1
|
Wittenhofer P, Kiesewetter L, Schmitz OJ, Meckelmann SW. Investigation of the Cholesterol Biosynthesis by Heart-Cut Liquid Chromatography and Mass Spectrometric Detection. J Chromatogr A 2024; 1738:465475. [PMID: 39488880 DOI: 10.1016/j.chroma.2024.465475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The biosynthesis and homeostasis of cholesterol are essential for cellular function. Cholesterol is a major lipid with multiple roles in membrane stability, signaling, or as a precursor for other molecules. Because of the structural similarity of the sterols involved in the biosynthesis, their accurate identification and quantification is still challenging. Moreover, the huge difference in the concentration of cholesterol and its precursors can cause interferences during the detection. To overcome these problems, a heart-cut liquid chromatographic method was developed by evaluating 38 different columns to achieve optimal separation. The method efficiently separates all sterol biosynthesis intermediates, with detection limits in the low nmol/L-range and an upper limit of quantification of 9 mmol/L for cholesterol by using triple quadrupole mass spectrometric detection. Investigation of lung carcinoma cells treated with statins demonstrated the capability to detect a biological response, showing inhibition of sterol synthesis. This technique offers a robust tool for studying cholesterol biosynthesis and its role in disease.
Collapse
Affiliation(s)
- Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Laura Kiesewetter
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany.
| |
Collapse
|
2
|
Chanted J, Anantawat V, Wongnen C, Aewsiri T, Panpipat W, Panya A, Phonsatta N, Cheong LZ, Chaijan M. Valorization of Pig Brains for Prime Quality Oil: A Comparative Evaluation of Organic-Solvent-Based and Solvent-Free Extractions. Foods 2024; 13:2818. [PMID: 39272583 PMCID: PMC11394771 DOI: 10.3390/foods13172818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Pig processing industries have produced large quantities of by-products, which have either been discarded or used to make low-value products. This study aimed to provide recommendations for manufacturing edible oil from pig brains, thereby increasing the value of pork by-products. The experiment compared non-solvent extraction methods, specifically wet rendering and aqueous saline, to a standard solvent extraction method, the Bligh and Dyer method, for extracting oil from pig brains. The yield, color, fatty acid profile, a number of lipid classes, and lipid stability against lipolysis and oxidation of the pig brain oil were comprehensively compared, and the results revealed that these parameters varied depending on the extraction method. The wet rendering process provided the highest extracted oil yield (~13%), followed by the Bligh and Dyer method (~7%) and the aqueous saline method (~2.5%). The Bligh and Dyer method and wet rendering techniques produced a translucent yellow oil; however, an opaque light-brown-red oil was found in the aqueous saline method. The Bligh and Dyer method yielded the oil with the highest phospholipid, cholesterol, carotenoid, tocopherol, and free fatty acid contents (p < 0.05). Although the Bligh and Dyer method recovered the most unsaturated fatty acids, it also recovered more trans-fatty acids. Aqueous saline and wet rendering procedures yielded oil with low FFA levels (<1 g/100 g). The PV of the oil extracted using all methods was <1 meq/kg; however, the Bligh and Dyer method had a significant TBARS content (7.85 mg MDA equivalent/kg) compared to aqueous saline (1.75 mg MDA equivalent/kg) and wet rendering (1.14 mg MDA equivalent/kg) (p < 0.05). FTIR spectra of the pig brain oil revealed the presence of multiple components in varying quantities, as determined by chemical analysis experiments. Given the higher yield and lipid stability and the lower cholesterol and trans-fatty acid content, wet rendering can be regarded as a simple and environmentally friendly method for safely extracting quality edible oil from pig brains, which may play an important role in obtaining financial benefits, nutrition, the zero-waste approach, and increasing the utilization of by-products in the meat industry.
Collapse
Affiliation(s)
- Jaruwan Chanted
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Visaka Anantawat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chantira Wongnen
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tanong Aewsiri
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Ling-Zhi Cheong
- School of Agriculture and Food, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Rahmati S, Taherkhani H, Zarezadehmehrizi A, Moradi L. Does Exercise Affect Cancer via Reverse Cholesterol Transport Process? A Hypothesis Which Needs to Be Clarified by Researchers. Adv Pharm Bull 2024; 14:9-10. [PMID: 38585459 PMCID: PMC10997941 DOI: 10.34172/apb.2024.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 04/09/2024] Open
Affiliation(s)
- Saleh Rahmati
- Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Hasan Taherkhani
- Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Aliasghar Zarezadehmehrizi
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Lida Moradi
- Department of Physical Education and Sports Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Bo B, Guo A, Kaila SJ, Hao Z, Zhang H, Wei J, Yao Y. Elucidating the primary mechanisms of high-intensity interval training for improved cardiac fitness in obesity. Front Physiol 2023; 14:1170324. [PMID: 37608837 PMCID: PMC10441243 DOI: 10.3389/fphys.2023.1170324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Obesity is a global and rising multifactorial pandemic associated with the emergence of several comorbidities that are risk factors for malignant cardiac remodeling and disease. High-intensity interval training (HIIT) has gained considerable attention due to its favorable outcomes of cardiometabolic health in individuals with overweight or obese. The primary aim of this review is to discuss the fundamental processes through which HIIT improves cardiac impairment in individuals with obesity to develop viable treatments for obesity management. In this review, a multiple database search and collection were conducted from the earliest record to January 2013 for studies included the qualitative component of HIIT intervention in humans and animals with overweight/obesity related to cardiac remodeling and fitness. We attempt to integrate the main mechanisms of HIIT in cardiac remolding improvement in obesity into an overall sequential hypothesis. This work focus on the ameliorative effects of HIIT on obesity-induced cardiac remodeling with respect to potential and pleiotropic mechanisms, including adipose distribution, energy metabolism, inflammatory response, insulin resistance, and related risk profiles in obesity. In conclusion, HIIT has been shown to reduce obesity-induced risks of cardiac remodeling, but the long-term effects of HIIT on obesity-induced cardiac injury and disease are presently unknown. Collective understanding highlights numerous specific research that are needed before the safety and effectiveness of HIIT can be confirmed and widely adopted in patient with obesity.
Collapse
Affiliation(s)
- Bing Bo
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Aijing Guo
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Severa Jafeth Kaila
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Zhe Hao
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng, China
| | - Huiqing Zhang
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Yao
- Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Xu Z, Zhang M, Li X, Wang Y, Du R. Exercise Ameliorates Atherosclerosis via Up-Regulating Serum β-Hydroxybutyrate Levels. Int J Mol Sci 2022; 23:ijms23073788. [PMID: 35409148 PMCID: PMC8998237 DOI: 10.3390/ijms23073788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis, accompanied by inflammation and metabolic disorders, is the primary cause of clinical cardiovascular death. In recent years, unhealthy lifestyles (e.g., sedentary lifestyles) have contributed to a worldwide epidemic of atherosclerosis. Exercise is a known treatment of atherosclerosis, but the precise mechanisms are still unknown. Here, we show that 12 weeks of regular exercise training on a treadmill significantly decreased lipid accumulation and foam cell formation in ApoE−/− mice fed with a Western diet, which plays a critical role in the process of atherosclerosis. This was associated with an increase in β-hydroxybutyric acid (BHB) levels in the serum. We provide evidence that BHB treatment in vivo or in vitro increases the protein levels of cholesterol transporters, including ABCA1, ABCG1, and SR-BI, and is capable of reducing lipid accumulation. It also ameliorated autophagy in macrophages and atherosclerosis plaques, which play an important role in the step of cholesterol efflux. Altogether, an increase in serum BHB levels after regular exercise is an important mechanism of exercise inhibiting the development of atherosclerosis. This provides a novel treatment for atherosclerotic patients who are unable to undertake regular exercise for whatever reason. They will gain a benefit from receiving additional BHB.
Collapse
Affiliation(s)
- Zhou Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Z.X.); (M.Z.); (X.L.)
| | - Mingyue Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Z.X.); (M.Z.); (X.L.)
| | - Xinran Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Z.X.); (M.Z.); (X.L.)
| | - Yong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Z.X.); (M.Z.); (X.L.)
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.W.); (R.D.)
| | - Ronghui Du
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Z.X.); (M.Z.); (X.L.)
- Correspondence: (Y.W.); (R.D.)
| |
Collapse
|
6
|
Emamian Rostami M, Fathi R, Nasiri K. The impacts of an eight-week moderate aerobic exercise training on some gene expression involved in cholesterol metabolism in ovariectomized rats. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Shamsipour S, Sharifi G, Taghian F. Impact of interval training with probiotic (L. plantarum / Bifidobacterium bifidum) on passive avoidance test, ChAT and BDNF in the hippocampus of rats with Alzheimer's disease. Neurosci Lett 2021; 756:135949. [PMID: 33974953 DOI: 10.1016/j.neulet.2021.135949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
It has been suggested that gut microbiota dysbiosis can lead to Alzheimer's disease (AD), inducing the production of many AD-related pre-inflammatory cytokines. On the other hand, daily probiotic administration and regular exercise training are assumed to improve clinical AD-related symptoms. To take this line of research further, this study was aimed at investigating the impact of moderate-intensity interval training (MIIT) with a combined administration of Lactobacillus plantarum and Bifidobacterium bifidum (probiotic, BROB) on the passive avoidance test (Shuttle Box), choline acetyltransferase (ChAT) and the brain derived neurotrophic factor (BDNF) in the hippocampus of a rat model of AD. Forty male Wistar rats (280 ± 20 g) were divided into five groups (n = 8 in each) of control, amyloid beta peptide (Aβ), Aβ + MIIT (AD rats undergoing MIIT), Aβ + PROB (AD rats fed Lactobacillus plantarum and Bifidobacterium bifidum), and Aβ + MIIT + PROB (AD rats receiving both treatments). AD was induced by the intra-cerebroventricular injection of Aβ1-42 peptide. MIIT was performed on rodent treadmill for 8 weeks (5 days per week). The probiotic was also fed daily to the related groups for 8 weeks. BDNF and ChAT in the hippocampus were measured by real time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. Cresyl violet staining of brain tissue was performed to evaluate the dead cells. Results of tissue staining showed that the induction of the Alzheimer's led to the destruction of hippocampal cells and induced neurodegeneration (p = 0.001). Results of the shuttle box test showed that short-term memory was improved in the Aβ + MIIT + PROB group compared to the Aβ group, while death cells (dark cells) were decreased in all the other three groups (MIIT, BROB, and Aβ + MIIT + PROB). Levels of ChAT as well as the BDNF mRNA in the Aβ + MIIT + PROB group showed a significant increase compared to the Aβ group. In conclusion, it seems that the use of the combined administration of Lactobacillus plantarum and Bifidobacterium bifidum with interval aerobic exercise can have neuroprotective effects on AD.
Collapse
Affiliation(s)
- Samaneh Shamsipour
- Department of Physical Education and Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gholamreza Sharifi
- Department of Physical Education and Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Physical Education and Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
8
|
Hydroxytyrosol Plays Antiatherosclerotic Effects through Regulating Lipid Metabolism via Inhibiting the p38 Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5036572. [PMID: 32685494 PMCID: PMC7330625 DOI: 10.1155/2020/5036572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Purpose Hydroxytyrosol (HT) processes multiaspect pharmacological properties such as antithrombosis and antidiabetes. The aim of this study was to explore the antistherosclerotic roles and relevant mechanisms of HT. Methods Male apoE−/− mice were randomly divided into 2 groups: the control group and the HT group (10 mg/kg/day orally). After 16 weeks, blood tissue, heart tissue, and liver tissue were obtained to detect the atherosclerotic lesions, histological analysis, lipid parameters, and inflammation. And the underlying molecular mechanisms of HT were also studied in vivo and in vitro. Results HT administration significantly reduced the extent of atherosclerotic lesions in the aorta of apoE−/− mice. We found that HT markedly lowered the levels of serum TG, TC, and LDL-C approximately by 17.4% (p = 0.004), 15.2% (p = 0.003), and 17.9% (p = 0.009), respectively, as well as hepatic TG and TC by 15.0% (p < 0.001) and 12.3% (p = 0.003), respectively, while inducing a 26.9% (p = 0.033) increase in serum HDL-C. Besides, HT improved hepatic steatosis and lipid deposition. Then, we discovered that HT could regulate the signal flow of AMPK/SREBP2 and increase the expression of ABCA1, apoAI, and SRBI. In addition, HT reduced the levels of serum CRP, TNF-α, IL-1β, and IL-6 approximately by 23.5% (p < 0.001), 27.8% (p < 0.001), 18.4% (p < 0.001), and 19.1% (p < 0.001), respectively, and induced a 1.4-fold increase in IL-10 level (p = 0.014). Further, we found that HT might regulate cholesterol metabolism via decreasing phosphorylation of p38, followed by activation of AMPK and inactivation of NF-κB, which in turn triggered the blockade of SREBP2/PCSK9 and upregulation of LDLR, apoAI, and ABCA1, finally leading to a reduction of LDL-C and increase of HDL-C in the circulation. Conclusion Our results provide the first evidence that HT displays antiatherosclerotic actions via mediating lipid metabolism-related pathways through regulating the activities of inflammatory signaling molecules.
Collapse
|
9
|
Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem 2021; 476:3065-3078. [PMID: 33811580 DOI: 10.1007/s11010-020-04037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Vascular diseases (VDs) including pulmonary arterial hypertension (PAH), atherosclerosis (AS) and coronary arterial diseases (CADs) contribute to the higher morbidity and mortality worldwide. Apolipoprotein A-I (Apo A-I) binding protein (AIBP) and Apo-AI negatively correlate with VDs. However, the mechanism by which AIBP and apo-AI regulate VDs still remains unexplained. Here, we provide an overview of the role of AIBP and apo-AI regulation of vascular diseases molecular mechanisms such as vascular energy homeostasis imbalance, oxidative and endoplasmic reticulum stress and inflammation in VDs. In addition, the role of AIBP and apo-AI in endothelial cells (ECs), vascular smooth muscle (VSMCs) and immune cells activation in the pathogenesis of VDs are explained. The in-depth understanding of AIBP and apo-AI function in the vascular system may lead to the discovery of VDs therapy.
Collapse
|
10
|
Jangjo-Borazjani S, Dastgheib M, Kiyamarsi E, Jamshidi R, Rahmati-Ahmadabad S, Helalizadeh M, Iraji R, Cornish SM, Mohammadi-Darestani S, Khojasteh Z, Azarbayjani MA. Effects of resistance training and nigella sativa on type 2 diabetes: implications for metabolic markers, low-grade inflammation and liver enzyme production. Arch Physiol Biochem 2021:1-9. [PMID: 33612031 DOI: 10.1080/13813455.2021.1886117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Proper nutrition and exercise are effective strategies to improve overall metabolic health in diabetic patients. OBJECTIVE This study evaluated the effects of Nigella sativa (NS) supplementation during resistance training (RT) on some biochemical variables in type 2 diabetes patients. METHODS Forty patients were assigned to groups: RT + NS (RN), NS, RT + placebo (RP), and control (CO). RT was performed and NS was consumed for 8 weeks. Blood samples were collected at rest immediately before and after the 8 week intervention. RESULTS RT or NS by themselves reduced HOMA-IR, insulin, glucose, TG, TC, LDL, ESR, CRP, AST, ALT and ALP, and increased HDL and HOMA-S. The combination of RT and NS, rather than each intervention alone, had significant effects on reduction of HOMA-IR, insulin, ESR and CRP as well as increases in HDL, HOMA-β/S. CONCLUSION RT combined with NS is sometimes a better strategy compared to single interventions for improving diabetes related biomarkers in type 2 diabetic patients.
Collapse
Affiliation(s)
- Soheila Jangjo-Borazjani
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maryam Dastgheib
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Efat Kiyamarsi
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Roghayeh Jamshidi
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | | | - Masoumeh Helalizadeh
- Department of Exercise Physiology, Sport Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran
| | - Roya Iraji
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | | | - Zohreh Khojasteh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
11
|
Khalilian B, Madadi S, Fattahi N, Abouhamzeh B. Coenzyme Q10 enhances remyelination and regulate inflammation effects of cuprizone in corpus callosum of chronic model of multiple sclerosis. J Mol Histol 2021; 52:125-134. [PMID: 33245472 DOI: 10.1007/s10735-020-09929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is a chronic, progressive demyelinating disease of the central nervous system that causes the most disability in young people, besides trauma. Coenzyme Q10 (CoQ10)-also known as ubiquinone-is an endogenous lipid-soluble antioxidant in the mitochondrial oxidative respiratory chain which can reduce oxidative stress and inflammation, the processes associated with demyelination in MS. Cuprizone (CPZ) intoxication is a well-established model of inducing MS, best for studying demyelination-remyelination. In this study, we examined for the first time the role of CoQ10 in preventing demyelination and induction of remyelination in the chronic CPZ model of MS. 40 male mice were divided into four groups. 3 group chewed CPZ-containing food for 12 weeks to induce MS. After 4 weeks, one group were treated with CoQ10 (150 mg/kg/day) by daily gavage until the end of the experiment, while CPZ poisoning continued. At the end of 12 weeks, tail suspension test (TST) and open field test (OFT) was taken and animals were sacrificed to assess myelin basic protein (MBP), oligodendrocyte transcription factor-1 (Olig1), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) by real-time polymerase chain reaction (real-time PCR) and total antioxidant capacity (TAC) and superoxide dismutase (SOD) by Elisa test. Luxol fast blue (LFB) staining was used to evaluate histological changes. CoQ10 administration promoted remyelination in histological findings. MBP and Olig-1 expression were increased significantly in CoQ10 treated group compare to the CPZ-intoxicated group. CoQ10 treatment alleviated stress oxidative status induced by CPZ and dramatically suppress inflammatory biomarkers. CPZ ingestion made no significant difference between normal control group and the CPZ-intoxicated group in TST and OFT. CoQ10 can enhance remyelination in the CPZ model and potentially might have same effects in MS patients.
Collapse
Affiliation(s)
- Behnam Khalilian
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, 1411718541, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nima Fattahi
- Non-communicable Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Abouhamzeh
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, 1411718541, Tehran, Iran.
| |
Collapse
|
12
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
13
|
Torfeh A, Abdolmaleki Z, Nazarian S, Shirazi Beheshtiha SH. Modafinil-coated nanoparticle increases expressions of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neuronal nuclear protein, and protects against middle cerebral artery occlusion-induced neuron apoptosis in the rat hippocampus. Anat Rec (Hoboken) 2020; 304:2032-2043. [PMID: 33345406 DOI: 10.1002/ar.24581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
The present study investigates the neuroprotective effects of modafinil-coated nanoparticle in rats' hippocampal CA1 region. Male Wistar rats (n = 48) were randomly divided into four groups. Then middle cerebral artery occlusion (MCAO) was performed by inserting a silicone coat filament in the right internal carotid artery via the external carotid artery until it reached the anterior cerebral artery. Modafinil (100 mg/kg) or modafinil-coated nanoparticle (100 mg/kg) was given to the rats as an oral gavage once a day. Infarct volume, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neuronal nuclear protein (NeuN) and Caspase-3 and, Caspase-8 as apoptotic genes were measured in the hippocampal CA1 region. Cresyl violet staining revealed that modafinil nanoparticle significantly decreased the neurodegeneration. Reverse transcription polymerase chain reaction results showed that modafinil nanoparticle use significantly increased the expression of neurotrophic factors (even more than modafinil alone group; p = .01). Moreover, the apoptotic markers were significantly decreased in nanoparticle modafinil (MN group); p < .05). The western blot analysis and Immunohistochemistry results confirmed the neuroprotective and anti-apoptotic effects of modafinil nanoparticle. This study's results showed that the use of modafinil-coated nanoparticle has neuroprotective effects by increasing neurotrophic factors and reducing apoptosis after MCAO in the CA1 area of the hippocampus. However, further studies are needed especially, in human samples.
Collapse
Affiliation(s)
- Alireza Torfeh
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Sepideh Nazarian
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
14
|
Taurine with combined aerobic and resistance exercise training alleviates myocardium apoptosis in STZ-induced diabetes rats via Akt signaling pathway. Life Sci 2020; 258:118225. [PMID: 32771557 DOI: 10.1016/j.lfs.2020.118225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022]
Abstract
AIM The aim of this study was considering the effects of taurine supplementation with combined aerobic and resistance training (CARE) on myocardial apoptosis and Protein Kinase B (akt) level changes in diabetic rat. MAIN METHODS Forty male Wistar rats were randomly divided in to 5 groups of 8 animals in each: 1) control, 2) Diabetes Mellitus (DM), 3) DM with taurine supplementation (DM/T), 4) DM with CARE (DM/CARE), and 5) DM with combination of taurine and CARE (DM/T/CARE). DM was induced by injection of streptozotocin (STZ) and nicotine amid (NA) for 2, 3, 4 and 5 groups. Supplement groups received taurine in gavage, 100 mg/kg of body weight, 6 day per weeks, 8 weeks. CARE was performed at maximal speed and 1RM (40-60% of maximum for both). KEY FINDINGS The results of this study showed that DM significantly increased blood glucose and caspase 3, caspase 9 expressions and apoptosis cells in heart tissue and reduced Akt expression (p < 0.001). However, taurine and CARE interventions significantly decreased apoptosis markers (caspase 3 and caspase 9) and significantly increased Akt in heart of diabetic rats compare to DM groups (p < 0.05). The highest improvement observed in DM/T/CARE group (p < 0.05). SIGNIFICANCE Based on these results, it seems that the use of taurine with combined aerobic and exercise training minimize the cardiac damage caused by diabetes (especially apoptosis) trough increasing protein kinase Akt expression. This could improve cardiac remodeling after diabetes. However, more research is needed, especially on the human samples.
Collapse
|
15
|
Li L, Hu W, Liu K, Zhang D, Liu M, Li X, Wang H. miR-148a/LDLR mediates hypercholesterolemia induced by prenatal dexamethasone exposure in male offspring rats. Toxicol Appl Pharmacol 2020; 395:114979. [PMID: 32234517 DOI: 10.1016/j.taap.2020.114979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Epidemiology suggests that adverse environmental exposure during pregnancy may predispose children to hypercholesterolemia in adulthood. This study aimed to demonstrate hypercholesterolemia induced by prenatal dexamethasone exposure (PDE) in adult male offspring rats and explore the intrauterine programming mechanisms. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0, 0.1, 0.2, and 0.4 mg/kg∙d) from gestational days (GD) 9 to 21, and the serum and liver of the male offsprings were collected at GD21, postnatal week (PW) 12 and 28. Furthermore, the effects of dexamethasone on the expression of low-density lipoprotein receptor (LDLR) and its epigenetic mechanism was confirmed in the bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and continuous hepatocyte line. PDE could reduce the birth weight of male offsprings, increase the serum total cholesterol (TCH) level in adult rats, and decrease the liver low-density lipoprotein receptor (LDLR) expression. Serum TCH level and liver LDLR expression were decreased in PDE male fetuses in utero (GD21). Moreover, PDE increased the translocation of the glucocorticoid receptor (GR) in the fetal liver, the expression of DiGeorge syndrome critical region 8 gene (DGCR8), the pre- and post-natal expression of miR-148a. The results of PDE offspring in vivo and in vitro exhibited similar changes. These changes could be reversed by overexpressing LDLR, inhibiting miR-148a or GR. PDE caused hypercholesterolemia in male adult offspring rats, which was mediated via dexamethasone activated intrauterine hepatic GR, enhanced the expression of DGCR8 and miR-148a, thereby reducing the expression of LDLR, leading to impaired liver cholesterol reverse transport function, and finally causing hypercholesterolemia in adult rats.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Min Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xufeng Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
16
|
Alteration of follistatin-like 1, neuron-derived neurotrophic factor, and vascular endothelial growth factor in diabetic cardiac muscle after moderate-intensity aerobic exercise with insulin. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00631-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Pagonas N, Westhoff TH. Improving high-density lipoprotein function by exercise: Does workout intensity matter? Eur J Prev Cardiol 2019; 28:690-691. [PMID: 33611358 DOI: 10.1177/2047487319891782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Nikolaos Pagonas
- Department of Cardiology, Medical University Brandenburg, Germany
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Germany
| |
Collapse
|
18
|
Rahmati-Ahmadabad S, Azarbayjani MA, Farzanegi P, Moradi L. High-intensity interval training has a greater effect on reverse cholesterol transport elements compared with moderate-intensity continuous training in obese male rats. Eur J Prev Cardiol 2019; 28:692-701. [PMID: 33611472 DOI: 10.1177/2047487319887828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The present study compares the effect of high-intensity interval training (HIIT; 18 min) and moderate-intensity continuous training (MIT; 1 h) on reverse cholesterol transport (RCT) elements in obese subjects. METHODS Thirty adult male rats were induced high-fat diet (HFD) for 12 weeks. After four weeks, the rats were randomly divided into three groups while simultaneously continuing the HFD for the remaining eight weeks. Group specificities were HFD-control, HFD-MIT and HFD-HIIT. The rats were sacrificed 48 h after the last training session and the samples were collected. Analysis of variance and Pearson's correlation test were used for the statistical analyses (significance level: p ≤ 0.05). RESULTS The results showed that both HIIT and MIT improved heart ABCA1, ABCG1, ABCG4, ABCG5, ABCG8, LXR-α and PPARγ gene expression as well as plasma Apo A1, LCAT, lipids and lipoproteins (p ≤ 0.05). Moreover, higher cardiac ABCA1, ABCG1, ABCG4, ABCG5, ABCG8 and PPARγ expression and plasma high-density lipoprotein cholesterol (p ≤ 0.05) concentrations were found in the HFD-HIIT group compared with the HFD-MIT group. CONCLUSION HIIT may have more cardioprotective effects than MIT against atherosclerosis, along with saving time, as supported by the changes observed in the main factors involved in the RCT process.
Collapse
Affiliation(s)
| | | | - Parvin Farzanegi
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Lida Moradi
- Department of Physical Education and Sports Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|