1
|
Rahimi-Farsi N, Bostanian F, Shahbazi T, Shamsinejad FS, Bolideei M, Mohseni P, Zangooie A, Boustani F, Shoorei H. Novel oncogenes and tumor suppressor genes in Hepatocellular Carcinoma: Carcinogenesis, progression, and therapeutic targets. Gene 2025; 941:149229. [PMID: 39800198 DOI: 10.1016/j.gene.2025.149229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2024] [Revised: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Hepatocellular carcinoma (HCC) is the primary malignancy affecting the liver and the leading cause of mortality among individuals with cirrhosis. This complex disease is associated with various risk factors, including environmental, pathological, and genetic influences, which dysregulate gene expression crucial for the cell cycle and cellular/molecular pathways. The disruption of the balance between tumor suppressors and proto-oncogenes amplifies the pathogenic cascade. Given its predilection for diseased or cirrhotic livers and late-stage diagnosis, HCC prognosis is typically poor. Current therapies offer limited benefits, with conventional non-specific cytotoxic agents exhibiting suboptimal efficacy. However, molecularly targeted therapies have emerged as a promising avenue, leveraging the strategic inhibition of carcinogenic molecules to provide heightened specificity and potency compared to cytotoxic chemotherapy. Several clinical trials have demonstrated promising outcomes in advanced HCC with targeted pharmacotherapies. Many genes have been implicated in HCC pathogenesis, underscoring the need to elucidate their molecular functions and roles. This has profound implications for early HCC prognostication via biomarkers and for identifying therapeutic targets to impede neoplastic progression. Notably, evidence highlights the pivotal roles of oncogenes and tumor suppressors in HCC pathophysiology. This discourse examines the potential involvement of ABL1, Annexins, FAK, FOX, and KIF as candidate oncogenes, contrasted with SORBS2, HPCAL1, PCDH10, PLAC8, and CXXC5 as plausible tumor suppressors. Their signaling cascades and relevance to HCC prognosis and progression are delineated to identify targets for improving HCC diagnosis, prognostication, and therapy.
Collapse
Affiliation(s)
| | | | - Taha Shahbazi
- Neurosurgery Research Group (NRG), Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Zangooie
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Boustani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Tan XD, Luo CF, Liang SY. Antihyperlipidemic drug rosuvastatin suppressed tumor progression and potentiated chemosensitivity by downregulating CCNA2 in lung adenocarcinoma. J Chemother 2024; 36:662-674. [PMID: 38288951 DOI: 10.1080/1120009x.2024.2308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 11/22/2024]
Abstract
Rosuvastatin (RSV) is widely used to treat hyperlipidemia and hypercholesterolemia and is recommended for the primary and secondary prevention of cardiovascular diseases (CVD). In this study, we aimed to explore its action and mechanism in lung adenocarcinoma (LUAD) therapy. Lewis and CMT64 cell-based murine subcutaneous LUAD models were employed to explore the effects of RSV monotherapy combined with cisplatin and gemcitabine. Human lung fibroblasts and human LUAD cell lines were used to assess the effects of RSV on normal and LUAD cells. Bioinformatics and RNA interference were used to observe the contribution of cyclin A2 (CCNA2) knockdown to RSV inhibition and to improve chemosensitivity in LUAD. RSV significantly suppressed grafted tumor growth in a murine subcutaneous LUAD model and exhibited synergistic anti-tumor activity with cisplatin and gemcitabine. In vitro and in vivo experiments demonstrated that RSV impaired the proliferation and migration of cancer cells while showing little inhibition of normal lung cells. RNA interference and CCK8 detection preliminarily indicated that RSV inhibited tumor growth and enhanced the chemosensitivity to cisplatin and gemcitabine by downregulating CCNA2. RSV suppressed LUAD progression and enhanced chemosensitivity to cisplatin and gemcitabine by downregulating CCNA2, which should be prior consideration for the treatment of LUAD, especially for patients co-diagnosed with hyperlipidemia and hypercholesterolemia.
Collapse
Affiliation(s)
- Xiang-Di Tan
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| | - Cui-Fang Luo
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| | - Si-Yu Liang
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| |
Collapse
|
3
|
Ho JN, Byun SS, Kim D, Ryu H, Lee S. Dasatinib induces apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in bladder cancer cells. Investig Clin Urol 2024; 65:593-602. [PMID: 39505519 PMCID: PMC11543652 DOI: 10.4111/icu.20240250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024] Open
Abstract
PURPOSE Bladder cancer is a common genitourinary malignant disease worldwide. Dasatinib is a small molecule inhibitor of Src family kinases. We investigated the anticancer effect and putative molecular mechanisms of dasatinib on T24 and cisplatin-resistant T24R2 human bladder cancer cells. MATERIALS AND METHODS Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation in dasatinib treated bladder cancer cells. Flow cytometry was used to determined cell cycle arrest and apoptosis. The expression of apoptosis and autophagy related proteins were detected by western blot analysis. RESULTS In bladder cancer cells, dasatinib significantly reduced cell proliferation, colony formation, and induced G1-phase arrest. Dasatinib triggered apoptosis along with an increased expression of apoptosis-related genes (caspases, PARP, and cytochrome c). Down-regulation of Bcl-2 and up-regulation of Bad, which are hallmarks of apoptosis, were found to play a dominant role in mediating the effects of dasatinib treatment. We further showed that dasatinib inhibits p-Src, p-PI3K, p-Akt, and p-mTOR in bladder cancer cells. Dasatinib also increased the expression of markers of autophagy flux such as LC3-II and p62. CONCLUSIONS These results confirmed that dasatinib is a potent chemotherapeutic drug which induces apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in bladder cancer cells.
Collapse
Affiliation(s)
- Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Danhyo Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hoyoung Ryu
- Department of Urology, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Abdallah FM, Ghoneim AI, Abd-Alhaseeb MM, Abdel-Raheem IT, Helmy MW. Unveiling the antitumor synergy between pazopanib and metformin on lung cancer through suppressing p-Akt/ NF-κB/ STAT3/ PD-L1 signal pathway. Biomed Pharmacother 2024; 180:117468. [PMID: 39332188 DOI: 10.1016/j.biopha.2024.117468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Pazopanib, an inhibitor of the VEGF receptor tyrosine kinase, has demonstrated significant antitumor effects in lung cancer. However, its application as a standard treatment for this type of cancer is limited by its drug resistance and toxicity. Metformin has the potential to combat lung cancer by modifying the tumor's immune microenvironment. In this study, we investigated the potential antitumor effects and the associated underlying molecular mechanisms of the combination of pazopanib and metformin in lung cancer. In vitro studies were conducted using the A549 and H460 lung cancer cell lines, whereas urethane-induced lung cancer-bearing mice were used for in vivo assessments. The urethane-induced mice received oral administration of pazopanib (50 mg/kg) and/or metformin (250 mg/kg) for a duration of 21 days. The results indicated that the MTT assay demonstrated a combined cytotoxic effect of the pazopanib/metformin combination in H460 and A549 cells, as evidenced by CI and DRI analyses. The observed increase in annexin V levels and the corresponding increase in Caspase-3 activity strongly suggest that this combination induced apoptosis. Furthermore, the pazopanib/metformin combination significantly inhibited the p-Akt/NF-κB/IL-6/STAT3, HIF1α/VEGF, and TLR2/TGF-β/PD-L1 pathways while also increasing CD8 expression in vivo. Immunohistochemical analysis revealed that these antitumor mechanisms were manifested by the suppression of the proliferation marker Ki67. In conclusion, these findings revealed that metformin augments the antitumor efficacy of pazopanib in lung cancer by simultaneously targeting proliferative, angiogenic, and immunogenic signaling pathways, metformin enhances the antitumor effectiveness of pazopanib in lung cancer, making it a promising therapeutic option for lung cancer.
Collapse
Affiliation(s)
- Fatma M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt; Faculty of Health Sciences Technology, Borg Al Arab Technological University, New Borg El Arab, Egypt.
| | - Asser I Ghoneim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| | - Mohammad M Abd-Alhaseeb
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt; Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| | - Ihab T Abdel-Raheem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| | - Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| |
Collapse
|
5
|
Qi XL, Luo GQ, Tuersun A, Chen M, Wu GB, Zheng L, Li HJ, Lou XL, Luo M. Construction of an endoplasmic reticulum stress and cuproptosis -related lncRNAs signature in chemosensitivity in hepatocellular carcinoma by comprehensive bioinformatics analysis. Heliyon 2024; 10:e38342. [PMID: 39398070 PMCID: PMC11471205 DOI: 10.1016/j.heliyon.2024.e38342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) and cuproptosis have remarkable effects on hepatocellular carcinoma (HCC) leading to a poor prognosis. The current study aimed to explore credible signature for predicting the prognosis of HCC based on ERS and cuproptosis-related lncRNAs. In our study, clinical and transcriptomic profiles of HCC patients were obtained from the Cancer Genome Atlas (TCGA) database. An ERS and cuproptosis-related lncRNA prognostic signature, including NRAV, SNHG3, LINC00839 and AC004687.1, was determined by correlation tests, Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) methods. Survival and predictive value were evaluated using Kaplan-Meier and receiver operating characteristic (ROC) curves, while calibration and nomograms curves were developed. Besides the enrichment analyses for ERS and cuproptosis-related lncRNAs, mutational status and immune status were assessed with TMB and ESTIMATE. Additionally, consensus cluster analysis was employed to compare cancer subtype differences, while drug sensitivity and immunologic efficacy were evaluated for further exploration. qRT-PCR and CCK-8 were utilized to verify the alteration of the prognostic lncRNAs expression and proliferation in vitro. High-risk groups exhibited poorer prognosis. The signature exhibited robust predictive value as an independent prognostic indicator and showed significant correlation with clinicopathological features. In the enriched analysis, biological membrane pathways were enriched. Low-risk patients had lower TMB and higher immune status. A cluster analysis revealed that cluster 2 had the best clinical immunological efficacy and most active immune function. In brief, our constructed signature with ERS and cuproptosis-related lncRNAs was associated survival outcomes of HCC, and can be used to predict the clinical classification and curative effect.
Collapse
Affiliation(s)
- Xiao-Liang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gu-Qing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Abudukadier Tuersun
- Department of General Surgery, Kashgar Prefecture Second People's Hospital of Xinjiang Uygur Autonomous Regions, Kashgar, Xinjiang, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Jie Li
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lou Lou
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Chen Y, Wong CCL. The mechanistic insights behind the anticancer effects of statins in liver cancer. Hepatol Commun 2024; 8:e0519. [PMID: 39225688 PMCID: PMC11371310 DOI: 10.1097/hc9.0000000000000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Yiling Chen
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Strusi G, Suelzu CM, Horwood N, Münsterberg AE, Bao Y. Phenethyl isothiocyanate and dasatinib combination synergistically reduces hepatocellular carcinoma growth via cell cycle arrest and oxeiptosis. Front Pharmacol 2023; 14:1264032. [PMID: 37860118 PMCID: PMC10583560 DOI: 10.3389/fphar.2023.1264032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common type of liver cancer, which is among the most lethal tumours. Combination therapy exploits multiple drugs to target key pathways synergistically to reduce tumour growth. Isothiocyanates have been shown to possess anticancer potential and to complement the anticancer activity of other compounds. This study aimed to investigate the potential of phenethyl isothiocyanate (PEITC) to synergise with dasatinib, improving its anticancer potential in HCC. Methods: MTT, 3D spheroids and clonogenic assays were used to assess the combination anti-tumour effect in vitro, whereas a murine syngeneic model was employed to evaluate the combination efficacy in vivo. DCFDA staining was employed to evaluate the production of reactive oxygen species (ROS), while flow cytometry and Western blot assays were used to elucidate the molecular mechanism of the synergistic activiy. Results: PEITC and dasatinib combination exhibited a synergistic effect in vitro and in vivo. The combination induced DNA damage and oxidative stress through the production of ROS, which led to the formation of a premature CDK1/Cyclin B1 complex associated with induction of mitotic catastrophe. Furthermore, ROS activated oxeiptosis, a caspase-independent form of programmed cell death. Conclusion: PEITC showed to enhance dasatinib action in treating HCC with increased production of ROS that induced cell cycle arrest followed by mitotic catastrophe, and to induce oxeiptosis. These results highlight the role that ITCs may have in cancer therapy as a complement of clinically approved chemotherapeutic drugs.
Collapse
Affiliation(s)
- Gabriele Strusi
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Caterina M. Suelzu
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Nicole Horwood
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
9
|
Strusi G, Suelzu CM, Weldon S, Giffin J, Münsterberg AE, Bao Y. Combination of Phenethyl Isothiocyanate and Dasatinib Inhibits Hepatocellular Carcinoma Metastatic Potential through FAK/STAT3/Cadherin Signalling and Reduction of VEGF Secretion. Pharmaceutics 2023; 15:2390. [PMID: 37896150 PMCID: PMC10610226 DOI: 10.3390/pharmaceutics15102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cancerous cells are characterised by their ability to invade, metastasise, and induce angiogenesis. Tumour cells use various molecules that can be targeted to reverse these processes. Dasatinib, a potent Src inhibitor, has shown promising results in treating hepatocellular carcinoma (HCC) in vitro and in vivo. However, its effectiveness is limited by focal adhesion kinase (FAK) activation. Isothiocyanates, on the other hand, are phytochemicals with broad anticancer activity and FAK inhibition capabilities. This study evaluated the synergistic effect of dasatinib and phenethyl isothiocyanate (PEITC) on HCC. The combination was tested using various assays, including MTT, adhesion, scratch, Boyden chamber, chorioallantoic membrane (CAM), and yolk sac membrane (YSM) assays to evaluate the effect of the drug combination on HCC metastatic potential and angiogenesis in vitro and in vivo. The results showed that the combination inhibited the adhesion, migration, and invasion of HepG2 cells and reduced xenograft volume in the CAM assay. Additionally, the combination reduced angiogenesis in vitro, diminishing the growth of vessels in the tube formation assay. The inhibition of FAK/STAT3 signalling led to increased E-cadherin expression and reduced VEGF secretion, reducing HCC metastatic potential. Therefore, a combination of PEITC and dasatinib could be a potential therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Gabriele Strusi
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Shannon Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Jennifer Giffin
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Andrea E. Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
10
|
Dautović E, Rustemović-Čorbić M, Srabović N, Softić A, Smajlović A, Husejnović MŠ, Hatkić A, Halilčević D. Some pleiotropic effects of statins on hepatocellular carcinoma cells: Comparative study on atorvastatin, rosuvastatin and simvastatin. Adv Med Sci 2023; 68:258-264. [PMID: 37478516 DOI: 10.1016/j.advms.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2023] [Revised: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE For many years, statins have been the most commonly used drugs in cholesterol-lowering therapy. In addition to these therapeutic effects, statins exhibit other, pleiotropic effects that can be beneficial, but also harmful to cells and tissues. The aim of this research was to determine and compare the pleiotropic effects of structurally different statins: atorvastatin, simvastatin and rosuvastatin at different concentrations on hepatocellular carcinoma (HepG2) cells. MATERIALS AND METHODS The MTT assay was used to determine the cytotoxic effects of statins. The influence of statins on the production of reactive oxygen species (ROS) was determined by measuring fluorescent response of 2,7-dichlorofluorescein diacetate (DCFH-DA). The effect of statins on glucose production and excretion was determined with glucose production assay. RESULTS The obtained results confirmed that all tested statins exhibit cytotoxic effects, increase the production of ROS as well as the production and excretion of glucose from HepG2 cells. It was observed that all the mentioned effects are more pronounced with lipophilic statins, atorvastatin and simvastatin compared to hydrophilic rosuvastatin. CONCLUSION The less pronounced pleiotropic effects of rosuvastatin on HepG2 cells are probably due to differences in structure and solubility compared to atorvastatin and simvastatin. Transporter-dependent and a slower influx of rosuvastatin into cells compared to the tested lipophilic statins probably lead to a weaker accumulation of rosuvastatin in HepG2 cells, which results in less pronounced pleiotropic effects compared to lipophilic atorvastatin and simvastatin.
Collapse
Affiliation(s)
- Esmeralda Dautović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina.
| | | | - Nahida Srabović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Adaleta Softić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Aida Smajlović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Maida Šljivić Husejnović
- Department of Pharmaceutical Analytics, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Alen Hatkić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dalila Halilčević
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| |
Collapse
|
11
|
Malektaj H, Nour S, Imani R, Siadati MH. Angiogenesis induction as a key step in cardiac tissue Regeneration: From angiogenic agents to biomaterials. Int J Pharm 2023; 643:123233. [PMID: 37460050 DOI: 10.1016/j.ijpharm.2023.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. After myocardial infarction, the vascular supply of the heart is damaged or blocked, leading to the formation of scar tissue, followed by several cardiac dysfunctions or even death. In this regard, induction of angiogenesis is considered as a vital process for supplying nutrients and oxygen to the cells in cardiac tissue engineering. The current review aims to summarize different approaches of angiogenesis induction for effective cardiac tissue repair. Accordingly, a comprehensive classification of induction of pro-angiogenic signaling pathways through using engineered biomaterials, drugs, angiogenic factors, as well as combinatorial approaches is introduced as a potential platform for cardiac regeneration application. The angiogenic induction for cardiac repair can enhance patient treatment outcomes and generate economic prospects for the biomedical industry. The development and commercialization of angiogenesis methods often involves collaboration between academic institutions, research organizations, and biomedical companies.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| | - Shirin Nour
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, VIC 3010, Australia; Department of Chemical Engineering, The University of Melbourne, VIC 3010, Australia
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad H Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Gupta A, Nadaf A, Ahmad S, Hasan N, Imran M, Sahebkar A, Jain GK, Kesharwani P, Ahmad FJ. Dasatinib: a potential tyrosine kinase inhibitor to fight against multiple cancer malignancies. Med Oncol 2023; 40:173. [PMID: 37165283 DOI: 10.1007/s12032-023-02018-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Dasatinib is the 2nd generation TKI (Tyrosine Kinase Inhibitor) having the potential to treat numerous forms of leukemic and cancer patients and it is 300 times more potent than imatinib. Cancer is the major cause of death globally and need to enumerate novel strategies to coping with it. Various novel therapeutics introduced into the market for ease in treating various forms of cancer. We reviewed and evaluated all the related aspects of dasatinib, which can enhance the knowledge about dasatinib therapeutics methodology, pharmacodynamic and pharmacokinetics, side effects, advantages, disadvantages, various kinds of interactions and its novel formulations as well.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Salah M, Sallam MA, Abdelmoneem MA, Teleb M, Elkhodairy KA, Bekhit AA, Khafaga AF, Noreldin AE, Elzoghby AO, Khattab SN. Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment. Pharmaceutics 2022; 14:2404. [PMID: 36365222 PMCID: PMC9693489 DOI: 10.3390/pharmaceutics14112404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/01/2023] Open
Abstract
While breast cancer remains a global health concern, the elaboration of rationally designed drug combinations coupled with advanced biocompatible delivery systems offers new promising treatment venues. Herein, we repurposed rosuvastatin (RST) based on its selective tumor apoptotic effect and combined it with the antimetabolite pemetrexed (PMT) and the tumor-sensitizing polyphenol honokiol (HK). This synergistic three-drug combination was incorporated into protein polysaccharide nanohybrids fabricated by utilizing sodium alginate (ALG) and lactoferrin (LF), inspired by the stealth property of the former and the cancer cell targeting capability of the latter. ALG was conjugated to PMT and then coupled with LF which was conjugated to RST, forming core shell nanohybrids into which HK was physically loaded, followed by cross linking using genipin. The crosslinked HK-loaded PMT-ALG/LF-RST nanohybrids exhibited a fair drug loading of 7.86, 5.24 and 6.11% for RST, PMT and HK, respectively. It demonstrated an eight-fold decrease in the IC50 compared to the free drug combination, in addition to showing an enhanced cellular uptake by MCF-7 cells. The in vivo antitumor efficacy in a breast cancer-bearing mouse model confirmed the superiority of the triple cocktail-loaded nanohybrids. Conclusively, our rationally designed triple drug-loaded protein/polysaccharide nanohybrids offer a promising, biocompatible approach for an effective breast tumor suppression.
Collapse
Affiliation(s)
- Mai Salah
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mona A. Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Adnan A. Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, Sakheer P.O. Box 32 038, Bahrain
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
14
|
Small Molecule Inhibitors for Hepatocellular Carcinoma: Advances and Challenges. Molecules 2022; 27:molecules27175537. [PMID: 36080304 PMCID: PMC9457820 DOI: 10.3390/molecules27175537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
According to data provided by World Health Organization, hepatocellular carcinoma (HCC) is the sixth most common cause of deaths due to cancer worldwide. Tremendous progress has been achieved over the last 10 years developing novel agents for HCC treatment, including small-molecule kinase inhibitors. Several small molecule inhibitors currently form the core of HCC treatment due to their versatility since they would be more easily absorbed and have higher oral bioavailability, thus easier to formulate and administer to patients. In addition, they can be altered structurally to have greater volumes of distribution, allowing them to block extravascular molecular targets and to accumulate in a high concentration in the tumor microenvironment. Moreover, they can be designed to have shortened half-lives to control for immune-related adverse events. Most importantly, they would spare patients, healthcare institutions, and society as a whole from the burden of high drug costs. The present review provides an overview of the pharmaceutical compounds that are licensed for HCC treatment and other emerging compounds that are still investigated in preclinical and clinical trials. These molecules are targeting different molecular targets and pathways that are proven to be involved in the pathogenesis of the disease.
Collapse
|
15
|
Janardhanan P, Somasundaran AK, Balakrishnan AJ, Pilankatta R. Sensitization of cancer cells towards Cisplatin and Carboplatin by protein kinase D inhibitors through modulation of ATP7A/B (copper transport ATPases). Cancer Treat Res Commun 2022; 32:100613. [PMID: 35908410 DOI: 10.1016/j.ctarc.2022.100613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Drug resistance of cancer cells is a significant impediment to effective chemotherapy. One primary reason for this is copper exporters - ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B). These molecular pumps belong to P-type ATPases and dispose off the Platinum (Pt) based anticancer drugs from cancer cells, causing resistance in them. For the disposal of Pt-drugs, copper exporters require phosphorylation mediated by protein kinase D (PKD) for their activation and trafficking. Even though various research works are underway to overcome resistance to anticancer drugs, the role of PKD is mainly ignored. In this study, we have found a significant upregulation of ATP7A and ATP7B in cervical cancer cells (HeLa) and Liver Hepatocellular Carcinoma cells (HepG2) in the presence of Cisplatin or Carboplatin; both at transcriptional as well as translational levels. Interestingly, the expression of ATP7A and ATP7B were significantly downregulated in the presence of a PKD inhibitor (CID2011756), resulting in the reduction of PKD mediated phosphorylation of ATP7A/7B. This causes enhancement of proteasome-mediated degradation of ATP7A/7B and thereby sensitizes the cells towards Cisplatin and Carboplatin. Similarly, the treatment of Cisplatin resistant HepG2 cells with PKD inhibitor causes enhanced sensitivity towards Cisplatin drug. However, the presence of proteasome inhibitor (MG132) reversed the effect of the PKD inhibitor on the expression level of ATP7A/7B, indicating the necessity of phosphorylation for its stability. Hence, we conclude that the combinatorial usage of Cisplatin with drugs targeting PKD can be developed as an effective chemotherapeutic approach to overcome drug resistance.
Collapse
Affiliation(s)
- Prajit Janardhanan
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala 671316, India
| | | | - Anjali Jayasree Balakrishnan
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala 671316, India
| | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala 671316, India.
| |
Collapse
|
16
|
Yeh YC, Chen YY, Chen PC. Statins was not associated with hepatocellular carcinoma after controlling for time-varying confounders in patients with diabetes. J Clin Epidemiol 2022; 150:98-105. [PMID: 35779823 DOI: 10.1016/j.jclinepi.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2021] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We examined the association between statin use and hepatocellular carcinoma (HCC) incidence in patients with diabetes using marginal structural models (MSMs) estimated by inverse probability weight (IPW), which adjusts for time-varying confounders that are also mediators, and we compared the results with conventional regression methods. STUDY DESIGN AND SETTING This retrospective cohort study included 245,122 patients with type 2 diabetes who were new users of lipid-lowering drugs identified using the claims data of a universal health insurance program. Statin exposure was time-updated every 3 months during the follow-up period. Stabilized IPW was calculated and accounted for chronic liver diseases considering as time-dependent confounders affected by past statin exposure. RESULTS Over a median follow-up of 5.2 years, 1,694 patients developed HCC. In the conventional regression analysis, the hazard ratio of HCC associated with statin use was 0.88 (95% CI: 0.79-0.97) after adjusting for baseline covariates and 0.97 (95% CI: 0.87-1.08) after additionally adjusting for time-varying covariates. The hazard ratio increased to 1.11 (95% CI: 0.94-1.31) using the MSM approach. CONCLUSION Statins use was not associated with the risk of developing HCC in patients with diabetes. Our findings highlight the importance of controlling time-varying confounders in observational studies.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Public Health, China Medical University, Taichung, Taiwan; Research Education and Epidemiology Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yen-Yu Chen
- Research Education and Epidemiology Center, Changhua Christian Hospital, Changhua, Taiwan; Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Pei-Chun Chen
- Department of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
17
|
Kumar N, Mandal CC. Cholesterol-Lowering Drugs on Akt Signaling for Prevention of Tumorigenesis. Front Genet 2021; 12:724149. [PMID: 34603386 PMCID: PMC8483559 DOI: 10.3389/fgene.2021.724149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol has been reported to be accumulated in cancer cells. The metabolic dysregulation of the cholesterol is associated with tumor development and progression. The cholesterol-lowering drugs have been found to be involved in the prevention and treatment of various cancers. Akt, a serine/threonine kinase, can modulate the role of several downstream proteins involved in cell proliferation, migration, invasion, metabolism, and apoptosis. Since its involvement in several signaling pathways, its dysregulation is commonly reported in several cancers. Thus, targeting Akt could be an effective approach for cancer prevention and therapy. Cholesterol-lowering drugs have been found to affect the expression of Akt, and its activation in the cancer cells and thus have shown anticancer activity in different type of cancers. These drugs act on various signaling pathways such as PTEN/Akt, PI3k/Akt, Akt/NF-κB, Akt/FOXO1, Akt/mTOR, etc., which will be discussed in this article. This review article will discuss the significance of cholesterol in cancer cells, cholesterol-lowering drugs, the role of Akt in cancer cells, and the effects of cholesterol-lowering drugs on Akt in the prevention of therapy resistance and metastasis.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
18
|
Hassan YA, Helmy MW, Ghoneim AI. Combinatorial antitumor effects of amino acids and epigenetic modulations in hepatocellular carcinoma cell lines. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2245-2257. [PMID: 34415354 DOI: 10.1007/s00210-021-02140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal form of liver cancer. Recently, the interest in using amino acids as therapeutic agents has noticeably grown. The present work aimed to evaluate the possible antiproliferative effects of selected amino acids supplementation or deprivation in human HCC cell lines and to investigate their effects on critical signaling molecules in HCC pathogenesis and the outcomes of their combination with the histone deacetylase inhibitor vorinostat. HepG2 and Huh7 cells were treated with different concentrations of L-leucine, L-glutamine, or L-methionine and cell viability was determined using MTT assay. Insulin-like growth factor 1 (IGF1), phosphorylated ribosomal protein S6 kinase (p70 S6K), p53, and cyclin D1 (CD1) protein levels were assayed using ELISA. Caspase-3 activity was assessed colorimetrically. L-leucine supplementation (0.8-102.4 mM) and L-glutamine supplementation (4-128 mM) showed dose-dependent antiproliferative effects in both cell lines but L-methionine supplementation (0.2-25.6 mM) only affected the viability of HepG2 cells. Glutamine or methionine deprivation suppressed the proliferation of HepG2 cells whereas leucine deprivation had no effect on cell viability in both cell lines. The combination between the effective antiproliferative changes in L-leucine, L-glutamine, and L-methionine concentrations greatly suppressed cell viability and increased the sensitivity to vorinostat in both cell lines. The growth inhibitory effects were paralleled with significant decreases in IGF-1, phospho p70 S6k, and CD1 levels and significant elevations in p53 and caspase-3 activity. Changes in amino acids concentrations could profoundly affect growth in HCC cell lines and their response to epigenetic therapy.
Collapse
Affiliation(s)
- Yasmine A Hassan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.
| | - Maged W Helmy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Asser I Ghoneim
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| |
Collapse
|
19
|
Liu C, Zhu X, Jia Y, Chi F, Qin K, Pei J, Zhang C, Mu X, Zhang H, Dong X, Xu J, Yu B. Dasatinib inhibits proliferation of liver cancer cells, but activation of Akt/mTOR compromises dasatinib as a cancer drug. Acta Biochim Biophys Sin (Shanghai) 2021; 53:823-836. [PMID: 33961012 DOI: 10.1093/abbs/gmab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Dasatinib is a multi-target protein tyrosine kinase inhibitor. Due to its potent inhibition of Src, Abl, the platelet-derived growth factor receptor (PDGFR) family kinases, and other oncogenic kinases, it has been investigated as a targeted therapy for a broad spectrum of cancer types. However, its efficacy has not been significantly extended beyond leukemia. The mechanism of resistance to dasatinib in a wide array of cancers is not clear. In the present study, we investigated the effect of dasatinib on hepatocellular carcinoma cell growth and explored the underlying mechanisms. Our results showed that dasatinib potently inhibited the proliferation of SNU-449 cells, but not that of other cell lines, such as SK-Hep-1, even though it inhibited the phosphorylation of Src on both negative and positive regulation sites in all these cells. Dasatinib activated the phosphoinositide-dependent protein kinase1 (PDK1)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in SK-Hep-1 cells, but not in SNU-449 cells. Blocking the Akt/mTOR signaling pathway strongly promoted the efficacy of dasatinib in SK-Hep-1 cells. In SNU-449 cells, dasatinib promoted apoptosis and the cleavage of caspase-3 and caspase-7, induced cell cycle arrest in the G1 phase, and inhibited the expression of Cyclin-dependent kinase (CDK4)/6/CyclinD1 complex. These findings demonstrate that dasatinib exerts its anti-proliferative effect on hepatocellular cell proliferation by blocking the Src family kinases; however, it causes Akt activation, which compromises dasatinib as an anti-cancer drug.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi 046000, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoxia Zhu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqi Jia
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Fenqing Chi
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Keru Qin
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Jinhong Pei
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi 046000, China
| | - Chan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiuli Mu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Hongwei Zhang
- Department of Hematology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan 030013, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Jun Xu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
20
|
Wei H, Wang J, Xu Z, Li W, Wu X, Zhuo C, Lu Y, Long X, Tang Q, Pu J. Hepatoma Cell-Derived Extracellular Vesicles Promote Liver Cancer Metastasis by Inducing the Differentiation of Bone Marrow Stem Cells Through microRNA-181d-5p and the FAK/Src Pathway. Front Cell Dev Biol 2021; 9:607001. [PMID: 34124029 PMCID: PMC8194264 DOI: 10.3389/fcell.2021.607001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2020] [Accepted: 02/08/2021] [Indexed: 01/19/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are beneficial to repair the damaged liver. Tumor-derived extracellular vesicles (EV) are notorious in tumor metastasis. But the mechanism underlying hepatoma cell-derived EVs in BMSCs and liver cancer remains unclear. We hypothesize that hepatoma cell-derived EVs compromise the effects of BMSCs on the metastasis of liver cancer. The differentially expressed microRNAs (miRNAs) were screened. HepG2 cells were transfected with miR-181d-5p mimic or inhibitor, and the EVs were isolated and incubated with BMSCs to evaluate the differentiation of BMSCs into fibroblasts. Hepatoma cells were cultured with BMSCs conditioned medium (CM) treated with HepG2-EVs to assess the malignant behaviors of hepatoma cells. The downstream genes and pathways of miR-181d-5p were analyzed and their involvement in the effect of EVs on BMSC differentiation was verified through functional rescue experiments. The nude mice were transplanted with BMSCs-CM or BMSCs-CM treated with HepG2-EVs, and then tumor growth and metastasis in vivo were assessed. HepG2-EVs promoted fibroblastic differentiation of BMSCs, and elevated levels of α-SMA, vimentin, and collagen in BMSCs. BMSCs-CM treated with HepG2-EVs stimulated the proliferation, migration, invasion and epithelial-mesenchymal-transition (EMT) of hepatoma cells. miR-181d-5p was the most upregulated in HepG2-EVs-treated BMSCs. miR-181d-5p targeted SOCS3 to activate the FAK/Src pathway and SOCS3 overexpression inactivated the FAK/Src pathway. Reduction of miR-181d-5p in HepG2-EVs or SOCS3 overexpression reduced the differentiation of BMSCs into fibroblasts, and compromised the promoting effect of HepG2-EVs-treated BMSCs-CM on hepatoma cells. In vivo, HepG2-EVs-treated BMSCs facilitated liver cancer growth and metastasis. In conclusion, HepG2-EVs promote the differentiation of BMSCs, and promote liver cancer metastasis through the delivery of miR-181d-5p and the SOCS3/FAK/Src pathway.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
| | - Jianchu Wang
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Zuoming Xu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Wenchuan Li
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Xianjian Wu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
| | - Chenyi Zhuo
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yuan Lu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
| | - Xidai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
| | - Qianli Tang
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Jian Pu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
21
|
Tilija Pun N, Jeong CH. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals (Basel) 2021; 14:ph14050470. [PMID: 34065757 PMCID: PMC8156779 DOI: 10.3390/ph14050470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer is incurable because progressive phenotypic and genotypic changes in cancer cells lead to resistance and recurrence. This indicates the need for the development of new drugs or alternative therapeutic strategies. The impediments associated with new drug discovery have necessitated drug repurposing (i.e., the use of old drugs for new therapeutic indications), which is an economical, safe, and efficacious approach as it is emerged from clinical drug development or may even be marketed with a well-established safety profile and optimal dosing. Statins are inhibitors of HMG-CoA reductase in cholesterol biosynthesis and are used in the treatment of hypercholesterolemia, atherosclerosis, and obesity. As cholesterol is linked to the initiation and progression of cancer, statins have been extensively used in cancer therapy with a concept of drug repurposing. Many studies including in vitro and in vivo have shown that statin has been used as monotherapy to inhibit cancer cell proliferation and induce apoptosis. Moreover, it has been used as a combination therapy to mediate synergistic action to overcome anti-cancer drug resistance as well. In this review, the recent explorations are done in vitro, in vivo, and clinical trials to address the action of statin either single or in combination with anti-cancer drugs to improve the chemotherapy of the cancers were discussed. Here, we discussed the emergence of statin as a lipid-lowering drug; its use to inhibit cancer cell proliferation and induction of apoptosis as a monotherapy; and its use in combination with anti-cancer drugs for its synergistic action to overcome anti-cancer drug resistance. Furthermore, we discuss the clinical trials of statins and the current possibilities and limitations of preclinical and clinical investigations.
Collapse
|
22
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv 2021; 28:906-919. [PMID: 33960245 PMCID: PMC8131005 DOI: 10.1080/10717544.2021.1917728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Cheng CC, Chao WT, Shih JH, Lai YS, Hsu YH, Liu YH. Sorafenib combined with dasatinib therapy inhibits cell viability, migration, and angiogenesis synergistically in hepatocellular carcinoma. Cancer Chemother Pharmacol 2021; 88:143-153. [PMID: 33860837 DOI: 10.1007/s00280-021-04272-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Sorafenib is a multikinase inhibitor used for treatment of advanced hepatocellular carcinoma. Sorafenib resistance may be related to Src-induced cell migration and angiogenesis, which are regulated by cancer stem cell activation and release of vascular endothelial growth factor. Dasatinib is a Src inhibitor that inhibits Src phosphorylation and suppresses Src-associated cell migration and angiogenesis. This study investigated whether combined treatment with dasatinib can overcome sorafenib resistance. METHODS Hepatoma cell lines were used for sorafenib and/or dasatinib treatment. Cell viability, cell migration, molecular expressions, and release of vascular endothelial growth factor by hepatoma cells were evaluated. Hepatoma cell culture medium was applied on human umbilical vein endothelial cells to monitor angiogenesis promoted by the hepatoma cells. RESULTS Sorafenib and dasatinib combined therapy suppressed cell viability of hepatoma cells synergistically. Dasatinib suppressed sorafenib-induced cell migration via inhibiting sorafenib-induced Src/FAK phosphorylation, cell-to-cell contact and cancer stem cell activation. Culture medium from Chang liver and PLC/PRF/5 cells suppressed angiogenesis of human umbilical vein endothelial cells with any treatment, whereas sorafenib-treated medium of HepG2 cells induced angiogenesis. This sorafenib-induced angiogenesis was then suppressed by dasatinib. Vascular endothelial growth factor released from hepatoma cells was also inhibited by combined treatment. CONCLUSION Src/FAK phosphorylation and cancer stem cell activation inducing cell migration and angiogenesis may be the key factors of sorafenib resistance. Sorafenib and dasatinib combined treatment suppresses cell migration and angiogenesis by inhibiting the Src/FAK phosphorylation, cell-to-cell contact, cancer stem cell activation, and release of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Chiung-Chi Cheng
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan
- Center for General Education, Providence University, 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City, 433, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 407, Taiwan
| | - Jing-Hao Shih
- Department of Life Science, Tunghai University, 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 407, Taiwan
| | - Yih-Shyong Lai
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Tzu Chi University, 701, Section 3, Jhongyang Road, Hualien, 97004, Taiwan
| | - Yi-Hsiang Liu
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, 6, Lugong Road, Lukang Zhen, Changhua County, 505, Taiwan.
- Department of Pathology, Tzu Chi University, 701, Section 3, Jhongyang Road, Hualien, 97004, Taiwan.
| |
Collapse
|
24
|
Gao J, Qiao Z, Liu S, Xu J, Wang S, Yang X, Wang X, Tang R. A small molecule nanodrug consisting of pH-sensitive ortho ester-dasatinib conjugate for cancer therapy. Eur J Pharm Biopharm 2021; 163:188-197. [PMID: 33864903 DOI: 10.1016/j.ejpb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2020] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
The main objective of this paper is to develop a self-delivered prodrug system with nanoscale characteristics to enhance the efficacy of tumor therapy. The pH-sensitive prodrug was composed of ortho ester-linked dasatinib (DAS-OE), which was further self-assembled with or without doxorubicin (DOX) to obtain two carrier-free nanoparticles (DOX/DAS-OE NPs or DAS-OE NPs). The prodrug-based nanoparticles united the superiorities of small molecules and nano-assemblies together and displayed well-defined structure, uniform spherical shape, high drug loading ratio and on-demand drug release behavior. The drug loading content of DAS and DOX was 61.6% and 21.9%, respectively, and more than 80.2% of DAS and 60.2% DOX were released from DOX/DAS-OE NPs within 20 h at pH 5.0. Both in vitro and in vivo studies demonstrated that the pH-sensitive ortho ester bonds in the prodrug underwent hydrolysis to release DAS and DOX simultaneously after cellular internalization, resulting in remarkable antitumor effect. Tumor growth inhibition rate was 19.9% (free DAS), 35.5% (free DOX), 66.3% (DAS-OE NPs) and 82.8% (DOX/DAS-OE NPs), respectively. Thus, the ortho ester-linked prodrug system shows great potentials in cancer therapy.
Collapse
Affiliation(s)
- Jialu Gao
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Zhen Qiao
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Shuo Liu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Shi Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xia Yang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|
25
|
Liang L, Zhu K, Tao J, Lu S. ORN: Inferring patient-specific dysregulation status of pathway modules in cancer with OR-gate Network. PLoS Comput Biol 2021; 17:e1008792. [PMID: 33819263 PMCID: PMC8049496 DOI: 10.1371/journal.pcbi.1008792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2020] [Revised: 04/15/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Pathway level understanding of cancer plays a key role in precision oncology. However, the current amount of high-throughput data cannot support the elucidation of full pathway topology. In this study, instead of directly learning the pathway network, we adapted the probabilistic OR gate to model the modular structure of pathways and regulon. The resulting model, OR-gate Network (ORN), can simultaneously infer pathway modules of somatic alterations, patient-specific pathway dysregulation status, and downstream regulon. In a trained ORN, the differentially expressed genes (DEGs) in each tumour can be explained by somatic mutations perturbing a pathway module. Furthermore, the ORN handles one of the most important properties of pathway perturbation in tumours, the mutual exclusivity. We have applied the ORN to lower-grade glioma (LGG) samples and liver hepatocellular carcinoma (LIHC) samples in TCGA and breast cancer samples from METABRIC. Both datasets have shown abnormal pathway activities related to immune response and cell cycles. In LGG samples, ORN identified pathway modules closely related to glioma development and revealed two pathways closely related to patient survival. We had similar results with LIHC samples. Additional results from the METABRIC datasets showed that ORN could characterize critical mechanisms of cancer and connect them to less studied somatic mutations (e.g., BAP1, MIR604, MICAL3, and telomere activities), which may generate novel hypothesis for targeted therapy.
Collapse
Affiliation(s)
- Lifan Liang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kunju Zhu
- Clinical Medicine Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
26
|
Statin use and the prognosis of patients with hepatocellular carcinoma: a meta-analysis. Biosci Rep 2021; 40:222339. [PMID: 32162652 PMCID: PMC7133516 DOI: 10.1042/bsr20200232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Association between statin use and prognosis in patients with hepatocellular carcinoma (HCC) remains unknown. We performed a meta-analysis of follow-up studies to systematically evaluate the influence of statin use on clinical outcome in HCC patients. Methods: Studies were obtained via systematic search of PubMed, Cochrane’s Library, and Embase databases. A randomized-effect model was used to pool the results. Subgroup analyses were performed to evaluate the influence of study characteristics on the association. Results: Nine retrospective cohort studies were included. Overall, statin use was associated with a reduced all-cause mortality in HCC patients (risk ratio [RR]: 0.81, 95% CI: 0.74–0.88, P < 0.001; I2 = 63%). Subgroup analyses showed similar results for patients with stage I-III HCC (RR: 0.83, 0.79, and 0.90 respectively, P all < 0.01) and patients after palliative therapy for HCC (RR: 0.80, P < 0.001), but not for patents with stage IV HCC (RR: 0.91, P = 0.28) or those after curative therapy (RR: 0.92, P = 0.20). However, the different between subgroups were not significant (both P > 0.05). Moreover, statin use was associated with reduced HCC-related mortality (RR: 0.78, P = 0.001) in overall patient population and HCC recurrence in patients after curative therapies (RR: 0.55, P < 0.001). Conclusions: Satin use is associated with reduced mortality and recurrence of HCC. These results should be validated in prospective cohort studies and randomized controlled trials.
Collapse
|
27
|
Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Arch Med Sci 2021; 18:141-152. [PMID: 35154535 PMCID: PMC8826694 DOI: 10.5114/aoms/123225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common causes of cancer-related mortality in the 21st century. Statins as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase not only reduce the cholesterol levels in the blood and decrease the risk of cardiovascular disease but may also play an important role in the prevention and treatment of lung cancer. Statins have several antitumor properties including the ability to reduce cell proliferation and angiogenesis, decrease invasion and synergistic suppression of lung cancer progression. Statins induce tumor cell apoptosis by inhibition of downstream products such as small GTP-binding proteins, Rho, Ras and Rac, which are dependent on isoprenylation. Statins reduce angiogenesis in tumors by down-regulation of pro-angiogenic factors, such as vascular endothelial growth factor. In this review, the feasibility and efficacy of statins in the prevention and treatment of lung cancer are discussed.
Collapse
Affiliation(s)
- Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Biosensor and Bioelectronic Department, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Lu YC, Huang DW, Chen PT, Tsai CF, Lin MC, Lin CC, Wang SH, Pan YJ. Association between statin use and second cancer risk in breast cancer patients: a nationwide population-based cohort study. Breast Cancer Res Treat 2020; 185:773-783. [PMID: 33067779 DOI: 10.1007/s10549-020-05969-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Many studies have revealed that statin therapy reduced mortality in cancer patients, especially in breast cancer, but the effect for second cancer was unclear. We, therefore, performed a comparable cohort study to determine the risk of second cancer in breast cancer patients with statin therapy. METHODS Using claims data from Taiwan's National Health Insurance Program, this study enrolled newly diagnosed breast cancer patients from 2000 to 2007 with and without statin therapy as the statin (n = 1222) and nonstatin (n = 4888) cohorts, respectively. The nonstatin cohort was propensity score matched by cohort entry year, age, and randomly selected comorbidities. These two cohorts were followed up until the diagnosis of second cancer, death, or the end of 2011. Cox proportional hazard models were used to estimate the hazard ratios. RESULTS The statin cohort had a lower incidence rate than the nonstatin cohort for second cancer (7.37 vs. 8.36 per 1000 person-years), although the difference was not significant (adjusted hazard ratio [aHR] 0.90, 95% confidence interval [CI] 0.65-1.26). Compared with the nonstatin cohort, the second cancer risk was significantly higher for patients taking pravastatin (aHR 2.71, 95% CI 1.19-6.19) but lower for those receiving multiple statin treatment (aHR 0.45, 95% CI 0.25-0.81) and combined lipophilic and hydrophilic type of statin (aHR 0.42, 95% CI 0.20-0.89). The risk was lower for patients receiving a cumulative defined daily dose (cDDD) of > 430 (aHR 0.41, 95% CI 0.19-0.86). CONCLUSION This study showed that there is little association between statin use and second cancer risk in breast cancer patients.
Collapse
Affiliation(s)
- Yin-Che Lu
- Division of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-yi, Taiwan
- Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Da-Wei Huang
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-yi, Taiwan
| | - Pin-Tzu Chen
- Division of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-yi, Taiwan
| | - Ching-Fang Tsai
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-yi, 600, Taiwan
| | - Mei-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Che-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shi-Heng Wang
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan.
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Yi-Jiun Pan
- School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
29
|
Li X, Sheng L, Liu L, Hu Y, Chen Y, Lou L. Statin and the risk of hepatocellular carcinoma in patients with hepatitis B virus or hepatitis C virus infection: a meta-analysis. BMC Gastroenterol 2020; 20:98. [PMID: 32272891 PMCID: PMC7147033 DOI: 10.1186/s12876-020-01222-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/09/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Statin may confer anticancer effect. However, the association between statin and risk of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) or hepatitis C (HCV) virus infection remains inconsistent according to results of previous studies. A meta-analysis was performed to summarize current evidence. Methods Related follow-up studies were obtained by systematic search of PubMed, Cochrane’s Library, and Embase databases. A random-effect model was used to for the meta-analysis. Stratified analyses were performed to evaluate the influences of study characteristics on the outcome. Results Thirteen studies with 519,707 patients were included. Statin use was associated with reduced risk of HCC in these patients (risk ratio [RR]: 0.54, 95% CI: 0.44 to 0.66, p < 0.001; I2 = 86%). Stratified analyses showed that the association between statin use and reduced HCC risk was consistent in patients with HBV or HCV infection, in elder (≥ 50 years) or younger (< 50 years) patients, in males or females, in diabetic or non-diabetic, and in those with or without cirrhosis (all p < 0.05). Moreover, lipophilic statins was associated with a reduced HCC risk (RR: 0.52, p < 0.001), but not for hydrophilic statins (RR: 0.89, p = 0.21). The association was more remarkable in patients with highest statin accumulative dose compared to those with lowest accumulative dose (p = 0.002). Conclusions Satin use was independently associated with a reduced risk of HCC in patients with HBV or HCV infection.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of infectious diseases, Yiwu Central Hospital, No. 519 Nanmen Street, Yiwu, 322000, China.
| | - Lina Sheng
- Department of infectious diseases, Yiwu Central Hospital, No. 519 Nanmen Street, Yiwu, 322000, China
| | - Liwen Liu
- Department of infectious diseases, Yiwu Central Hospital, No. 519 Nanmen Street, Yiwu, 322000, China
| | - Yongtao Hu
- Department of infectious diseases, Yiwu Central Hospital, No. 519 Nanmen Street, Yiwu, 322000, China
| | - Yongxin Chen
- Department of infectious diseases, Yiwu Central Hospital, No. 519 Nanmen Street, Yiwu, 322000, China
| | - Lianqing Lou
- Department of infectious diseases, Yiwu Central Hospital, No. 519 Nanmen Street, Yiwu, 322000, China
| |
Collapse
|
30
|
The E3 ubiquitin ligase TRIM7 suppressed hepatocellular carcinoma progression by directly targeting Src protein. Cell Death Differ 2019; 27:1819-1831. [PMID: 31802035 DOI: 10.1038/s41418-019-0464-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant Src kinase activity is known to be involved in a variety of human malignancies, whereas the regulatory mechanism of Src has not been completely clarified. Here, we demonstrated that tripartite motif containing 7 (TRIM7) directly interacted with Src, induced Lys48-linked polyubiquitination of Src and reduced the abundance of Src protein in hepatocellular carcinoma (HCC) cells. We further identified TRIM7 as a tumor suppressor in HCC cells through its negative modulation of the Src-mTORC1-S6K1 axis in vivo and in vitro in several HCC models. Moreover, we verified the dysregulated expression of TRIM7 in clinical liver cancer tissues and its negative correlation with Src protein in clinical HCC specimens. Overall, we demonstrated that TRIM7 suppressed HCC progression through its direct negative regulation of Src and modulation of the Src-mTORC1-S6K1 axis; thus, we provided a novel insight into the development of HCC and defined a promising therapeutic strategy for cancers with overactive Src by modulating TRIM7.
Collapse
|
31
|
Zheng W, Gu X, Sun X, Wu Q, Dan H. FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2641-2649. [PMID: 31240956 DOI: 10.1080/21691401.2019.1631838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Objective: Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types, however, the role of FAK on BMP9-induced osteogenic differentiation in SMSCs has not been characted. The purpose of current study is to explore the mechanism of FAK on the BMP9-induced osteogenesis of SMSCs in vitro and in vivo. Methods: The optimal dose of BMP9 was determined by incubation in different BMP9 concentrations, then cells were transfected with siRNA-induced FAK knockdown in BMP9-induced osteogenesis. Cell proliferation, migration, the osteogenic capacity, and the underlying mechanism were further detected in vitro. Imaging and pathological examination were conducted to observe the bone formation in vivo. Results: Our findings suggested that BMP9 could obviously promote FAK phosphorylation in osteogenic conditions. In contrast, FAK knockdown significantly decreased the cell proliferation, migration, the osteogenic capacity of SMSCs. To be specific, FAK knockdown could markedly inhibit the Wnt and MAPK signal pathway of SMSCs induced by BMP9. Besides, FAK knockdown could also effectively inhibit BMP-9-induced bone formation in vivo. Conclusion: FAK plays a pivotal role in promoting BMP9-induced osteogenesis of SMSCs, which is probably via activating Wnt and MAPK pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xueping Gu
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xingwei Sun
- b Department of Intervention, The Second Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Qin Wu
- c Department of Ultrasonography, Suzhou Science and Technology Town Hospital, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , PR China.,d Department of Ultrasound, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Hu Dan
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| |
Collapse
|
32
|
Fatehi Hassanabad A. Current perspectives on statins as potential anti-cancer therapeutics: clinical outcomes and underlying molecular mechanisms. Transl Lung Cancer Res 2019; 8:692-699. [PMID: 31737505 DOI: 10.21037/tlcr.2019.09.08] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Statins have been shown to inhibit cell proliferation in vitro and tumor growth in animal models. Various studies have also shown a decreased cancer-specific mortality rate in patients who were prescribed these medications. Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway. Statins induce tumour-specific apoptosis through mitochondrial apoptotic signaling pathways, which are activated by the suppression of mevalonate or geranylgeranyl pyrophosphate (GGPP) biosynthesis. However, there is no consensus on the molecular targets of statins for their anti-cancer effects. Several studies have been conducted to further assess the association between statin use and mortality in different types of cancer. In this review, current perspectives on clinical significance of statins in prevention and treatment of various types of cancers and proposed mechanisms are discussed.
Collapse
|