1
|
Mo R, Zhang Z, Zhou Y, Wang Y, Yin P, Zhang C, Fu H, Qian C, Xiang X, Yin R, Xie Q. A new prognostic model based on serum apolipoprotein AI in patients with HBV-ACLF and acutely decompensated liver cirrhosis. Lipids Health Dis 2025; 24:35. [PMID: 39901194 PMCID: PMC11789380 DOI: 10.1186/s12944-025-02434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND/AIM To investigate the prognostic value of circulating apolipoprotein AI (apoAI) levels and develop a new prognostic model in individuals with acute-on-chronic liver failure (ACLF) and acute decompensation (AD) of liver cirrhosis caused by hepatitis B virus (HBV) infection. METHODS Baseline levels of serum lipids were measured, and data concerning the presence of complications were collected from 561 HBV-ACLF and AD patients. Survival analysis was conducted by log-rank test. Proportional hazards model was used to perform multivariate analysis. The dynamics of serum apoAI levels were also explored in 37 HBV-ACLF patients. RESULTS In the cohort, the negatively correlation was found between the Model for End-Stage Liver Disease (MELD) score and serum apoAI levels (r = -0.7946, P < 0.001). Circulating apoAI concentration was an independent risk factor for 90-day survival according to Cox multivariate analysis. A new prognostic score-integrated serum lipid profile for ACLF patients (Lip-ACLF score = 0.86×International Normalized Ratio (INR) + 0.0034×total bilirubin (TBIL) (µmol/L) + 0.99× hepatorenal syndrome (HRS) (HRS: no/1; with/2) + 0.50×hepatic encephalopathy (HE) (grade/ponint: no/1; 1-2/2; 3-4/3) - 2.97×apoAI (g/L) + 5.2) was subsequently designed for the derivation cohort. Compared to MELD score, Child-Turcotte-Pugh (CTP) score or apoAI, Lip-ACLFs was superior for the prediction of 90-day outcomes (receiver operating characteristic curve (ROC): 0.930 vs. 0.885, 0.833 or 0.856, all P < 0.01), as was the validation cohort (ROC 0.906 vs. 0.839, 0.857 or 0.837, all P < 0.05). In Kaplan‒Meier survival analysis, low apoAI levels (< 0.42 g/L) at baseline indicated poor prognosis in ACLF and AD patients. Among the 37 patients, the deceased individuals were characterised with significantly decreased serum apoAI levels during the follow-up test compared with those at baseline (P < 0.05), whereas in patients with a good prognosis, the serum apoAI levels remained stable during the follow-up. CONCLUSION In HBV-ACLF and AD patients, lower serum apoAI levels suggest greater disease severity and 90-day mortality risk. For predicting the short-term prognosis of these patients, the new Lip-ACLF score might serve as a potential model.
Collapse
Affiliation(s)
- Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Zhenglan Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
- Department of Infectious Diseases, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai, 201399, China
| | - Yanmei Zhou
- Department of Infectious Diseases, Xing'an people's Hospital, 78 Guishan street, Xing'an county, Guilin, 541399, Guangxi, China
| | - Yue Wang
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, No. 10 Guangqian Road, Xiangcheng District, Suzhou, 215131, China
| | - Pengbo Yin
- Department of Infectious Diseases, Luohe Central Hospital, No. 56 East People Road, Yuanhui District, Luohe, 462003, Henan, China
| | - Chenxi Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Haoshuang Fu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Cong Qian
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China.
| | - Rongkun Yin
- Department of Infectious Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111 Xianxia Road, Changning District, Shanghai, 200336, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin er Road, Shanghai, 200025, China.
| |
Collapse
|
2
|
Jia R, Hou Y, Zhou L, Zhang L, Li B, Zhu J. Comparative Transcriptome Analysis Reveals the Impact of a High-Fat Diet on Hepatic Metabolic Function in Tilapia ( Oreochromis niloticus). Animals (Basel) 2024; 14:3204. [PMID: 39595257 PMCID: PMC11590938 DOI: 10.3390/ani14223204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatic steatosis is prevalent among cultured fish, yet the molecular mechanisms remain incompletely understood. This study aimed to assess changes in hepatic metabolic function in tilapia and to explore the underlying molecular mechanisms through transcriptomic analyses. Tilapia were allocated into two groups: a normal control (Ctr)-fed group and a high-fat diet (HFD)-fed group. Serum biochemical analyses revealed that HFD feeding led to liver damage and lipid accumulation, characterized by elevated levels of glutamic-pyruvic transaminase (GPT), glutamic-oxaloacetic transaminase (GOT), triglycerides (TGs), and total cholesterol (TC). Transcriptome analysis showed that 538 genes were significantly downregulated, and 460 genes were significantly upregulated in the HFD-fed fish. Gene Ontology (GO) enrichment analysis showed that these differentially expressed genes (DEGs) were apparently involved in the lipid metabolic process and monocarboxylic acid metabolic process. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated significant alterations in pathways of steroid biosynthesis, porphyrin metabolism, terpenoid backbone biosynthesis, and retinol metabolism after HFD feeding. Additionally, results from Gene Set Enrichment Analysis (GSEA) revealed that gene expression patterns in pathways including oxidative phosphorylation, protein export, protein processing in the endoplasmic reticulum, and ribosome biogenesis were positively enriched in the HFD-fed tilapia. These findings provide novel insights into the mechanisms underlying HFD-induced hepatic dysfunction in fish, contributing to the optimization of feeding strategies in aquaculture.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Linjun Zhou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
| | - Liqiang Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| |
Collapse
|
3
|
Zhang H, Lei S, Zhuo H, Xu Y, Ye Y, Luo Y. TRIM24 Up-Regulates ORM2 to Alleviate Abnormal Lipid Metabolism, Inflammation, and Oxidative Stress in Mice with Obstructive Sleep Apnea Syndrome and Metabolic Dysfunction-Associated Steatotic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2091-2105. [PMID: 39168366 DOI: 10.1016/j.ajpath.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) is associated with the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Tripartite motif containing 24 (TRIM24) deficiency causes hepatic lipid accumulation and hepatitis. However, the expression, function, and mechanism of TRIM24 in OSAS and MASLD remain unclear. Herein, an OSAS and MASLD mouse model was established by intermittent hypoxia (IH) and high-fat diet. IH- and 1% free fatty acid-induced mouse liver cells served as an in vitro model. TRIM24 and HIF1A were up-regulated under the IH condition. HIF1A enhanced the transcriptional activity of TRIM24. Overexpression of TRIM24 reduced hepatic lipid accumulation, decreased serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol in OSAS and MASLD mice. Additionally, overexpression of TRIM24 alleviated inflammation and oxidative stress, and modulated aberrant lipid metabolism. Mechanically, TRIM24 up-regulated the expression of ORM2, a key regulator of hepatic lipogenesis, by binding to H3K27ac and recruiting retinoic acid receptor-α to ORM2 promoter. The cell rescue model was used to verify that ORM2 mediated the hepatoprotective effects of TRIM24. The current study reveals the important role of TRIM24 as an epigenetic coregulator of transcription in OSAS and MASLD, providing additional insights into understanding the pathogenesis and preventing the development of OSAS and MASLD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Si Lei
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Zhuo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yun Ye
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
4
|
Wang Y, Chen S, Xue M, Ma J, Yi X, Li X, Lu X, Zhu M, Peng J, Tang Y, Zhu Y. Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome. Anim Biosci 2024; 37:1317-1332. [PMID: 38665091 PMCID: PMC11222861 DOI: 10.5713/ab.23.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. METHODS Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. RESULTS In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. CONCLUSION Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Shuwen Chen
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Min Xue
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Jinhu Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xinrui Yi
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xinyu Li
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Xuejin Lu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Meizi Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Jin Peng
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
| | - Yunshu Tang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032,
China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032,
China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032,
China
| |
Collapse
|
5
|
Sun PQ, Dong WM, Yuan YF, Cao Q, Chen XY, Guo LL, Jiang YY. Targeted metabolomics study of fatty-acid metabolism in lean metabolic-associated fatty liver disease patients. World J Gastroenterol 2024; 30:3290-3303. [PMID: 39086751 PMCID: PMC11287418 DOI: 10.3748/wjg.v30.i27.3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The annual incidence of metabolic-associated fatty liver disease (MAFLD) in China has been increasing and is often overlooked owing to its insidious characteristics. Approximately 50% of the patients have a normal weight or are not obese. They are said to have lean-type MAFLD, and few studies of such patients are available. Because MAFLD is associated with abnormal lipid metabolism, lipid-targeted metabolomics was used in this study to provide experimental evidence for early diagnosis and pathogenesis. AIM To investigate the serum fatty-acid metabolic characteristics in lean-type MAFLD patients using targeted serum metabolomic technology. METHODS Between January and June 2022, serum samples were collected from MAFLD patients and healthy individuals who were treated at Shanghai Putuo District Central Hospital for serum metabolomics analysis. Principal component analysis and orthogonal partial least squares-discriminant analysis models were developed, and univariate analysis was used to screen for biomarkers of lean-type MAFLD and analyze metabolic pathways. UPLC-Q-Orbitrap/MS content determination was used to determine serum palmitic acid (PA), oleic acid (OA), linoleic acid (LA), and arachidonic acid (AA) levels in lean-type MAFLD patients. RESULTS Urea nitrogen and uric acid levels were higher in lean-type MAFLD patients than in healthy individuals (P < 0.05). Alanine transaminase and cholinesterase levels were higher in lean-type MAFLD patients than in healthy individuals (P < 0.01). The expression of high-density lipoprotein and apolipoprotein A-1 were lower in lean-type MAFLD patients than in healthy individuals (P < 0.05) and the expression of triglycerides and fasting blood glucose were increased (P < 0.01). A total of 65 biomarkers that affected the synthesis and metabolism of fatty acids were found with P < 0.05 and variable importance in projection > 1". The levels of PA, OA, LA, and AA were significantly increased compared with healthy individuals. CONCLUSION The metabolic profiles of lean-type MAFLD patients and healthy participants differed significantly, yielding 65 identified biomarkers. PA, OA, LA, and AA exhibited the most significant changes, offering valuable clinical guidance for prevention and treatment of lean-type MAFLD.
Collapse
Affiliation(s)
- Pei-Qi Sun
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wen-Min Dong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yi-Fu Yuan
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qin Cao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiao-Yan Chen
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Li-Li Guo
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuan-Ye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
6
|
Wang ZY, Chen RX, Wang JF, Liu SC, Xu X, Zhou T, Chen YAL, Zhang YD, Li XC, Li CX. Apolipoprotein A-1 Accelerated Liver Regeneration Through Regulating Autophagy Via AMPK-ULK1 Pathway. Cell Mol Gastroenterol Hepatol 2023; 17:539-551. [PMID: 38122985 PMCID: PMC10883977 DOI: 10.1016/j.jcmgh.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND & AIMS Apolipoprotein A-1 (ApoA-1), the main apolipoprotein of high-density lipoprotein, has been well studied in the area of lipid metabolism and cardiovascular diseases. In this project, we clarify the function and mechanism of ApoA-1 in liver regeneration. METHODS Seventy percent of partial hepatectomy was applied in male ApoA-1 knockout mice and wild-type mice to investigate the effects of ApoA-1 on liver regeneration. D-4F (ApoA-1 mimetic peptide), autophagy activator, and AMPK activator were used to explore the mechanism of ApoA-1 on liver regeneration. RESULTS We demonstrated that ApoA-1 levels were highly expressed during the early stage of liver regeneration. ApoA-1 deficiency greatly impaired liver regeneration after hepatectomy. Meanwhile, we found that ApoA-1 deficiency inhibited autophagy during liver regeneration. The activation of autophagy protected against ApoA-1 deficiency in inhibiting liver regeneration. Furthermore, ApoA-1 deficiency impaired autophagy through AMPK-ULK1 pathway, and AMPK activation significantly improved liver regeneration. The administration of D-4F could accelerated liver regeneration after hepatectomy. CONCLUSIONS These findings suggested that ApoA-1 played an essential role in liver regeneration through promoting autophagy in hepatocytes via AMPK-ULK1 pathway. Our findings enrich the understanding of the underlying mechanism of liver regeneration and provide a potential therapeutic strategy for liver injury.
Collapse
Affiliation(s)
- Zi Yi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Rui Xiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ji Fei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Shuo Chen Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yan An Lan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yao Dong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiang Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Chang Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
7
|
Zhang Y, Fan Y, Hu H, Zhang X, Wang Z, Wu Z, Wang L, Yu X, Song X, Xiang P, Zhang X, Wang T, Tan S, Li C, Gao L, Liang X, Li S, Li N, Yue X, Ma C. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury. Nat Commun 2023; 14:7527. [PMID: 37980429 PMCID: PMC10657347 DOI: 10.1038/s41467-023-43439-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
Mitochondria dysfunction contributes to acute liver injuries, and mitochondrial regulators, such as PGC-1α and MCJ, affect liver regeneration. Therefore, identification of mitochondrial modulators may pave the way for developing therapeutic strategies. Here, ZHX2 is identified as a mitochondrial regulator during acute liver injury. ZHX2 both transcriptionally inhibits expression of several mitochondrial electron transport chain genes and decreases PGC-1α stability, leading to reduction of mitochondrial mass and OXPHOS. Loss of Zhx2 promotes liver recovery by increasing mitochondrial OXPHOS in mice with partial hepatectomy or CCl4-induced liver injury, and inhibition of PGC-1α or electron transport chain abolishes these effects. Notably, ZHX2 expression is higher in liver tissues from patients with drug-induced liver injury and is negatively correlated with mitochondrial mass marker TOM20. Delivery of shRNA targeting Zhx2 effectively protects mice from CCl4-induced liver injury. Together, our data clarify ZHX2 as a negative regulator of mitochondrial OXPHOS and a potential target for developing strategies for improving liver recovery after acute injuries.
Collapse
Affiliation(s)
- Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Huili Hu
- Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaohui Zhang
- Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiangguo Yu
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaodong Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Shuijie Li
- College of Pharmacy, Harbin Medical University, Harbin, China
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institute, Stockholm, Sweden
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China.
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Chen RX, Jiang WJ, Liu SC, Wang ZY, Wang ZB, Zhou T, Chen YAL, Wang JF, Chang J, Wang YR, Zhang YD, Wang XH, Li XC, Li CX. Apolipoprotein A-1 protected hepatic ischaemia-reperfusion injury through suppressing macrophage pyroptosis via TLR4-NF-κB pathway. Liver Int 2023; 43:234-248. [PMID: 36203339 DOI: 10.1111/liv.15448] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein A-1 (ApoA-1), the major apolipoprotein of high-density lipoprotein, plays anti-atherogenic role in cardiovascular diseases and exerts anti-inflammation effect in various inflammatory and infectious diseases. However, the role and mechanism of ApoA-1 in hepatic ischaemia-reperfusion (I/R) injury is unknown. METHODS In this study, we measured ApoA-1 expression in human liver grafts after transplantation. Mice partial hepatic I/R injury model was made in ApoA-1 knockout mice, ApoA-1 mimetic peptide D-4F treatment mice and corresponding control mice to examine the effect of ApoA-1 on liver damage, inflammation response and cell death. Primary hepatocytes and macrophages were isolated for in vitro study. RESULTS The results showed that ApoA-1 expression was down-regulated in human liver grafts after transplantation and mice livers subjected to hepatic I/R injury. ApoA-1 deficiency aggravated liver damage and inflammation response induced by hepatic I/R injury. Interestingly, we found that ApoA-1 deficiency increased pyroptosis instead of apoptosis during acute phase of hepatic I/R injury, which mainly occurred in macrophages rather than hepatocytes. The inhibition of pyroptosis compensated for the adverse impact of ApoA-1 deficiency. Furthermore, the up-regulated pyroptosis process was testified to be mediated by ApoA-1 through TLR4-NF-κB pathway and TLR4 inhibition significantly improved hepatic I/R injury. In addition, we confirmed that D-4F ameliorated hepatic I/R injury. CONCLUSIONS Our study has identified the protective role of ApoA-1 in hepatic I/R injury through inhibiting pyroptosis in macrophages via TLR4-NF-κB pathway. The effect of ApoA-1 may provide a novel therapeutic approach for hepatic I/R injury.
Collapse
Affiliation(s)
- Rui-Xiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wang-Jie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Shuo-Chen Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zi-Yi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhi-Bo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yan-An-Lan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ji-Fei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yi-Rui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yao-Dong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xue-Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiang-Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chang-Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
9
|
Chen Y, Zhang P, Lv S, Su X, Du Y, Xu C, Jin Z. Ectopic fat deposition and its related abnormalities of lipid metabolism followed by nonalcoholic fatty pancreas. Endosc Ultrasound 2022; 11:407-413. [PMID: 35848656 DOI: 10.4103/eus-d-21-00167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and Objectives The positive energy balance between caloric intake and caloric output increasing storage of triglycerides (TG) in adipocytes has made nonalcoholic fatty liver disease (NAFLD) one of the major public health problems in China. Excessive lipid deposition in the pancreas is referred to as nonalcoholic fatty pancreas disease (NAFPD). Early assessment of pancreatic fat infiltration will have an increasing role in the clinical management of the metabolic dysregulation and prevention pancreatic complications. Subjects and Methods We retrospectively collected data of inpatients with NAFPD from EUS database between September 2012 and August 2020 at our endoscopic center. The prevalence of NAFPD and factors associated with its development were statistically analyzed. The echogenicity of the pancreas was compared to that of the left renal cortex during the EUS examination by using an existing criterion. Results Four thousand, seven hundred and four consecutive individuals underwent EUS were enrolled. The prevalence of NAFPD was 1.2% (57/4704) . Factors independently associated with NAFPD on multivariate analysis were increasing TG (odds ratios [OR] 4.65, P = 0.014), NAFLD (OR 16.76, P = 0.005) and decreasing apolipoprotein A-1 (OR 0.002, P = 0.0127). We found no association between NAFPD and age, sex, total cholesterol or hypertension. Conclusions We found a meaningful relationship between NAFLD, dyslipidemia, and NAFPD in Chinese. We hypothesized that NAFPD was strongly correlated with ectopic fat deposition and its related abnormalities of lipid metabolism. Early diagnosis of NAFLD provides opportunities to control the progression of NAFPD.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pingping Zhang
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shunli Lv
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoju Su
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yiqi Du
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
11
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
12
|
Zou S, Dong R, Wang J, Liang F, Zhu T, Zhao S, Zhang Y, Wang T, Zou P, Li N, Wang Y, Chen M, Zhou C, Zhang T, Luo L. Use of data-independent acquisition mass spectrometry for comparative proteomics analyses of sera from pregnant women with intrahepatic cholestasis of pregnancy. J Proteomics 2021; 236:104124. [PMID: 33545297 DOI: 10.1016/j.jprot.2021.104124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
We used data-independent acquisition (DIA) proteomics technology followed by ELISAs and automated biochemical analyses to identify and validate protein expression levels in Intrahepatic Cholestasis of Pregnancy (ICP) and healthy pregnant controls. We employed bioinformatics to identify metabolic processes associated with differentially expressed proteins.The expression levels of two proteins (S100-A9 and the L-lactate dehydrogenase A chain) were significantly higher in ICP patients than in controls; the areas under the receiver operating characteristic (ROC) curves (AUCs) were 0.774 and 0.828, respectively. The expression levels of two other proteins (apolipoprotein A-I and cholinesterase) were significantly lower in patients, with values of 0.900 and 0.842, respectively. Multiple logistic regression showed that a combination of the levels of the four proteins optimized the AUC (0.962), thus more reliably diagnosing ICP. The levels of all four proteins were positively associated with that of total bile acids. Bioinformatics analyses indicated that the four proteins principally affected neutrophil activation involved in the immune response, cell adhesion, lipoprotein metabolism, and the PPAR signaling pathway. SIGNIFICANCE: This preliminary work improves our understanding of changes in serum levels of protein in pregnant women with ICP. The four proteins may serve as novel noninvasive biomarkers for ICP.
Collapse
Affiliation(s)
- Shaohan Zou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310000, China
| | - Ruirui Dong
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Jing Wang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Fengbing Liang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310000, China
| | - Tingting Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310000, China
| | - Shaojie Zhao
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Yan Zhang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Tiejun Wang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Ping Zou
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Na Li
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Yao Wang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Conghua Zhou
- School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Zhang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China.
| | - Liang Luo
- The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, China.
| |
Collapse
|
13
|
Zhu Y, Zeng Q, Li F, Fang H, Zhou Z, Jiang T, Yin C, Wei Q, Wang Y, Ruan J, Huang J. Dysregulated H3K27 Acetylation Is Implicated in Fatty Liver Hemorrhagic Syndrome in Chickens. Front Genet 2021; 11:574167. [PMID: 33505421 PMCID: PMC7831272 DOI: 10.3389/fgene.2020.574167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022] Open
Abstract
Epigenetic regulation of gene expression has been reported in the pathogenesis of metabolic disorders such as diabetes and liver steatosis in humans. However, the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in chickens have been rarely studied. H3K27ac chromatin immunoprecipitation coupled with high-throughput sequencing and high-throughput RNA sequencing was performed to compare genome-wide H3K27ac profiles and transcriptomes of liver tissue between healthy and FLHS chickens. In total, 1,321 differential H3K27ac regions and 443 differentially expressed genes were identified (| log2Fold change| ≥ 1 and P-value ≤ 0.05) between the two groups. Binding motifs for transcription factors involved in immune processes and metabolic homeostasis were enriched among those differential H3K27ac regions. Differential H3K27ac peaks were associated with multiple known FLHS risk genes, involved in lipid and energy metabolism (PCK1, APOA1, ANGPTL4, and FABP1) and the immune system (FGF7, PDGFRA, and KIT). Previous studies and our current results suggested that the high-energy, low-protein (HELP) diet might have an impact on histone modification and chromatin structure, leading to the dysregulation of candidate genes and the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which causes excessive accumulation of fat in the liver tissue and induces the development of FLHS. These findings highlight that epigenetic modifications contribute to the regulation of gene expression and play a central regulatory role in FLHS. The PPAR signaling pathway and other genes implicated in FLHS are of great importance for the development of novel and specific therapies for FLHS-susceptible commercial laying hens.
Collapse
Affiliation(s)
- Yaling Zhu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Pathophysiology, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fang Li
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Zhimin Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chao Yin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yujie Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Zhu C, Dong B, Sun L, Wang Y, Chen S. Cell Sources and Influencing Factors of Liver Regeneration: A Review. Med Sci Monit 2020; 26:e929129. [PMID: 33311428 PMCID: PMC7747472 DOI: 10.12659/msm.929129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration (LR) is a set of complicated mechanisms between cells and molecules in which the processes of initiation, maintenance, and termination of liver repair are regulated. Although LR has been studied extensively, there are still numerous challenges in gaining its full understanding. Cells for LR have a wide range of sources and the feature of plasticity, and regeneration patterns are not the same under different conditions. Many patients undergoing partial hepatectomy develop cirrhosis or steatosis. The changes of LR in these cases are not clear. Many types of cells participate in LR. Hepatocytes, biliary epithelial cells, hepatic progenitor cells, and human liver stem cells can serve as the cell sources for LR. However, different types and degrees of damage trigger the response from the most suitable cells. Exploring the cell sources of LR is of great significance for accelerating recovery of liver function under different pathological patterns and developing a cell therapy strategy to cope with the shortage of donors for liver transplantation. In clinical practice, the background of the liver influences regeneration. Fibrosis and steatosis create different LR microenvironments and signal molecule interaction patterns. In addition, factors such as partial hepatectomy, aging, platelets, nerves, hormones, bile acids, and gut microbiota are widely involved in this process. Understanding the influencing factors of LR has practical value for individualized treatment of patients with liver diseases. In this review, we have summarized recent studies and proposed our views. We discuss cell sources and the influential factors on LR to help in solving clinical problems.
Collapse
Affiliation(s)
- Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Leqi Sun
- Department of Oncological Medical Services, Institute of Health Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| | - Yixiu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Shuhai Chen
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| |
Collapse
|
15
|
Wang W, Wang B, Liu C, Yan J, Xiong X, Wang X, Yang J, Guo B, Huang C. Serum proteomic predicts effectiveness and reveals potential biomarkers for complications in liver transplant patients. Aging (Albany NY) 2020; 12:12119-12141. [PMID: 32530819 PMCID: PMC7343480 DOI: 10.18632/aging.103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Sophisticated postoperative complications limit the long-term clinical success of liver transplantation. Hence, early identification of biomarkers is essential for graft and patient survival. High-throughput serum proteomics technologies provide an opportunity to identify diagnostic and prognostic biomarkers. This study is aimed to identify serum diagnosis biomarkers for complications and monitor effectiveness. Serum samples from 10 paired pre- and post-liver transplant patients, 10 acute rejection (AR) patients, 9 ischemic-type biliary lesion (ITBL) patients, and 10 healthy controls were screened using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to explore divergence in polypeptide. Then, we used ELISA and western blot analysis to validate the expression of these potential biomarkers, and studied the correlation of proteomic profiles with clinical parameters. ACLY, FGA, and APOA1 were significantly lower in pre-operative patients compared with healthy controls, and these patients had modest recovery after transplantation. Downregulation of both, ACLY and FGA, was also observed in AR and ITBL patients. Furthermore, bioinformatics analysis was performed and the results suggested that the identified proteins were involved in glucolipid metabolism and the clotting cascade. Together, these findings suggest that ACLY, FGA, and APOA1 could be novel non-invasive and early biomarkers to detect complications and predict effectiveness of liver transplantation.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China
| | - Jing Yan
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, P R China
| | - Xiaofan Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China
| | - Bo Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, P R China
| |
Collapse
|
16
|
The Inhibition of Aldose Reductase Accelerates Liver Regeneration through Regulating Energy Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3076131. [PMID: 32190170 PMCID: PMC7064854 DOI: 10.1155/2020/3076131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Objectives Our previous study showed that aldose reductase (AR) played key roles in fatty liver ischemia-reperfusion (IR) injury by regulating inflammatory response and energy metabolism. Here, we aim to investigate the role and mechanism of AR in the regeneration of normal and fatty livers after liver surgery. Methods The association of AR expression with liver regeneration was studied in the rat small-for-size liver transplantation model and the mice major hepatectomy and hepatic IR injury model with or without fatty change. The direct role and mechanism of AR in liver regeneration was explored in the AR knockout mouse model. Results Delayed regeneration was detected in fatty liver after liver surgery in both rat and mouse models. Furthermore, the expression of AR was increased in liver after liver surgery, especially in fatty liver. In a functional study, the knockout of AR promoted liver regeneration at day 2 after major hepatectomy and IR injury. Compared to wild-type groups, the expressions of cyclins were increased in normal and fatty livers of AR knockout mice. AR inhibition increased the expressions of PPAR-α and PPAR-γ in both normal liver and fatty liver groups after major hepatectomy and IR injury. In addition, the knockout of AR promoted the expressions of SDHB, AMPK, SIRT1, and PGC1-α and PPAR- Conclusions The knockout of AR promoted the regeneration of normal and fatty livers through regulating energy metabolism. AR may be a new potential therapeutic target to accelerate liver regeneration after surgery.
Collapse
|
17
|
Hyslip J, Martins PN. Liver Repair and Regeneration in Transplant: State of the Art. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|