surgical resection is currently the curative treatment for CCA patients. Tumor recurrence is still a hurdle after treatment; hence, finding novel therapeutic strategies to combat CCA is necessary for improving outcome for patients. AREAS COVERED We discuss targeted therapies and other novel treatment approaches which include protein kinase inhibitors, natural products, amino acid transporter-based inhibitors, immunotherapy, and drug repurposing. We also examine the challenges of tumor heterogeneity, cancer stem cells (CSCs), the tumor microenvironment, exosomes, multiomics studies, and the potential of precision medicine. EXPERT OPINION Because CCA is difficult to diagnose at the early stage, the traditional treatment approaches are not effective for many patients and most tumors recur. Consequently, researchers are exploring multi-aspect molecular carcinogenesis to uncover molecular targets for further development of novel targeted drugs.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
10
|
Wandee J, Srinontong P, Prawan A, Senggunprai L, Kongpetch S, Yenjai C, Kukongviriyapan V. Derrischalcone suppresses cholangiocarcinoma cells through targeting ROS-mediated mitochondrial cell death, Akt/mTOR, and FAK pathways. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1929-1940. [PMID: 34086099 DOI: 10.1007/s00210-021-02102-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Chemotherapy is a palliative treatment for unresectable patients with cholangiocarcinoma (CCA). However, drug resistance is a major cause of the failure of this treatment. Derrischalcone (DC), a novel chalcone isolated from Derris indica fruit, has been shown pharmacologically active; though, the effect of DC on CCA is unknown. The present study investigated the cytotoxic, antiproliferative, anti-migration, and anti-invasion effects and underlying mechanisms of DC on CCA KKU-M156 and KKU-100 cells. Cytotoxicity and apoptosis were evaluated by acridine orange and ethidium bromide fluorescent staining. Reactive oxygen species (ROS) was measured by dihydroethidium assay. Cell proliferation and reproductive cell death were assessed by sulforhodamine B staining and colony-forming assay. Migration and invasion were determined by wound healing and transwell chamber assays. Protein expressions associated with cell death, proliferation, migration, and invasion were analyzed by western immunoblotting. We found that DC induced cytotoxicity and apoptosis in association with ROS formation and oxidative stress. Treatment with N-acetylcysteine suppressed ROS formation and attenuated DC-induced cytotoxic and apoptotic effects. DC increased the expression of p53, p21, Bax, and cytochrome c proteins in association with cell death. DC-induced antiproliferation, colony formation, anti-migration, and anti-invasion were associated with the suppression of Akt/mTOR/cyclin D1 and FAK signaling pathways. These findings suggest that the multi-targeting strategies with DC may be a novel treatment for cancer therapy.
Collapse
Affiliation(s)
- Jaroon Wandee
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand. .,Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Piyarat Srinontong
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand.,Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
11
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Samatiwat P, Tabtimmai L, Suphakun P, Jiwacharoenchai N, Toviwek B, Kukongviriyapan V, Gleeson MP, Choowongkomon K. The Effect of the EGFR - Targeting Compound 3-[(4-Phenylpyrimidin-2-yl) Amino] Benzene-1-Sulfonamide (13f) against Cholangiocarcinoma Cell Lines. Asian Pac J Cancer Prev 2021; 22:381-390. [PMID: 33639651 PMCID: PMC8190356 DOI: 10.31557/apjcp.2021.22.2.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is a noxious malignancy of epithelium of the bile duct with a low response rate to chemotherapy. The epidermal growth factor receptor (EGFR) signaling pathway is implicated in the development of cancerous cells, especially CCA. In this study, we report detailed biological profiling of 13f identified from our earlier hit expansion studies. The aim of this work was to expand our understanding of 13f via more detailed investigations of its mechanism of action against KKU-100, KKU-452 and KKU-M156 CCA cells, as well as in comparison to the EGFR inhibitor Gefitinib and non-specific chemotherapeutic agents such as Cisplatin. METHODS Inhibiting EGFR-Kinase, cytotoxicity, clonogenic assay, wound healing and apoptosis were performed. Levels of total expression of EGFR and EGFR phosphorylation proteins were detected. RESULTS 13f was confirmed as an inhibitor of EGFR with an IC50 value against the tyrosine kinase of EGFR of 22 nM and IC50 values for 48 h incubation period were 1.3 ± 1.9, 1.5 ± 0.4 and 1.7 ± 1.1 µM of KKU-100, KKU-452 and KKU-M156, respectively through dose- and time-dependent induction of early apoptosis of CCA cells. The compound also suppressed the clonogenic ability of KKU-100 and KKU-M156 cells stronger than Gefitinib, while potently inhibiting EGF-stimulated CCA cell migratory activity in KKU-452 cells. It was observed that under normal conditions EGFR was activated in CCA cells. EGF-stimulated basal expression of EGFR in KKU-452 cells was suppressed following 13f treatment, which was significantly greater than that of the marketed EGFR inhibitor Gefitinib. CONCLUSION In summary, our study showed that 13f has potent anti-cancer activities including antiproliferation, clonogenic ability and migration through the modulation of EGFR signaling pathway in CCA for the first time. The compound represents an interesting starting point as a potential chemotherapeutic agent in ongoing efforts to improve response rate in CCA patients.<br />.
Collapse
Affiliation(s)
- Papavee Samatiwat
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Lueacha Tabtimmai
- Department of Biochemistry, Kasetsart University, Bangkok, 10900, Thailand.
| | - Prapasri Suphakun
- Department of Biochemistry, Kasetsart University, Bangkok, 10900, Thailand.
| | - Nattanan Jiwacharoenchai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, 10900, Thailand.
| | | | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - M. Paul Gleeson
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok. Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
- For Correspondence:
| |
Collapse
|
13
|
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, Fan S, Huang Y, Lin H, Ying Y. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem 2021; 21:949-962. [PMID: 32951587 DOI: 10.2174/1871520620666200918102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Nan Tang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shanxi Provincial People's Hospital, Xian 710000, China
| | - Yangjinming Bai
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chenxi Guan
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Wansi Zhang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shipan Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Yonghong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
14
|
Guo L, Cui J, Wang H, Medina R, Zhang S, Zhang X, Zhuang Z, Lin Y. Metformin enhances anti-cancer effects of cisplatin in meningioma through AMPK-mTOR signaling pathways. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:119-131. [PMID: 33575476 PMCID: PMC7851485 DOI: 10.1016/j.omto.2020.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Abstract
Cisplatin is currently used to treat inoperable recurrent meningiomas, but its side effects and drug resistance limit its use. Metformin has recently been identified as a chemosensitizing agent. However, the combined treatment of cisplatin and metformin in high-grade meningiomas has not been reported. Herein, our findings demonstrate metformin significantly enhanced cisplatin-induced inhibition of proliferation in meningioma cells, which was associated with the induction of G0/G1 cell cycle arrest. Additionally, metformin activated adenosine monophosphate activated protein kinase (AMPK) and repressed the mammalian target of rapamycin (mTOR) signaling pathways via an AMPK-dependent mechanism. Furthermore, our xenograft murine model confirmed that metformin enhanced cisplatin’s anti-cancer effect by upregulation of AMPK and downregulation of mTOR signaling pathways. In addition, in 63 patients with atypical meningiomas, the activation of AMPK was significantly associated with tumor recurrence and short disease-free survival (DFS). These results demonstrate metformin enhanced the anti-cancer effect of cisplatin in meningioma in vitro and in vivo, an effect mediated through the activation of AMPK and repression of mTOR signaling pathways. Our study suggests the combined treatment of metformin and cisplatin is an effective and safe treatment for high-grade meningiomas.
Collapse
Affiliation(s)
- Liemei Guo
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| | - Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rogelio Medina
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shilei Zhang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| |
Collapse
|
15
|
Tseng CH. Metformin and Biliary Tract Cancer in Patients With Type 2 Diabetes. Front Oncol 2020; 10:587666. [PMID: 33194743 PMCID: PMC7653020 DOI: 10.3389/fonc.2020.587666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Aim This retrospective cohort study evaluated whether metformin use in patients with type 2 diabetes mellitus might reduce the risk of biliary tract cancer (BTC); and explored whether metformin use might affect the overall survival in patients who developed BTC. Methods New-onset type 2 diabetes patients aged 25–75 years during 1999–2005 were enrolled from the Taiwan’s National Health Insurance and followed up until December 31, 2011. A total of 287,995 ever users and 16,229 never users were identified (unmatched original cohort) and a 1:1 matched pairs of 16,229 ever users and 16,229 never users based on propensity score (PS) were created (matched cohort). Hazard ratios were estimated by three Cox regression models: 1) adjusted for PS; 2) incorporated with the inverse probability of treatment weighting using PS; and 3) all covariates treated as independent variables. Overall survival was compared between ever users and never users of metformin who developed BTC. Results In the unmatched cohort, 73 never users and 523 ever users developed BTC, with respective incidence of 100.36 and 38.06 per 100,000 person-years. An overall risk reduction was observed in metformin users in all three regression models with respective hazard ratio (95% confidence interval) of 0.442 (0.344-0.568), 0.377 (0.295-0.481), and 0.477 (0.370-0.615). The tertile analyses showed a dose-response pattern with a neutral effect in the first tertile when metformin use was <2 years and a significant risk reduction in the second and third tertiles. Findings in the matched cohort were consistent with those observed in the unmatched cohort. The overall survival did not differ significantly between ever and never users of metformin among patients who developed BTC. Conclusions Metformin significantly reduces the overall risk of BTC by 50%–60%. A dose-response effect is observed and users of approximately 2 years show significantly reduced risk. However, metformin does not affect the overall survival in patients with BTC.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
16
|
Saengboonmee C, Seubwai W, Lert-Itthiporn W, Sanlung T, Wongkham S. Association of Diabetes Mellitus and Cholangiocarcinoma: Update of Evidence and the Effects of Antidiabetic Medication. Can J Diabetes 2020; 45:282-290. [PMID: 33218924 DOI: 10.1016/j.jcjd.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is a risk factor for cancer in many organs and associated with an increased risk of cholangiocarcinoma (CCA). The molecular linkage between these diseases has been demonstrated in preclinical studies, which have highlighted the role of hyperinsulinemia and hyperglycemia in the carcinogenesis and progression of CCA. Recent studies on the emerging role of antidiabetic medication in the development and progression of CCA showed a subclass of antidiabetic drug with a therapeutic effect on CCA. Although associations between CCA, insulin analogues and sulfonylureas are unclear, incretin-based therapy is likely associated with an increased risk for CCA, and may lead to CCA progression, as demonstrated by in vitro and in vivo experiments. In contrast, biguanides, especially metformin, exert an opposite effect, associated with a reduced risk of CCA and inhibited in vitro and in vivo CCA progression. The association between incretin-based therapy and the risk of CCA needs further clarification, as metformin is being studied in an ongoing clinical trial. Understanding the association between DM and CCA is critical for preventing the development of CCA in patients with DM, and for establishing the appropriateness of antidiabetic medication to treat CCA. Determining how metformin affects CCA can lead to repurposing this safe and well-known drug for improving CCA treatment, regardless of the diabetes status of patients.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States.
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanachai Sanlung
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
17
|
Yang T, Yu S, Liu L, Sun Y, Lan Y, Ma X, Zhu R, Li L, Hou Y, Liu Y. Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemoimmunotherapy. Biomater Sci 2020; 8:5698-5714. [PMID: 32930254 DOI: 10.1039/d0bm01191f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The combination therapy of cisplatin (CDDP) and metformin (MET) is a clinical strategy to enhance therapeutic outcomes in lung cancer. However, the efficacy of this combination is limited due to the asynchronous pharmacokinetic behavior of CDDP and MET, used as free drugs. Therefore, in this work, hyaluronic acid-cisplatin/polystyrene-polymetformin (HA-CDDP/PMet) dual-prodrug co-assembled nanoparticles were developed, with precise ratiometric co-delivery of CDDP and MET for chemo-immunotherapy against lung cancer. The HA-CDDP/PMet NPs showed a spherical morphology with an average particle size of 166.5 nm and a zeta potential of -17.4 mV at an HA-CDDP and PMet mass ratio of 1/1. The content of CDDP and MET in HA-CDDP/PMet NPs was 3.7% and 15.2%, respectively. In vitro antitumor effects of CDDP and MET resulted in an improved synergistic action on proliferation inhibition and apoptosis induction on Lewis lung cancer cells. Moreover, in vivo by co-delivered HA-CDDP/PMet NPs into tumor cells, with an excellent intracellular CDDP and MET cleavage. These nanoparticles exhibited significantly increased tumor accumulation and tumor growth inhibition and prolonged animal overall survival in Lewis lung cancer bearing mice without nephrotoxicity, excess of free drugs and homo-prodrugs. The synergistic effect of MET and CDDP in HA-CDDP/PMet NPs resulted in up-regulation of the cleaved poly(ADP)-ribose polymerase (PARP) protein to induce tumor cell apoptosis, and down-regulation of the excision repair cross-complementation group 1 (ERCC1) protein level to decrease the resistance to CDDP. The synergistic effect of MET and CDDP in HA-CDDP/PMet NPs also resulted in induction of the adenosine monophosphate (AMP)-activated protein kinase-α (AMPK-α) pathway and inhibition of the mammalian target of rapamycin (mTOR), finally exerting a chemotherapeutic effect and modulating a potent immunotherapeutic function with an increase in CD4+ and CD8+ T cells, a concomitant decrease in regulatory T (Treg) cells, and an increased expression of the cytokines IFN-γ and TNF-α. Therefore, the immunochemotherapy using CDDP and MET mediated by this dual prodrug co-assembled nano-platform might provide a promising treatment strategy against lung cancer.
Collapse
Affiliation(s)
- Tong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jaidee R, Kongpetch S, Senggunprai L, Prawan A, Kukongviriyapan U, Kukongviriyapan V. Phenformin inhibits proliferation, invasion, and angiogenesis of cholangiocarcinoma cells via AMPK-mTOR and HIF-1A pathways. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1681-1690. [PMID: 32383028 DOI: 10.1007/s00210-020-01885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023]
Abstract
Phenformin (Phen), a potent activator of AMPK, is effective against some resistant cancers. This study evaluated the inhibition of proliferation, migration, invasion, and angiogenesis by Phen in aggressive cancer cells and investigated the underlying mechanism of the inhibition. Cholangiocarcinoma (CCA) KKU-156 and KKU-452 cells were used in this study. The results showed that Phen suppressed cell proliferation and induced apoptosis in both cells. Phen suppressed migration and invasion of cancer cells in wound healing and transwell chamber assays, respectively. The effects were associated with depletions of glutathione (GSH) and decreased glutathione redox ratio which represents cellular redox state. The redox stress was linked with the loss of mitochondrial transmembrane potential, as evaluated by JC-1 assay. The effect of Phen on angiogenesis was performed using HUVEC cultured cells. Phen alone did not affect tube formation of HUVEC cells. However, conditioned media from CCA cell cultures treated with Phen suppressed the tube-like structure formation. The antitumor effect of Phen was associated with AMPK activation and suppression of mTOR phosphorylation, HIF-1A, and VEGF protein expression. In conclusion, Phen inhibits cell proliferation, migration, invasion, and angiogenesis probably through AMPK-mTOR and HIF-1A-VEGF pathways. Phen may be repurposed as chemoprevention of cancer.
Collapse
Affiliation(s)
- Rattanaporn Jaidee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
19
|
Ou HX, Huang Q, Liu CH, Xiao J, Lv YC, Li X, Lei LP, Mo ZC. Midkine Inhibits Cholesterol Efflux by Decreasing ATP-Binding Membrane Cassette Transport Protein A1 via Adenosine Monophosphate-Activated Protein Kinase/Mammalian Target of Rapamycin Signaling in Macrophages. Circ J 2020; 84:217-225. [PMID: 31915322 DOI: 10.1253/circj.cj-19-0430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND Midkine (MK), a heparin-binding protein, participates in multiple cellular processes, such as immunity, cellular growth and apoptosis. Overwhelming evidence indicates that MK plays an important role in various pathological processes, including chronic inflammation, autoimmunity, cancer, and infection. Recent studies demonstrated that MK may be involved in the development of atherosclerosis, yet the mechanism has not been fully explored. Therefore, this study aims to investigate the effect and mechanism of MK on macrophage cholesterol efflux. METHODS AND RESULTS Using Oil Red O staining, NBD-cholesterol fluorescence labeling and enzymatic methods, it observed that MK markedly promoted macrophage lipid accumulation. Liquid scintillation counting (LSC) showed that MK decreased cholesterol efflux. Moreover, cell immunofluorescence, western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) showed that MK downregulated ATP-binding membrane cassette transport protein A1 (ABCA1) expression. Functional promotion of ABCA1 expression attenuated the inhibitory effects of MK on cholesterol efflux, which reduced lipid accumulation. Additionally, intervention of adenosine monophosphate activated protein (AMPK)-mammalian target of rapamycin (mTOR) signaling molecule by the AMPK activator, AICAR, increased p-AMPK and ABCA1 expression, decreased p-mTOR expression and promoted cholesterol efflux, resulting in an obvious reduction in intracellular lipid content. CONCLUSIONS These data suggest that MK reduces the expression of ABCA1, inhibits the efflux of cholesterol and promotes the accumulation of lipids in RAW264.7 macrophages, and AMPK-mTOR signaling is involved in MK-mediated regulation of cholesterol metabolism in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Han-Xiao Ou
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University
| | - Qin Huang
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center
| | - Chu-Hao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China
| | - Ji Xiao
- Department of Anesthesiology, the Second Affiliated Hospital, University of South China
| | - Yun-Cheng Lv
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China
| | - Xuan Li
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center
| | - Li-Ping Lei
- Department of Anesthesiology, the Second Affiliated Hospital, University of South China
| | - Zhong-Cheng Mo
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China
| |
Collapse
|
20
|
Phenformin as an Anticancer Agent: Challenges and Prospects. Int J Mol Sci 2019; 20:ijms20133316. [PMID: 31284513 PMCID: PMC6651400 DOI: 10.3390/ijms20133316] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Currently, there is increasing evidence linking diabetes mellitus (especially type 2 diabetes mellitus) with carcinogenesis through various biological processes, such as fat-induced chronic inflammation, hyperglycemia, hyperinsulinemia, and angiogenesis. Chemotherapeutic agents are used in the treatment of cancer, but in most cases, patients develop resistance. Phenformin, an oral biguanide drug used to treat type 2 diabetes mellitus, was removed from the market due to a high risk of fatal lactic acidosis. However, it has been shown that phenformin is, with other biguanides, an authentic tumor disruptor, not only by the production of hypoglycemia due to caloric restriction through AMP-activated protein kinase with energy detection (AMPK) but also as a blocker of the mTOR regulatory complex. Moreover, the addition of phenformin eliminates resistance to antiangiogenic tyrosine kinase inhibitors (TKI), which prevent the uncontrolled metabolism of glucose in tumor cells. In this review, we evidence the great potential of phenformin as an anticancer agent. We thoroughly review its mechanism of action and clinical trial assays, specially focusing on current challenges and future perspectives of this promising drug.
Collapse
|
21
|
AMPK: A promising molecular target for combating cisplatin toxicities. Biochem Pharmacol 2019; 163:94-100. [DOI: 10.1016/j.bcp.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
|
22
|
Wu CE, Chen MH, Yeh CN. mTOR Inhibitors in Advanced Biliary Tract Cancers. Int J Mol Sci 2019; 20:E500. [PMID: 30682771 PMCID: PMC6386826 DOI: 10.3390/ijms20030500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Patients with advanced biliary tract cancers (BTCs), including cholangiocarcinoma (CCA), have poor prognosis so novel treatment is warranted for advanced BTC. In current review, we discuss the limitations of current treatment in BTC, the importance of mTOR signalling in BTC, and the possible role of mTOR inhibitors as a future treatment in BTC. Chemotherapy with gemcitabine-based chemotherapy is still the standard of care and no targeted therapy has been established in advanced BTC. PI3K/AKT/mTOR signaling pathway linking to several other pathways and networks regulates cancer proliferation and progression. Emerging evidences reveal mTOR activation is associated with tumorigenesis and drug-resistance in BTC. Rapalogs, such as sirolimus and everolimus, partially inhibit mTOR complex 1 (mTORC1) and exhibit anti-cancer activity in vitro and in vivo in BTC. Rapalogs in clinical trials demonstrate some activity in patients with advanced BTC. New-generation mTOR inhibitors against ATP-binding pocket inhibit both TORC1 and TORC2 and demonstrate more potent anti-tumor effects in vitro and in vivo, however, prospective clinical trials are warranted to prove its efficacy in patients with advanced BTC.
Collapse
Affiliation(s)
- Chao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan.
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
23
|
Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci 2018; 217:155-163. [PMID: 30528773 DOI: 10.1016/j.lfs.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023]
Abstract
AIMS Metformin (Met), an essential antidiabetic agent, shows antitumor activity in some cancers. A previous study showed that Met enhanced cytotoxic activity of cisplatin (Cis) in cholangiocarcinoma (CCA) in association with the activation of AMP-activated protein kinase and suppression of Akt-mTOR. However, these effects do not entirely explain the observed chemosensitizing effect. The present study investigated the interaction of Met and Cis over the enhanced antitumor effect. MAIN METHODS KKU-100 and KKU-M156 cells were used in the study. Cytotoxicity was assessed by acridine orange-ethidium bromide staining. Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm) were measured by dihydroethidium and JC-1 fluorescent methods. Cellular glutathione (GSH) and redox ratio were analyzed by enzymatic coupling assay. Proteins associated with antioxidant system and cell death were evaluated by western immunoblot. KEY FINDINGS Cytotoxicity of Cis was enhanced by Met in association with ROS formation and GSH redox stress. The antioxidants, N-acetylcysteine and TEMPOL, and MPTP inhibitor, cyclosporine, attenuated cytotoxicity in association with suppression of ROS formation and the losses of Δψm. Met in combination with Cis suppressed expression of Nrf2 and altered the expression of Bcl2 family proteins. SIGNIFICANCE The chemosensitizing effect of Met in combination with Cis is causally associated with increased oxidative stress-mediated mitochondrial cell death pathway. Met may improve the efficacy of Cis in the treatment of cancer.
Collapse
Affiliation(s)
- Jaroon Wandee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
24
|
Wen-Xiu X, Xiao-Wei Z, Hai-Ying D, Ying-Hui T, Si-Si K, Xiao-Fang Z, Huang P. Impact of metformin use on survival outcomes in non-small cell lung cancer treated with platinum. Medicine (Baltimore) 2018; 97:e13652. [PMID: 30572481 PMCID: PMC6320173 DOI: 10.1097/md.0000000000013652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Preclinical evidence suggests that metformin, a widely used antidiabetic drug, may have a sensitizing effect on platinum. The purpose of this study was to evaluate the survival outcomes for non-small cell lung cancer (NSCLC) patients with type 2 diabetes mellitus (T2DM) using metformin during platinum-based chemotherapy.The clinicopathological parameters and survival data of 75 NSCLC patients with T2DM from January 2008 to December 2011 were collected and analyzed retrospectively. Patients were divided into 2 groups: metformin exposure group (n = 27) and non-metformin group (patients using other hypoglycemic agents or no drug for controlling n = 48). Univariate and multivariate analyses were performed to assess the association of metformin usage with overall survival (OS).Mean follow-up time was 58.7 months. The mean survival time was 36.74 months in the metformin group and 40.21 months in the non-metformin group. There was no significant difference in survival time between the 2 groups (P = .661). After adjusting gender, age, smoking status, tumor stage, tumor histology, and differentiation, multivariate analysis showed that metformin was not associated with the OS in NSCLC patients treated with concurrent platinum-based chemotherapy (hazard ratio: 1.071, 95% confidence interval: 0.577-1.986, P = .828).Our results indicated that metformin exposure had no significant effect on OS in NSCLC patients treated with platinum-based chemotherapy. Further studies are warranted to evaluate whether metformin could affect the survival of NSCLC patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Xin Wen-Xiu
- Laboratory of Clinical Pharmacy
- Key Laboratory of Head and Neck Translational Research of Zhejiang Province Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | | | | | | | | | | | - Ping Huang
- Laboratory of Clinical Pharmacy
- Key Laboratory of Head and Neck Translational Research of Zhejiang Province Zhejiang Cancer Hospital, Hangzhou, P.R. China
| |
Collapse
|
25
|
Li P, Tong L, Song Y, Sun J, Shi J, Wu Z, Diao Y, Li Y, Wang Z. Long noncoding RNA H19 participates in metformin-mediated inhibition of gastric cancer cell invasion. J Cell Physiol 2018; 234:4515-4527. [PMID: 30192003 DOI: 10.1002/jcp.27269] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 07/20/2018] [Indexed: 12/30/2022]
Abstract
Recent research suggests that the first-line oral antidiabetes drug metformin may prevent gastric cancer progression and improve prognosis. Many studies have also shown that long noncoding RNAs (lncRNAs) play important roles in many biological processes. Therefore, we aimed to explore whether lncRNAs participate in the mechanisms by which metformin affects gastric cancer cells. In the current study, we found that metformin significantly inhibited the cellular functions of gastric cancer cells through Cell Counting Kit-8 and invasion assays. We found that lncRNA H19 was greatly downregulated in gastric cancer cells treated with metformin using lncRNA microassays. Based on bioinformatics analyses of the Oncomine and The Cancer Genome Atlas databases, H19 is shown to be overexpressed in gastric cancer tissues, with increased expression of H19 relating to advanced pathological tumor stage and pathological tumor node metastasis stage, indicating that H19 may be associated with the invasive ability of gastric cancer. We knocked down H19 in AGS and SGC7901 cell lines and found that knocked-down H19 could decrease gastric cancer cell invasion and that metformin could not further decrease invasion after the knock down. Moreover, H19 depletion increased AMPK activation and decreased MMP9 expression, and metformin could not further activate AMPK or decrease MMP9 in H19 knocked-down gastric cancer cells. In summary, metformin has a profound antitumor effect on gastric cancer cells, and H19 is a key component in the process of metformin suppressing gastric cancer cell invasion.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Linhao Tong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yao Diao
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|