1
|
Liu X, Huan Y, Wang Y, Huang Y. Ulcerative colitis coexisting with hepatitis C: A rare occurrence. Medicine (Baltimore) 2023; 102:e36629. [PMID: 38115293 PMCID: PMC10727529 DOI: 10.1097/md.0000000000036629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION We describe a rare case of a 54-year-old male diagnosed with both ulcerative colitis (UC) and hepatitis C virus (HCV), posing clinical challenges. PATIENT CONCERNS The patient showed worsened UC symptoms, leading to further evaluations. DIAGNOSIS Dual diagnosis of UC and HCV was confirmed through endoscopy and serological tests, ruling out other hepatic causes. Interventions: Treatment involved methylprednisolone for UC and sofosbuvir/velpatasvir for HCV, with attention to drug interactions. OUTCOMES Significant improvement was observed in both UC symptoms and HCV viral load post-treatment. CONCLUSION This case underscores the need for nuanced treatment in managing concurrent UC and HCV, considering potential drug interactions and disease impacts.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yisen Huan
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yubin Wang
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yingxuan Huang
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Abduljalil JM, Elghareib AM, Samir A, Ezat AA, Elfiky AA. How helpful were molecular dynamics simulations in shaping our understanding of SARS-CoV-2 spike protein dynamics? Int J Biol Macromol 2023:125153. [PMID: 37268078 DOI: 10.1016/j.ijbiomac.2023.125153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
The SARS-CoV-2 spike protein (S) represents an important viral component that is required for successful viral infection in humans owing to its essential role in recognition of and entry to host cells. The spike is also an appealing target for drug designers who develop vaccines and antivirals. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. MD simulations found that the higher affinity of SARS-CoV-2-S to ACE2 is linked to its unique residues that add extra electrostatic and van der Waal interactions in comparison to the SARS-CoV S. This illustrates the spread potential of the pandemic SARS-CoV-2 relative to the epidemic SARS-CoV. Different mutations at the S-ACE2 interface, which is believed to increase the transmission of the new variants, affected the behavior and binding interactions in different simulations. The contributions of glycans to the opening of S were revealed via simulations. The immune evasion of S was linked to the spatial distribution of glycans. This help the virus to escape the immune system recognition. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. This will pave the way to us preparing for the next pandemic as the computational tools are tailored to help fight new challenges.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen; Department of Botany and Microbiology, College of Science, Cairo University, Giza, Egypt
| | - Ahmed M Elghareib
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Samir
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Ezat
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Abstract
Hepatitis C virus (HCV) infection contributes significantly to liver cirrhosis and hepatocellular carcinoma (HCC), often requiring liver transplantation. Introducing direct-acting antiviral agents (DAAs) has radically changed HCV treatment. DAAs achieve high rates of sustained virological response (>98%). Even then, resistant-associated substitution and HCC during or after treatment have become prominent clinical concerns. Further, several clinically significant issues remain unresolved after successful HCV eradication by DAAs, including treating patients with chronic kidney disease or decompensated liver cirrhosis. Extensive and large-scale screening and treatment implementation programs are needed to make DAA therapies effective at the population level.
Collapse
|
4
|
Waqas M, Haider A, Rehman A, Qasim M, Umar A, Sufyan M, Akram HN, Mir A, Razzaq R, Rasool D, Tahir RA, Sehgal SA. Immunoinformatics and Molecular Docking Studies Predicted Potential Multiepitope-Based Peptide Vaccine and Novel Compounds against Novel SARS-CoV-2 through Virtual Screening. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596834. [PMID: 33728324 PMCID: PMC7910514 DOI: 10.1155/2021/1596834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/13/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Coronaviruses (CoVs) are enveloped positive-strand RNA viruses which have club-like spikes at the surface with a unique replication process. Coronaviruses are categorized as major pathogenic viruses causing a variety of diseases in birds and mammals including humans (lethal respiratory dysfunctions). Nowadays, a new strain of coronaviruses is identified and named as SARS-CoV-2. Multiple cases of SARS-CoV-2 attacks are being reported all over the world. SARS-CoV-2 showed high death rate; however, no specific treatment is available against SARS-CoV-2. METHODS In the current study, immunoinformatics approaches were employed to predict the antigenic epitopes against SARS-CoV-2 for the development of the coronavirus vaccine. Cytotoxic T-lymphocyte and B-cell epitopes were predicted for SARS-CoV-2 coronavirus protein. Multiple sequence alignment of three genomes (SARS-CoV, MERS-CoV, and SARS-CoV-2) was used to conserved binding domain analysis. RESULTS The docking complexes of 4 CTL epitopes with antigenic sites were analyzed followed by binding affinity and binding interaction analyses of top-ranked predicted peptides with MHC-I HLA molecule. The molecular docking (Food and Drug Regulatory Authority library) was performed, and four compounds exhibiting least binding energy were identified. The designed epitopes lead to the molecular docking against MHC-I, and interactional analyses of the selected docked complexes were investigated. In conclusion, four CTL epitopes (GTDLEGNFY, TVNVLAWLY, GSVGFNIDY, and QTFSVLACY) and four FDA-scrutinized compounds exhibited potential targets as peptide vaccines and potential biomolecules against deadly SARS-CoV-2, respectively. A multiepitope vaccine was also designed from different epitopes of coronavirus proteins joined by linkers and led by an adjuvant. CONCLUSION Our investigations predicted epitopes and the reported molecules that may have the potential to inhibit the SARS-CoV-2 virus. These findings can be a step towards the development of a peptide-based vaccine or natural compound drug target against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ali Haider
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ahitsham Umar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hafiza Nisha Akram
- Department of Environmental Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Roha Razzaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Danish Rasool
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rana Adnan Tahir
- Department of Biosciences, COMSATS University, Sahiwal Campus, Islamabad, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| |
Collapse
|
5
|
Boonma T, Nutho B, Darai N, Rungrotmongkol T, Nunthaboot N. Exploring of paritaprevir and glecaprevir resistance due to A156T mutation of HCV NS3/4A protease: molecular dynamics simulation study. J Biomol Struct Dyn 2021; 40:5283-5294. [PMID: 33430709 DOI: 10.1080/07391102.2020.1869587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus (HCV) NS3/4A serine protease is a promising drug target for the discovery of anti-HCV drugs. However, its amino acid mutations, particularly A156T, commonly lead to rapid emergence of drug resistance. Paritaprevir and glecaprevir, the newly FDA-approved HCV drugs, exhibit distinct resistance profiles against the A156T mutation of HCV NS3/4A serine protease. To illustrate their different molecular resistance mechanisms, molecular dynamics simulations and binding free energy calculations were carried out on the two compounds complexed with both wild-type (WT) and A156T variants of HCV NS3/4A protease. QM/MM-GBSA-based binding free energy calculations revealed that the binding affinities of paritaprevir and glecaprevir towards A156T NS3/4A were significantly reduced by ∼4 kcal/mol with respect to their WT complexes, which were in line with the experimental resistance folds. Moreover, the relatively weak intermolecular interactions with amino acids such as H57, R155, and T156 of NS3 protein, the steric effect and the destabilized protein binding surface, which is caused by the loss of salt bridge between R123 and D168, are the main contributions for the higher fold-loss in potency of glecaprevir due to A156T mutation. An insight into the difference of molecular mechanism of drug resistance against the A156T substitution among the two classes of serine protease inhibitors could be useful for further optimization of new generation HCV NS3/4A inhibitors with enhanced inhibitory potency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thitiya Boonma
- Supramolecular Chemistry Research Unit and Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.,Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‒CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Bodee Nutho
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Nitchakan Darai
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Nadtanet Nunthaboot
- Supramolecular Chemistry Research Unit and Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.,Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‒CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
6
|
Cardoso WB, Mendanha SA. Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors. J Mol Struct 2020; 1225:129143. [PMID: 32863430 PMCID: PMC7443253 DOI: 10.1016/j.molstruc.2020.129143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
We consider possible repurposed-drugs candidates against SARS-CoV-2. 10 different HIV protease inhibitors were investigated. In silico simulations were used to study protease inhibitors for SARS-CoV-2.
In this paper we investigate 10 different HIV protease inhibitors (HPIs) as possible repurposed-drugs candidates against SARS-CoV-2. To this end, we execute molecular docking and molecular dynamics simulations. The in silico data demonstrated that, despite their molecular differences, all HPIs presented a similar behavior for the parameters analyzed, with the exception of Nelfinavir that showed better results for most of the molecular dynamics parameters in comparison with the N3 inhibitor.
Collapse
Affiliation(s)
- Wesley B Cardoso
- Instituto de Física, Universidade Federal de Goiás, 74.690-900, Goiânia, Goiás, Brazil
| | - Sebastião A Mendanha
- Instituto de Física, Universidade Federal de Goiás, 74.690-900, Goiânia, Goiás, Brazil
| |
Collapse
|
7
|
Bharadwaj S, Rao AK, Dwivedi VD, Mishra SK, Yadava U. Structure-based screening and validation of bioactive compounds as Zika virus methyltransferase (MTase) inhibitors through first-principle density functional theory, classical molecular simulation and QM/MM affinity estimation. J Biomol Struct Dyn 2020; 39:2338-2351. [PMID: 32216596 DOI: 10.1080/07391102.2020.1747545] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent Zika virus (ZIKV) outbreak and association with human diseases such as neurological disorders have raised global health concerns. However, in the absence of an approved anti-ZIKV drug has generated urgency for the drug development against ZIKV infection. Here, structure-based virtual screening of 8589 bioactive compounds, screened at the substrate-binding site of ZIKV nonstructural 5 (NS5)-based structure N-terminal methyltransferase (MTase) domain followed by ADMET (absorption, distribution, metabolism, excretion and toxicity) profiling concluded the four potential lead inhibitors, i.e. (4-acetylamino-benzenesulfonylamino)-acetic acid (F3342-0450), 3-(5-methylfuran-2-yl)-N-(4-sulfamoylphenyl)propanamide (F1736-0142), 8-(2-hydroxy-ethylamino)-1,3-dimethyl-7-(3-methyl-benzyl)-3,7-dihydro-purine-2,6-dione (F0886-0080) and N-[4-(aminosulfonyl)phenyl]-2,3-dihydro-1,4-benzodioxine-2-carboxamide (F0451-2187). Collectively, extra precision docking and Density Functional Theory(DFT) calculations studies identified the F3342-0450 molecule, having strong interactions on the active site of MTase, further supported by molecular dynamics simulation, binding affinity and hybrid QM/MM calculations, suggest a new drug molecule for the antiviral drug development against ZIKV infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Sabanci University Nanotechnology Research and Application Center, Istanbul, Turkey
| | - Akhilesh Kumar Rao
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| | - Vivek Dhar Dwivedi
- Centre for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Sarad Kumar Mishra
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|