1
|
Sriwatananukulkit O, Desclaux S, Tawonsawatruk T, Srikuea R, Himakhun W, Likitnukul S, Hemstapat R. Effectiveness of losartan on infrapatellar fat pad/synovial fibrosis and pain behavior in the monoiodoacetate-induced rat model of osteoarthritis pain. Biomed Pharmacother 2023; 158:114121. [PMID: 36516695 DOI: 10.1016/j.biopha.2022.114121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Infrapatellar fat pad (IFP)/ synovial fibrosis is closely associated with the clinical symptoms of joint pain and stiffness, which contribute to locomotor restriction in osteoarthritis (OA) patients. Hence, this study was designed to gain insight on whether losartan, a selective angiotensin II type 1 receptor (AT1R) antagonist, has therapeutic benefit to reverse IFP/synovial fibrosis and secondarily to attenuate pain behavior. In male Wistar rats with monoiodoacetic acid (MIA)-induced IFP/synovial fibrosis, a possible role for increased AT1R expression in the pathogenesis of IFP/synovial fibrosis was assessed over an 8-week period. Pain behavior comprised static weight bearing and von Frey paw withdrawal thresholds (PWTs), which were assessed once or twice weekly, respectively. Groups of MIA-rats received oral losartan (30-mg/kg; n = 8 or 100-mg/kg; n = 9) or vehicle (n = 9) for 28-days according to a prevention protocol. Animals were euthanized on day 28 and various tissues (IFP/synovium, cartilage and lumbar dorsal root ganglia (DRGs)) were collected for histological, immunohistochemical and western blot analyses. Administration of once-daily losartan for 28-days dose-dependently attenuated the development of static weight bearing. This was accompanied by reduced IFP/synovial fibrosis and suppression of TGF-β1 expression. Chronic treatment of MIA-rats with losartan had an anti-fibrotic effect and it attenuated pain behavior in this animal model.
Collapse
Affiliation(s)
- Orada Sriwatananukulkit
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Scarlett Desclaux
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | | | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Wanwisa Himakhun
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand.
| | - Sutharinee Likitnukul
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Hong Y, Wu W, Wang S, Hao Q, Zheng H, Li S, Zhang X, Sun R. Angiotensin II type 1 receptor blockade attenuates posttraumatic stress disorder-related chronic pain by inhibiting glial activation in the spinal cord. Neuropharmacology 2021; 196:108704. [PMID: 34252405 DOI: 10.1016/j.neuropharm.2021.108704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Clinically, posttraumatic stress disorder (PTSD) and chronic pain are highly comorbid conditions, but the underlying mechanisms of and therapeutic strategies against PTSD-related pain remain unclear. Our previous studies suggested that dysregulation of neuroinflammation contributes to the development of stress-induced hyperalgesia. Recent studies reported that angiotensin II was a 'stress-related hormone', and could induce glial activation by stimulating the type 1 receptor (AT1R). In the present study, we aimed to investigate whether AT1R blockade could attenuate mechanical allodynia induced by PTSD-like stress. Adult male rats were exposed to single prolonged stress (SPS) to establish a model of PTSD-pain comorbidity. Our results showed that SPS exposure increased the levels of angiotensin II in the hippocampus, prefrontal cortex (PFC) and spinal cord; intraperitoneal injection of losartan attenuated SPS-induced mechanical allodynia, and suppressed SPS-induced glial activation (both microglia and astrocytes) and proinflammatory cytokine expression in the PFC and spinal cord, but not in the hippocampus. We further showed that intrathecal injection of losartan also exerted anti-hyperalgesic effect and suppressed SPS-induced glial activation and proinflammatory cytokine expression in the spinal cord. These results indicated that AT1R blockade by losartan attenuated mechanical allodynia induced by PTSD-like stress, and this may be attributed to the suppression of glial activation and proinflammatory cytokine expression in the spinal cord. Although further research is warranted to verify our findings in female rodents and to assess pharmacological effects of AT1R blockade in PFC and hippocampus, our study suggested the therapeutic potential of targeting AT1R in the treatment of PTSD-related chronic pain.
Collapse
Affiliation(s)
- Yishun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanshui Hao
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Tomita S, Sekiguchi F, Kasanami Y, Naoe K, Tsubota M, Wake H, Nishibori M, Kawabata A. Ca v3.2 overexpression in L4 dorsal root ganglion neurons after L5 spinal nerve cutting involves Egr-1, USP5 and HMGB1 in rats: An emerging signaling pathway for neuropathic pain. Eur J Pharmacol 2020; 888:173587. [PMID: 32971090 DOI: 10.1016/j.ejphar.2020.173587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Overexpression of Cav3.2 T-type Ca2+ channels in L4 dorsal root ganglion (DRG) participates in neuropathic pain after L5 spinal nerve cutting (L5SNC) in rats. The L5SNC-induced neuropathic pain also involves high mobility group box 1 (HMGB1), a damage-associated molecular pattern protein, and its target, the receptor for advanced glycation end-products (RAGE). We thus studied the molecular mechanisms for the L5SNC-induced Cav3.2 overexpression as well as neuropathic pain in rats by focusing on; 1) possible involvement of early growth response 1 (Egr-1), known to regulate transcriptional expression of Cav3.2, and ubiquitin-specific protease 5 (USP5) that protects Cav3.2 from proteasomal degradation, and 2) possible role of HMGB1/RAGE as an upstream signal. Protein levels of Cav3.2 as well as Egr-1 in L4 DRG significantly increased in the early (day 6) and persistent (day 14) phases of neuropathy after L5SNC, while USP5 protein in L4 DRG did not increase on day 6, but day 14. An anti-HMGB1-neutralizing antibody or a low molecular weight heparin, a RAGE antagonist, prevented the development of neuropathic pain and upregulation of Egr-1 and Cav3.2 in L4 DRG after L5SNC. L5SNC increased macrophages accumulating in the sciatic nerves, and the cytoplasm/nuclear ratio of immunoreactive HMGB1 in those macrophages. Our findings suggest that L5SNC-induced Cav3.2 overexpression in L4 DRG and neuropathic pain involves Egr-1 upregulation downstream of the macrophage-derived HMGB1/RAGE pathway, and that the delayed upregulation of USP5 might contribute to the persistent Cav3.2 overexpression and neuropathy.
Collapse
Affiliation(s)
- Shiori Tomita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Yoshihito Kasanami
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Katsuki Naoe
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
4
|
Kalynovska N, Diallo M, Sotakova-Kasparova D, Palecek J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J Cell Mol Med 2020; 24:7949-7958. [PMID: 32485058 PMCID: PMC7348151 DOI: 10.1111/jcmm.15427] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/15/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti-inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator-activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro-inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C-C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin-6 (IL-6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro-nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel-induced neuroinflammatory changes and induced expression of pro-resolving markers (Arginase 1 and IL-10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.
Collapse
Affiliation(s)
- Nataliia Kalynovska
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Mickael Diallo
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Dita Sotakova-Kasparova
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Shank3 contributes to neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95. Neurosci Res 2020; 166:34-41. [PMID: 32454040 DOI: 10.1016/j.neures.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023]
Abstract
Neuropathic pain is a very complex chronic pain state, the detailed molecular mechanisms of which remain unclear. In the present study, Shank3 was found to play an important role in neuropathic pain in rats following spared nerve injury (SNI). Shank3 was upregulated in the spinal dorsal horn of rats subjected to SNI, and mechanical hypersensitivity to noxious stimuli in these rats could be alleviated by knock down of Shank3. Shank3 also interacted with hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and promoted the expression of HCN2 in central neurons of the spinal dorsal. Together with the SNI-dependent increase of HCN2, we also found that the postsynaptic protein of excitatory synapse (PSD95) was increased in rats following SNI. Taken together, our results showed that Shank3 modulated neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95 in spinal dorsal horn neurons. Our findings revealed new synaptic remodeling mechanisms linking Shank3 with neuropathic pain.
Collapse
|
6
|
Smith TTG, Barr-Gillespie AE, Klyne DM, Harris MY, Amin M, Paul RW, Cruz GE, Zhao H, Gallagher S, Barbe MF. Forced treadmill running reduces systemic inflammation yet worsens upper limb discomfort in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet Disord 2020; 21:57. [PMID: 32000751 PMCID: PMC6993343 DOI: 10.1186/s12891-020-3085-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Musculoskeletal disorders can result from prolonged repetitive and/or forceful movements. Performance of an upper extremity high repetition high force task increases serum pro-inflammatory cytokines and upper extremity sensorimotor declines in a rat model of work-related musculoskeletal disorders. Since one of the most efficacious treatments for musculoskeletal pain is exercise, this study investigated the effectiveness of treadmill running in preventing these responses. METHODS Twenty-nine young adult female Sprague-Dawley rats were used. Nineteen were trained for 5 weeks to pull a lever bar at high force (15 min/day). Thirteen went on to perform a high repetition high force reaching and lever-pulling task for 10 weeks (10-wk HRHF; 2 h/day, 3 days/wk). From this group, five were randomly selected to undergo forced treadmill running exercise (TM) during the last 6 weeks of task performance (10-wk HRHF+TM, 1 h/day, 5 days/wk). Results were compared to 10 control rats and 6 rats that underwent 6 weeks of treadmill running following training only (TR-then-TM). Voluntary task and reflexive sensorimotor behavioral outcomes were assessed. Serum was assayed for inflammatory cytokines and corticosterone, reach limb median nerves for CD68+ macrophages and extraneural thickening, and reach limb flexor digitorum muscles and tendons for pathological changes. RESULTS 10-wk HRHF rats had higher serum levels of IL-1α, IL-1β and TNFα, than control rats. In the 10-wk HRHF+TM group, IL-1β and TNFα were lower, whereas IL-10 and corticosterone were higher, compared to 10-wk HRHF only rats. Unexpectedly, several voluntary task performance outcomes (grasp force, reach success, and participation) worsened in rats that underwent treadmill running, compared to untreated 10-wk HRHF rats. Examination of forelimb tissues revealed lower cellularity within the flexor digitorum epitendon but higher numbers of CD68+ macrophages within and extraneural fibrosis around median nerves in 10-wk HRHF+TM than 10-wk HRHF rats. CONCLUSIONS Treadmill running was associated with lower systemic inflammation and moderate tendinosis, yet higher median nerve inflammation/fibrosis and worse task performance and sensorimotor behaviors. Continued loading of the injured tissues in addition to stress-related factors associated with forced running/exercise likely contributed to our findings.
Collapse
Affiliation(s)
- Tianqi Tenchi Gao Smith
- Department of Industrial and Systems Engineering, Auburn University, 3323 Shelby Engineering Center, Auburn, AL 36849 USA
- Department of Systems Science and Industrial Engineering, SUNY – Binghamton, Vestal, NY USA
| | - Ann E. Barr-Gillespie
- College of Health Professions, Pacific University, 190 S.E. 8th Avenue, Suite 230, Hillsboro, OR 97123 USA
| | - David M. Klyne
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Michelle Y. Harris
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | | | - Geneva E. Cruz
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Temple University Medical School, 3440 North Broad Street, Philadelphia, PA 19140 USA
| | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, 3323 Shelby Engineering Center, Auburn, AL 36849 USA
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
7
|
Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. Mol Neurobiol 2019; 56:7408-7419. [PMID: 31037647 DOI: 10.1007/s12035-019-1616-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) adversely impacts quality of life and a challenge to treat with existing drugs used for neuropathic pain. Losartan, an angiotensin II type 1 receptor (AT1R) antagonist widely used to treat hypertension, has been reported to have analgesic effects in several pain models. In this study, we assessed losartan's analgesic effect on paclitaxel-induced neuropathic pain (PINP) in rats and its mechanism of action in dorsal root ganglion (DRG). Rats received intraperitoneal injections of 2 mg/kg paclitaxel on days 0, 2, 4, and 6 and received single or multiple intraperitoneal injections of losartan potassium dissolved in phosphate-buffered saline at various times. The mechanical thresholds, protein levels of inflammatory cytokines, and cellular location of AT1R and interleukin 1β (IL-1β) in the DRG were assessed with behavioral testing, Western blotting, and immunohistochemistry, respectively. Data were analyzed by two-way repeated-measures analysis of variance for the behavioral test or the Mann-Whitney U test for the Western blot analysis and immunohistochemistry. Single and multiple injections of losartan ameliorated PINP, and losartan delayed the development of PINP. Paclitaxel significantly increased, and losartan subsequently decreased, the expression levels of inflammatory cytokines, including IL-1β and tumor necrosis factor α (TNF-α), in the lumbar DRG. AT1R and IL-1β were expressed in both neurons and satellite cells and losartan decreased the intensity of IL-1β in the DRG. Losartan ameliorates PINP by decreasing inflammatory cytokines including IL-1β and TNF-α in the DRG. Our findings provide a new or add-on therapy for CIPN patients.
Collapse
|