1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Wu H, Gao W, Chen P, Wei Y, Zhao H, Wang F. Research progress of drug resistance mechanism of temozolomide in the treatment of glioblastoma. Heliyon 2024; 10:e39984. [PMID: 39568843 PMCID: PMC11577240 DOI: 10.1016/j.heliyon.2024.e39984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Glioblastoma, the most malignant primary brain tumor among gliomas, is characterized by a low cure rate, high recurrence rate, and invasive growth. Without chemotherapy, the median survival of patients is only 12.1 months. The standard treatment for glioblastoma primarily involves surgical resection, complemented by radiotherapy. Temozolomide (TMZ), a new oral alkylating agent, is currently used as the first-line chemotherapy drug for glioma. However, TMZ treatment only improves median survival by 2 months, largely because of the tumor's ability to develop resistance to the drug. The main mechanism underlying this resistance involves DNA repair processes, such as the action of O6⁃methylguanine DNA methyltransferase (MGMT), which repairs the DNA damage caused by TMZ, and other DNA repair mechanisms including mismatch repair and base excision repair. These mechanisms can effectively repair the DNA damage caused by TMZ, thereby reducing the sensitivity of tumor cells to the drug. This study summarized the recent research progress of TMZ resistance mechanism in glioblastoma, aiming to provide a theoretical basis for the development of new therapies. The mechanisms of glioma resistance to TMZ mainly involves DNA damage repair (as mentioned above), abnormal cell signaling pathways (p53-mediated signaling, reactive oxygen species-mediated signaling, endoplasmic reticulum stress and autophagy-related signaling, receptor tyrosine kinase-related signaling, transforming growth factors, β-mediated signaling pathway, Wnt/β-Catenin signaling pathway), glioma stem cells, tumor microenvironment (hypoxic microenvironment, nano-drug delivery system), epidermal growth factor receptor, and microRNAs.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Yao Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| |
Collapse
|
3
|
Zhao X, Liu Y, Li Y, Zhang Y, Yang C, Yao D. MiR-206 Suppresses Triacylglycerol Accumulation via Fatty Acid Elongase 6 in Dairy Cow Mammary Epithelial Cells. Animals (Basel) 2024; 14:2590. [PMID: 39272375 PMCID: PMC11394172 DOI: 10.3390/ani14172590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cow milk possesses high nutritional value due to its rich array of beneficial fatty acids. It is important to understand the mechanisms involved in lipid metabolism in dairy cows. These mechanisms are driven by a complex molecular regulatory network. In addition, there are many regulatory factors involved in the process of fatty acid metabolism, including transcription factors and non-coding RNAs, amongst others. MicroRNAs (miRNAs) can regulate the expression of target genes and modulate various biological processes, including lipid metabolism. Specifically, miR-206 has been reported to impair lipid accumulation in nonruminant hepatocytes. However, the effects and regulatory mechanisms of miR-206 on lipid metabolism in bovine mammary cells remain unclear. In the present study, we investigated the effects of miR-206 on lipid-related genes and TAG accumulation. The direct downstream gene of miR-206 was subsequently determined via a dual-luciferase assay. Finally, the fatty acid content of bovine mammary epithelial cells (BMECs) upon ELOVL6 inhibition was examined. The results revealed that miR-206 overexpression significantly decreased triacylglycerol (TAG) concentration and abundances of the following: acetyl-coenzyme A carboxylase alpha (ACACA); fatty acid synthase (FASN); sterol regulatory element binding transcription factor 1 (SREBF1); diacylglycerol acyltransferase 1 (DGAT1); 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6); lipin 1 (LPIN1); and fatty acid elongase 6 (ELOVL6). Overexpression of miR-206 was also associated with an increase in patatin-like phospholipase domain-containing 2 (PNPLA2), while inhibition of miR-206 promoted milk fat metabolism in vitro. In addition, we found that ELOVL6 is a direct target gene of miR-206 through mutation of the binding site. Furthermore, ELOVL6 intervention significantly decreased the TAG levels and elongation indexes of C16:0 and C16:1n-7 in BMECs. Finally, ELOVL6 siRNA partially alleviated the increased TAG accumulation caused by miR-206 inhibition. In summary, we found that miR-206 inhibits milk fatty acid synthesis and lipid accumulation by targeting ELOVL6 in BMECs. The results presented in this paper may contribute to the development of strategies for enhancing the quality of cow milk and its beneficial fatty acids, from the perspective of miRNA-mRNA networks.
Collapse
Affiliation(s)
- Xin Zhao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yu Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yupeng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuxin Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Chunlei Yang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Dawei Yao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
4
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
6
|
Jegathesan Y, Stephen PP, Sati ISEE, Narayanan P, Monif M, Kamarudin MNA. MicroRNAs in adult high-grade gliomas: Mechanisms of chemotherapeutic resistance and their clinical relevance. Biomed Pharmacother 2024; 172:116277. [PMID: 38377734 DOI: 10.1016/j.biopha.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Notorious for its high mortality rate, the current standard treatment for high-grade gliomas remains a challenge. This is largely due to the complex heterogeneity of the tumour coupled with dysregulated molecular mechanisms leading to the development of drug resistance. In recent years, microRNAs (miRNAs) have been considered to provide important information about the pathogenesis and prognostication of gliomas. miRNAs have been shown to play a specific role in promoting oncogenesis and regulating resistance to anti-glioma therapeutic agents through diverse cellular mechanisms. These include regulation of apoptosis, alterations in drug efflux pathways, enhanced activation of oncogenic signalling pathways, Epithelial-Mesenchymal Transition-like process (EMT-like) and a few others. With this knowledge, upregulation or inhibition of selected miRNAs can be used to directly affect drug resistance in glioma cells. Moreover, the clinical use of miRNAs in glioma management is becoming increasingly valuable. This comprehensive review delves into the role of miRNAs in drug resistance in high-grade gliomas and underscores their clinical significance. Our analysis has identified a distinct cluster of oncogenic miRNAs (miR-9, miR-21, miR-26a, miR-125b, and miR-221/222) and tumour suppressive miRNAs (miR-29, miR-23, miR-34a-5p, miR 181b-5p, miR-16-5p, and miR-20a) that consistently emerge as key players in regulating drug resistance across various studies. These miRNAs have demonstrated significant clinical relevance in the context of resistance to anti-glioma therapies. Additionally, the clinical significance of miRNA analysis is emphasised, including their potential to serve as clinical biomarkers for diagnosing, staging, evaluating prognosis, and assessing treatment response in gliomas.
Collapse
Affiliation(s)
- Yugendran Jegathesan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Taiping Hospital, Jalan Taming Sari, Perak, Taiping 34000, Malaysia
| | - Pashaun Paveen Stephen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Coffs Harbour Health Campus, Coffs Harbour, NSW 2450, Australia
| | - Isra Saif Eldin Eisa Sati
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Prakrithi Narayanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, VIC, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia.
| |
Collapse
|
7
|
Isa AI. Exploring signaling pathway crosstalk in glioma by mapping miRNA and WNT pathways: A review. Int J Biol Macromol 2024; 257:128722. [PMID: 38092099 DOI: 10.1016/j.ijbiomac.2023.128722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Glioma is a significant healthcare burden; nevertheless, the particular genetic regulatory mechanism underpinning its onset and progression is still unknown. Recent research has focused in large part on trying to determine the underlying molecular pathways that contribute to the malignancy of this disease because of the difficulties in treating it. Many tumors have been linked to changes in the expression of microRNAs (miRNAs). miRNAs play a critical role in cancer development by controlling a wide variety of targets and signaling cascades. A rising body of evidence emphasizes WNT pathway dysregulation in glioma, despite the fact that it is dysregulated in many malignancies. Here, we give a detailed analysis of the roles played by miRNAs in the WNT pathway by glioma. We also demonstrate how the WNT pathway cooperates with miRNAs to control a variety of functions, including cell proliferation, invasion, migration, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Adamu Imam Isa
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
8
|
Alsaab HO, Abdullaev B, Alkhafaji AT, Alawadi AH, Jahlan I, Bahir H, Bisht YS, Alsaalamy A, Jabbar AM, Mustafa YF. A comprehension of signaling pathways and drug resistance; an insight into the correlation between microRNAs and cancer. Pathol Res Pract 2023; 251:154848. [PMID: 37862919 DOI: 10.1016/j.prp.2023.154848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Despite the development of numerous therapies, cancer remains an incurable disease due to various factors, including drug resistance produced by cancer cells. MicroRNAs (miRNAs) regulate different target genes involved in biological and pathological processes, including cancer, through post-transcriptional mechanisms. The development of drug resistance in cancer treatment is a significant barrier because it decreases drug uptake, cellular transport, and changes in proteins involved in cell proliferation, survival, and apoptotic pathways. Numerous studies have found a connection between miRNAs and the development of drug resistance in cancer cells. This paper provides a broad overview of how miRNAs regulate signaling pathways and influence treatment resistance in different cancers.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia.
| | - Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ibtesam Jahlan
- Maternal and Child Health Nursing Department, King Saud University, Riyadh, Saudi Arabia
| | - Hala Bahir
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Yashwant Singh Bisht
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
9
|
Rahmani F, Hashemian P, Tabrizi AT, Ghorbani Z, Ziaeemehr A, Alijannejad S, Ferns GA, Avan A, Shahidsales S. Regulatory role of miRNAs on Wnt/β-catenin signaling in tumorigenesis of glioblastoma. Indian J Cancer 2023; 60:295-302. [PMID: 37787188 DOI: 10.4103/ijc.ijc_251_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors in the brain with high mortality worldwide. Despite recent advances in therapeutic strategies, the survival rate remains low in patients with GBM. The pathogenesis of GBM is a very complicated process involving various genetic mutations affecting several oncogenic signaling pathways like Wnt/β-catenin axis. Overactivation of the Wnt/β-catenin signaling pathway is associated with decreased survival and poor prognosis in patients with GBM. MicroRNAs (miRNAs) were shown to play important roles in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis by modulating the expression of their target genes. Aberrant expression of miRNAs were reported in various human malignancies including GBM, breast, colorectal, liver, and prostate cancers, but little is known about their cellular mechanisms. Therefore, recognition of the expression profile and regulatory effects of miRNAs on the Wnt/β-catenin pathway may offer a novel approach for the classification, diagnosis, prognosis, and treatment of patients with GBM. This review summarizes previous data on the modulatory role of miRNAs on the Wnt/β-catenin pathway implicated in tumorigenesis of GBM.
Collapse
Affiliation(s)
- Farzad Rahmani
- Metabolic Syndrome Research Center; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Department of Pathology, Jahad Daneshgahi Institute, Mashhad Branch, Mashhad, Iran
| | | | - Zeynab Ghorbani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aghigh Ziaeemehr
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajede Alijannejad
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
10
|
Elshaer SS, Abulsoud AI, Fathi D, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Elsakka EGE, Abd-Elmawla MA, Abulsoud LA, Doghish AS. miRNAs role in glioblastoma pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 246:154511. [PMID: 37178618 DOI: 10.1016/j.prp.2023.154511] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
High mortality and morbidity rates and variable clinical behavior are hallmarks of glioblastoma (GBM), the most common and aggressive primary malignant brain tumor. Patients with GBM often have a dismal outlook, even after undergoing surgery, postoperative radiation, and chemotherapy, which has fueled the search for specific targets to provide new insights into the development of contemporary therapies. The ability of microRNAs (miRNAs/miRs) to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, cell cycle, apoptosis, invasion, angiogenesis, stem cell behavior and chemo- and radiotherapy resistance makes them promising candidates as prognostic biomarkers and therapeutic targets or factors to advance GBM therapeutics. Hence, this review is like a crash course in GBM and how miRNAs related to GBM. Here, we will outline the miRNAs whose role in the development of GBM has been established by recent in vitro or in vivo research. Moreover, we will provide a summary of the state of knowledge regarding oncomiRs and tumor suppressor (TS) miRNAs in relation to GBM with an emphasis on their potential applications as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shereen Saeid Elshaer
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Vishnubalaji R, Shaath H, Al-Alwan M, Abdelalim EM, Alajez NM. Reciprocal interplays between MicroRNAs and pluripotency transcription factors in dictating stemness features in human cancers. Semin Cancer Biol 2022; 87:1-16. [PMID: 36354097 DOI: 10.1016/j.semcancer.2022.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The interplay between microRNAs (miRNAs) and pluripotency transcription factors (TFs) orchestrates the acquisition of cancer stem cell (CSC) features during the course of malignant transformation, rendering them essential cancer cell dependencies and therapeutic vulnerabilities. In this review, we discuss emerging themes in tumor heterogeneity, including the clonal evolution and the CSC models and their implications in resistance to cancer therapies, and then provide thorough coverage on the roles played by key TFs in maintaining normal and malignant stem cell pluripotency and plasticity. In addition, we discuss the reciprocal interactions between miRNAs and MYC, OCT4, NANOG, SOX2, and KLF4 pluripotency TFs and their contributions to tumorigenesis. We provide our view on the potential to interfere with key miRNA-TF networks through the use of RNA-based therapeutics as single agents or in combination with other therapeutic strategies, to abrogate the CSC state and render tumor cells more responsive to standard and targeted therapies.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Essam M Abdelalim
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
12
|
circSMARCA5 Is an Upstream Regulator of the Expression of miR-126-3p, miR-515-5p, and Their mRNA Targets, Insulin-like Growth Factor Binding Protein 2 ( IGFBP2) and NRAS Proto-Oncogene, GTPase ( NRAS) in Glioblastoma. Int J Mol Sci 2022; 23:ijms232213676. [PMID: 36430152 PMCID: PMC9690846 DOI: 10.3390/ijms232213676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) pathogenesis and progression has been ascertained but their cross-talk within GBM cells remains elusive. We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this paper, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines (A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset. Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5 overexpression in U87MG and their expression was positively correlated with that of circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10-5 and 7 × 10-5, respectively) in GBM biopsies. Among targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with that of circSMARCA5 (r-values = -0.58 and -0.30, p-values = 0 and 0.019, respectively), miR-126-3p (r-value = -0.36, p-value = 0.0066), and miR-515-5p (r-value = -0.34, p-value = 0.010), respectively. Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates downstream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.
Collapse
|
13
|
MiR-30a-5p/CHD1 axis enhances cisplatin sensitivity of ovarian cancer cells via inactivating the Wnt/β-catenin pathway. Anticancer Drugs 2022; 33:989-998. [DOI: 10.1097/cad.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Fan H, Xie X, Kuang X, Du J, Peng F. MicroRNAs, Key Regulators in Glioma Progression as Potential Therapeutic Targets for Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1799-1825. [PMID: 36121713 DOI: 10.1142/s0192415x22500768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gliomas are tumors of the primary central nervous system associated with poor prognosis and high mortality. The 5-year survival rate of patients with gliomas received surgery combined with chemotherapy or radiotherapy does not exceed 5%. Although temozolomide is commonly used in the treatment of gliomas, the development of resistance limits its use. MicroRNAs are non-coding RNAs involved in numerous processes of glioma cells, such as proliferation, migration and apoptosis. MicroRNAs regulate cell cycle, PI3K/AKT signal pathway, and target apoptosis-related genes (e.g., BCL6), angiogenesis-related genes (e.g., VEGF) and other related genes to suppress gliomas. Evidence illustrates that microRNAs can regulate the sensitivity of gliomas to temozolomide, cisplatin, and carmustine, thereby enhancing the efficacy of these agents. Moreover, traditional Chinese medicine (e.g., tanshinone IIA, xanthohumol, and curcumin) exert antiglioma effects by regulating the expression of microRNAs, and then microRNAs inhibit gliomas through influencing the process of tumors by targeting certain genes. In this paper, the mechanisms through which microRNAs regulate the sensitivity of gliomas to therapeutic drugs are described, and traditional Chinese medicine that can suppress gliomas through microRNAs are discussed. This review aims to provide new insights into the traditional Chinese medicine treatment of gliomas.
Collapse
Affiliation(s)
- Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xi Kuang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
15
|
Yuan E, Liu K, Lee J, Tsung K, Chow F, Attenello FJ. Modulating glioblastoma chemotherapy response: Evaluating long non-coding RNA effects on DNA damage response, glioma stem cell function, and hypoxic processes. Neurooncol Adv 2022; 4:vdac119. [PMID: 36105389 PMCID: PMC9466271 DOI: 10.1093/noajnl/vdac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor, with an estimated annual incidence of 17 000 new cases in the United States. Current treatments for GBM include chemotherapy, surgical resection, radiation therapy, and antiangiogenic therapy. However, despite the various therapeutic options, the 5-year survival rate remains at a dismal 5%. Temozolomide (TMZ) is the first-line chemotherapy drug for GBM; however, poor TMZ response is one of the main contributors to the dismal prognosis. Long non-coding RNAs (lncRNAs) are nonprotein coding transcripts greater than 200 nucleotides that have been implicated to mediate various GBM pathologies, including chemoresistance. In this review, we aim to frame the TMZ response in GBM via exploration of the lncRNAs mediating three major mechanisms of TMZ resistance: (1) regulation of the DNA damage response, (2) maintenance of glioma stem cell identity, and (3) exploitation of hypoxia-associated responses.
Collapse
Affiliation(s)
- Edith Yuan
- Corresponding Author: Edith Yuan, BA, Keck School of Medicine, University of Southern California, 1200 North State St. Suite 3300, Los Angeles, CA 90033, USA ()
| | - Kristie Liu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kathleen Tsung
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frances Chow
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Du C, Huang Z, Wei B, Li M. Comprehensive metabolomics study on the pathogenesis of anaplastic astrocytoma via UPLC-Q/TOF-MS. Medicine (Baltimore) 2022; 101:e29594. [PMID: 35945752 PMCID: PMC9351860 DOI: 10.1097/md.0000000000029594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Anaplastic astrocytoma (AA) is a malignant carcinoma whose pathogenesis remains to be fully elucidated. System biology techniques have been widely used to clarify the mechanism of diseases from a systematic perspective. The present study aimed to explore the pathogenesis and novel potential biomarkers for the diagnosis of AA according to metabolic differences. Patients with AA (n = 12) and healthy controls (n = 15) were recruited. Serum was assayed with untargeted ultraperformance liquid chromatography-quadrupole/time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) metabolomic techniques. The data were further evaluated using multivariate analysis and bioinformatic methods based on the KEGG database to determine the distinct metabolites and perturbed pathways. Principal component analysis and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) identified the significance of the distinct metabolic pattern between patients with AA and healthy controls (P < .001) in both ESI modes. Permutation testing confirmed the validity of the OPLS-DA model (permutation = 200, Q2 < 0.5). In total, 24 differentiated metabolites and 5 metabolic pathways, including sphingolipid, glycerophospholipid, caffeine, linoleic acid, and porphyrin metabolism, were identified based on the OPLS-DA model. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide were recognized as potential biomarkers with excellent sensitivity and specificity (area under the curve > 98%). These findings indicate that the perturbed metabolic pattern related to immune regulation and cellular signal transduction is associated with the pathogenesis of AA. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide could be used as biomarkers of AA in future clinical practice. This study provides a therapeutic basis for further studies on the mechanism and precise clinical diagnosis of AA.
Collapse
Affiliation(s)
- Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Miao Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
- * Correspondence: Miao Li, MD, Department of Neurosurgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China (e-mail: )
| |
Collapse
|
17
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Piazza A, Rosa P, Ricciardi L, Mangraviti A, Pacini L, Calogero A, Raco A, Miscusi M. Circulating Exosomal-DNA in Glioma Patients: A Quantitative Study and Histopathological Correlations—A Preliminary Study. Brain Sci 2022; 12:brainsci12040500. [PMID: 35448031 PMCID: PMC9028788 DOI: 10.3390/brainsci12040500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/29/2022] Open
Abstract
Glial neoplasms are a group of diseases with poor prognoses. Not all risk factors are known, and no screening tests are available. Only histology provides certain diagnosis. As already reported, DNA transported by exosomes can be an excellent source of information shared by cells locally or systemically. These vesicles seem to be one of the main mechanisms of tumor remote intercellular signaling used to induce immune deregulation, apoptosis, and both phenotypic and genotypic modifications. In this study, we evaluated the exosomal DNA (exoDNA) concentration in blood samples of patients affected by cerebral glioma and correlated it with histological and radiological characteristics of tumors. From 14 patients with diagnosed primary or recurrent glioma, we obtained MRI imaging data, histological data, and preoperative blood samples that were used to extract circulating exosomal DNA, which we then quantified. Our results demonstrate a relationship between the amount of circulating exosomal DNA and tumor volume, and mitotic activity. In particular, a high concentration of exoDNA was noted in low-grade gliomas. Our results suggest a possible role of exoDNAs in the diagnosis of brain glioma. They could be particularly useful in detecting early recurrent high-grade gliomas and asymptomatic low-grade gliomas.
Collapse
Affiliation(s)
- Amedeo Piazza
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
- Correspondence:
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (P.R.); (A.C.)
| | - Luca Ricciardi
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| | - Antonella Mangraviti
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| | - Luca Pacini
- Pathology Unit, I.C.O.T. Hospital, 04100 Latina, Italy;
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (P.R.); (A.C.)
| | - Antonino Raco
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| | - Massimo Miscusi
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| |
Collapse
|
19
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Markwell SM, Ross JL, Olson CL, Brat DJ. Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol 2022; 143:291-310. [PMID: 35039931 DOI: 10.1007/s00401-021-02401-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality. The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenvironment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise due to "cancer outgrowing its blood supply" when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overexpression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that includes breakdown of the blood-brain barrier, immunosuppressive immune cell accumulation, microvascular hyperproliferation, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis, the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - James L Ross
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Cheryl L Olson
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA.
| |
Collapse
|
21
|
Fu T, Yang Y, Mu Z, Sun R, Li X, Dong J. Silencing lncRNA LINC01410 suppresses cell viability yet promotes apoptosis and sensitivity to temozolomide in glioblastoma cells by inactivating PTEN/AKT pathway via targeting miR-370-3p. Immunopharmacol Immunotoxicol 2021; 43:680-692. [PMID: 34435542 DOI: 10.1080/08923973.2021.1966031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are involved in glioblastoma (GBM), but the role of long intergenic non-protein coding RNA 01410 (lncRNA LINC01410) is poorly understood. METHODS The expression of LINC01410 in GBM tissues and cells was analyzed. After transfection or temozolomide (TMZ) treatment, the cell viability and apoptosis were detected using cell counting kit-8 assay and flow cytometry. The targeting relationship between LINC01410 and microRNA (miR)-370-3p was confirmed by dual-luciferase reporter assay. Expressions of LINC01410, miR-370-3p and drug resistance- and Phosphatase and Tensin Homolog (PTEN)/AKT pathway-related factors were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS LINC01410 expression was upregulated in GBM, and silencing of LINC01410 decreased cell viability. A slowed decreased trend in cell viability yet an increased half maximal inhibitory concentration (IC50 for TMZ) value and increased expressions of drug resistance-related factors as well as LINC01410 were found in TMZ-resistant GBM cells. Silencing of LINC01410 also decreased the IC50 value yet promoted the sensitivity and apoptosis in TMZ-resistant cells, while upregulating the expression of PTEN and downregulating the phosphorylation of AKT. MiR-370-3p could competitively bind to LINC01410 and its expression was decreased in both parental and TMZ-resistant GBM cells. Downregulation of miR-370-3p reversed the effects of LINC01410 silencing on cell viability, apoptosis and the expressions of miR-370-3p and PTEN/AKT pathway-related factors. CONCLUSION Silencing of LINC01410 inhibits cell viability yet enhances apoptosis and sensitivity to TMZ in GBM cells by inactivating PTEN/AKT pathway via targeting miR-370-3p.
Collapse
Affiliation(s)
- Tingkai Fu
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao City, China
| | - Yunxue Yang
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao City, China
| | - Zhenxin Mu
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao City, China
| | - Rongwei Sun
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao City, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Dong
- Department of Neurosurgery, People's Hospital of Rizhao, Rizhao City, China
| |
Collapse
|
22
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
23
|
Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 2021; 1876:188616. [PMID: 34419533 DOI: 10.1016/j.bbcan.2021.188616] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023]
Abstract
Temozolomide (TMZ) is a first-choice alkylating agent inducted as a gold standard therapy for glioblastoma multiforme (GBM) and astrocytoma. A majority of patients do not respond to TMZ during the course of their treatment. Activation of DNA repair pathways is the principal mechanism for this phenomenon that detaches TMZ-induced O-6-methylguanine adducts and restores genomic integrity. Current understanding in the domain of oncology adds several other novel mechanisms of resistance such as the involvement of miRNAs, drug efflux transporters, gap junction's activity, the advent of glioma stem cells as well as upregulation of cell survival autophagy. This review describes a multifaceted account of different mechanisms responsible for the intrinsic and acquired TMZ-resistance. Here, we summarize different strategies that intensify the TMZ effect such as MGMT inhibition, development of novel imidazotetrazine analog, and combination therapy; with an aim to incorporate a successful treatment and increased overall survival in GBM patients.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Chhitij Srivastava
- Department of Neurosurgery, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
24
|
Salazar DA, Pržulj N, Valencia CF. Multi-project and Multi-profile joint Non-negative Matrix Factorization for cancer omic datasets. Bioinformatics 2021; 37:4801-4809. [PMID: 34375392 DOI: 10.1093/bioinformatics/btab579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION The integration of multi-omic data using machine learning methods has been focused on solving relevant tasks such as predicting sensitivity to a drug or subtyping patients. Recent integration methods, such as joint Non-negative Matrix Factorization (jNMF), have allowed researchers to exploit the information in the data to unravel the biological processes of multi-omic datasets. RESULTS We present a novel method called Multi-project and Multi-profile joint Non-negative Matrix Factorization (M&M-jNMF) capable of integrating data from different sources, such as experimental and observational multi-omic data. The method can generate co-clusters between observations, predict profiles and relate latent variables. We applied the method to integrate low-grade glioma omic profiles from The Cancer Genome Atlas (TCGA) and Cell Line Encyclopedia (CCLE) projects. The method allowed us to find gene clusters mainly enriched in cancer-associated terms. We identified groups of patients and cell lines similar to each other by comparing biological processes. We predicted the drug profile for patients, and we identified genetic signatures for resistant and sensitive tumors to a specific drug. AVAILABILITY AND IMPLEMENTATION Source code repository is publicly available at https://bitbucket.org/dsalazarb/mmjnmf/ - Zenodo DOI: 10.5281/zenodo.5150920. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- D A Salazar
- Industrial Engineering Department, University of los Andes, Bogota, 111711, Colombia.,Center for optimization and applied probability, University of los Andes, Bogota, 111711, Colombia
| | - N Pržulj
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain.,Department of Computer Science, University College London, London, WC1E 6BT, UK.,ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain
| | - C F Valencia
- Industrial Engineering Department, University of los Andes, Bogota, 111711, Colombia.,Center for optimization and applied probability, University of los Andes, Bogota, 111711, Colombia
| |
Collapse
|
25
|
Lu Y, Tian M, Liu J, Wang K. LINC00511 facilitates Temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/β-catenin signaling. J Biochem Mol Toxicol 2021; 35:e22848. [PMID: 34328678 DOI: 10.1002/jbt.22848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Temozolomide (TMZ) is the first-line chemotherapy drug for glioblastoma (GBM) but acquired TMZ resistance is frequently observed. Thus, a TMZ resistant GBM cell line U87-R was established to search for potential long noncoding RNAs (lncRNAs) used in TMZ resistance. In our study, LINC00511 was identified as a TMZ resistance-associated lncRNA in U87-R cells by transcriptome RNA sequencing. The potential functions of LINC00511 were evaluated by quantitative real-time polymerase chain reaction, cell viability assay, colony formation assay, western blot, soft agar assay, flow cytometry, tumor xenograft model, immunofluorescence, sphere formation assay, fluorescent in situ hybridization, luciferase reporter assay, and RNA pull-down assay. We found that LINC00511 was upregulated in U87-R cells and GBM samples, and correlated with poor prognosis of GBM patients. Silencing LINC00511 impaired TMZ tolerance of U87-R cells, while LINC00511 overexpression increased TMZ resistance of sensitive GBM cells. Wnt/β-catenin signaling was activated in U87-R cells, and inhibiting Wnt/β-catenin signaling enhanced TMZ sensitivity. Furthermore, LINC00511 was mainly distributed in the cytoplasm of GBM cells and regulated Wnt/β-catenin activation by acting as a molecular sponge for miR-126-5p. Multiple genes of Wnt/β-catenin signaling such as DVL3, WISP1, and WISP2 were targeted by miR-126-5p. MiR-126-5p restoration impaired TMZ resistance of GBM cells. In conclusion, our results provided a novel insight into acquired TMZ resistance of GBM cells and suggested LINC00511 as a potential biomarker or therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Yan Lu
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan province, China
| | - Meng Tian
- Department of Critical Care Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiongbo Liu
- Department of Neurology, The Second People's Hospital of Xinxiang, Xinxiang, Henan province, China
| | - Kuanhong Wang
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan province, China
| |
Collapse
|
26
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
27
|
Ji C, Gao Z, Ma X, Wu Q, Ni J, Zheng C. AEMDA: inferring miRNA-disease associations based on deep autoencoder. Bioinformatics 2021; 37:66-72. [PMID: 32726399 DOI: 10.1093/bioinformatics/btaa670] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION MicroRNAs (miRNAs) are a class of non-coding RNAs that play critical roles in various biological processes. Many studies have shown that miRNAs are closely related to the occurrence, development and diagnosis of human diseases. Traditional biological experiments are costly and time consuming. As a result, effective computational models have become increasingly popular for predicting associations between miRNAs and diseases, which could effectively boost human disease diagnosis and prevention. RESULTS We propose a novel computational framework, called AEMDA, to identify associations between miRNAs and diseases. AEMDA applies a learning-based method to extract dense and high-dimensional representations of diseases and miRNAs from integrated disease semantic similarity, miRNA functional similarity and heterogeneous related interaction data. In addition, AEMDA adopts a deep autoencoder that does not need negative samples to retrieve the underlying associations between miRNAs and diseases. Furthermore, the reconstruction error is used as a measurement to predict disease-associated miRNAs. Our experimental results indicate that AEMDA can effectively predict disease-related miRNAs and outperforms state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION The source code and data are available at https://github.com/CunmeiJi/AEMDA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cunmei Ji
- School of Software, Qufu Normal University, Qufu 273165, China
| | - Zhen Gao
- School of Software, Qufu Normal University, Qufu 273165, China
| | - Xu Ma
- School of Software, Qufu Normal University, Qufu 273165, China
| | - Qingwen Wu
- School of Software, Qufu Normal University, Qufu 273165, China
| | - Jiancheng Ni
- School of Software, Qufu Normal University, Qufu 273165, China
| | - Chunhou Zheng
- School of Software, Qufu Normal University, Qufu 273165, China.,School of Computer Science and Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
28
|
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:17-43. [PMID: 34337348 PMCID: PMC8319838 DOI: 10.20517/cdr.2020.79] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has an exceedingly low median overall survival of only 15 months. Current standard-of-care for GBM consists of gross total surgical resection followed by radiation with concurrent and adjuvant chemotherapy. Temozolomide (TMZ) is the first-choice chemotherapeutic agent in GBM; however, the development of resistance to TMZ often becomes the limiting factor in effective treatment. While O6-methylguanine-DNA methyltransferase repair activity and uniquely resistant populations of glioma stem cells are the most well-known contributors to TMZ resistance, many other molecular mechanisms have come to light in recent years. Key emerging mechanisms include the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. This review aims to provide a comprehensive overview of the clinically relevant molecular mechanisms and their extensive interconnections to better inform efforts to combat TMZ resistance.
Collapse
Affiliation(s)
- Neha Singh
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Alexandra Miner
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Lauren Hennis
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Sandeep Mittal
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA.,Carilion Clinic - Neurosurgery, Roanoke, VA 24014, USA
| |
Collapse
|
29
|
Poleto Spinola L, F Vieira G, Fernandes Ferreira R, Calastri MCJ, D Tenani G, Aguiar FL, Santana Ferreira Boin IF, B E Da Costa L, Chaim Correia MF, Zanovelo EM, B De Souza DC, Martins Alves Da Silva RC, Ferreira Da Silva R, Coelho Abrantes AM, R R Botelho MF, L R Tralhão JG, R S Souza D. Underexpression of miR-126-3p in Patients with Cholangiocarcinoma. Asian Pac J Cancer Prev 2021; 22:573-579. [PMID: 33639676 PMCID: PMC8190345 DOI: 10.31557/apjcp.2021.22.2.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives: To evaluate the expression of miR-126-3p and its potential as a biomarker for cholangiocarcinoma (CCA) and to better understand the prognosis, comorbidities, and lifestyle habits associated with the disease. Methods: Fifty-nine individuals were distributed into either the study group (38 CCA patients) or the control group (21 individuals without liver diseases). Total RNA was extracted, cDNA synthesis was performed, and miR-126-3p expression was assessed using real-time PCR. For statistical analysis, alpha error was set at 5%. Results: MiR-126-3p was found to be underexpressed in the study group relative to the controls (0.42; P=0.001). Additionally, marked underexpression was found in the study group in when associated with smoking (0.28; P=0.0001), alcoholism (0.19; P=0.0001), hypertension (0.29; P=000.1), and diabetes (0.12; P=0.0003) relative to the controls. No association was found between miR-126-3p expression and tumor subtypes (iCCA=0.42; pCCA=0.45; dCCA=0.72; P=0.9155). A total of 67% of dCCA patients were event-free at 16 months of follow up, while both pCCA and iCCA exhibited event-free survival rates of 25%, though there was no significant difference between these subgroups (P=0.273). Conclusion: The underexpression of mir-126-3p is associated with cholangiocarcinoma and can be potentiated by alcoholism, hypertension, diabetes, and smoking, the latter of which is an independent risk factor for this cancer. Furthermore, dCCA patients exhibit higher survival rates relative to patients with pCCA and iCCA.
Collapse
Affiliation(s)
- Lucas Poleto Spinola
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | - Gabriel F Vieira
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | | | - Maria C J Calastri
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | - Graciele D Tenani
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | - Franciana L Aguiar
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | | | - Larissa B E Da Costa
- School of Medical Sciences of the State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | | | | | | | - Doroteia R S Souza
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| |
Collapse
|
30
|
Tan W, Lin Z, Chen X, Li W, Zhu S, Wei Y, Huo L, Chen Y, Shang C. miR-126-3p contributes to sorafenib resistance in hepatocellular carcinoma via downregulating SPRED1. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:38. [PMID: 33553331 PMCID: PMC7859776 DOI: 10.21037/atm-20-2081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Sorafenib can prolong the survival of patients with advanced hepatocellular carcinoma (HCC). However, drug resistance remains the main obstacle to improving its efficiency. This study aimed to explore the likely molecular mechanism of sorafenib resistance. Methods Differentially expressed microRNAs (miRNAs) related to sorafenib response were analyzed with the Limma package in R software. The expression levels of miR-126-3p and sprouty-related EVH1 domain-containing protein 1 (SPRED1) in HCC cells were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell viability and proliferation were detected with Cell Counting Kit-8 (CCK-8), EdU proliferation, and clone formation assays. Transwell assays were performed to measure cell migration and invasion. TargetScan, MicroRNA Target Prediction Database (miRDB), and StarBase v2.0 were used to predict the targets of miR-126-3p. SPRED1 was confirmed as a target gene of miR-126-3p by dual-luciferase reporter assay and Western blotting. Finally, the in vivo anti-tumor effect of LV-miR-126-3p inhibitor combined with sorafenib was evaluated via subcutaneous tumor models. Results HCC cells with high expression of miR-126-3p exhibited increased resistance to sorafenib. The results of bioinformatics analysis and the dual-luciferase reporter assay showed that miR-126-3p directly targeted SPRED1. The sensitivity of HCC cells to sorafenib was markedly enhanced by SPRED1 upregulation. Gain- and loss-of function experiments verified that miR-126-3p induced sorafenib resistance in HCC through downregulating SPRED1. Furthermore, the inhibition of miR-126-3p markedly increased the effectiveness of sorafenib against HCC in vivo. Mechanistically, our results suggested that miR-126-3p promoted sorafenib resistance via targeting SPRED1 and activating the ERK signaling pathway. Conclusions Our study demonstrates that regulating the miR-126-3p/SPRED1 axis might be a promising strategy for enhancing the antitumor effect of sorafenib in the treatment of HCC.
Collapse
Affiliation(s)
- Wenliang Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianqing Chen
- Department of Hepatobiliary Surgery, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenxin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Sicong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingcheng Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liyun Huo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Zhong Y, Lin F, Xu F, Schubert J, Wu J, Wainwright L, Zhao X, Cao K, Fan Z, Chen J, Lang SS, Kennedy BC, Viaene AN, Santi M, Resnick AC, Storm PB, Li MM. Genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. Cancer Genet 2020; 252-253:37-42. [PMID: 33341678 DOI: 10.1016/j.cancergen.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
Abstract
ALK (Anaplastic lymphoma kinase) fusion proteins are oncogenic and have been seen in various tumors. PPP1CB-ALK fusions are rare but have been reported in a few patients with low- or high-grade gliomas. However, little is known regarding the mechanism of fusion formation and genomic break points of this fusion. We performed genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. The PPP1CB-ALK consists of exons 1-5 of PPP1CB and exons 20-29 of ALK. The genomic translocation breakpoints were determined by real-time quantitative PCR (RT-qPCR) and Sanger sequencing of genomic DNA. Next generation sequencing, RT-qPCR and fluorescence in situ hybridization analyses demonstrated PPP1CB-ALK amplification. Copy number analyses of genes between PPP1CB and ALK using RT-qPCR suggest that the PPP1CB-ALK is likely the result of local chromothripsis followed by episomal amplification. Transcriptome sequencing demonstrated high-level SOX2 expression and predicted WNT/β-catenin pathway activation, suggesting possible therapeutic approaches.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Feng Xu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jeff Schubert
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jinhua Wu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Luanne Wainwright
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xiaonan Zhao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kajia Cao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zhiqian Fan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jiani Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Shih-Shan Lang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Benjamin C Kennedy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adam C Resnick
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Phillip B Storm
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
32
|
DNA Associated with Circulating Exosomes as a Biomarker for Glioma. Genes (Basel) 2020; 11:genes11111276. [PMID: 33137926 PMCID: PMC7692052 DOI: 10.3390/genes11111276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cancerous and non-cancerous cells secrete exosomes, a type of nanovesicle known to carry the molecular signature of the parent for intercellular communications. Exosomes secreted by tumor cells carry abnormal DNA, RNA, and protein molecules that reflect the cancerous status. DNA is the master molecule that ultimately affects the function of RNA and proteins. Aberrations in DNA can potentially lead a cell to malignancy. Deviant quantities and the differential sequences of exosomal DNA are useful characteristics as cancer biomarkers. Since these alterations are either associated with specific stages of cancer or caused due to a clinical treatment, exosomal DNA is valuable as a diagnostic, prognostic, predictive, and therapeutic-intervention response biomarker. Notably, the exosomes can cross an intact blood–brain barrier and anatomical compartments by transcytosis. As such, the cancer-specific trademark molecules can be detected in systemic blood circulation and other body fluids, including cerebrospinal fluid, with non-invasive or minimally invasive procedures. This comprehensive review highlights the cancer-specific modulations of DNA associated with circulating exosomes that are beneficial as glioma biomarkers.
Collapse
|
33
|
RPN2 is targeted by miR-181c and mediates glioma progression and temozolomide sensitivity via the wnt/β-catenin signaling pathway. Cell Death Dis 2020; 11:890. [PMID: 33087705 PMCID: PMC7578010 DOI: 10.1038/s41419-020-03113-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the dysregulation of the miRNAs/mRNA-mediated carcinogenic signaling pathway network is intimately involved in glioma initiation and progression. In the present study, by performing experiments and bioinformatics analysis, we found that RPN2 was markedly elevated in glioma specimens compared with normal controls, and its upregulation was significantly linked to WHO grade and poor prognosis. Knockdown of RPN2 inhibited tumor proliferation and invasion, promoted apoptosis, and enhanced temozolomide (TMZ) sensitivity in vitro and in vivo. Mechanistic investigation revealed that RPN2 deletion repressed β-catenin/Tcf-4 transcription activity partly through functional activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, we showed that RPN2 is a direct functional target of miR-181c. Ectopic miR-181c expression suppressed β-catenin/Tcf-4 activity, while restoration of RPN2 partly reversed this inhibitory effect mediated by miR-181c, implying a molecular mechanism in which TMZ sensitivity is mediated by miR-181c. Taken together, our data revealed a new miR-181c/RPN2/wnt/β-catenin signaling axis that plays significant roles in glioma tumorigenesis and TMZ resistance, and it represents a potential therapeutic target, especially in GBM.
Collapse
|
34
|
Sun X, Yan X, Liu K, Wu M, Li Z, Wang Y, Zhong X, Qin L, Huang C, Wei X. lncRNA H19 acts as a ceRNA to regulate the expression of CTGF by targeting miR-19b in polycystic ovary syndrome. ACTA ACUST UNITED AC 2020; 53:e9266. [PMID: 33053114 PMCID: PMC7552896 DOI: 10.1590/1414-431x20209266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/25/2020] [Indexed: 02/03/2023]
Abstract
The etiology of polycystic ovary syndrome (PCOS) is complex and the pathogenesis is not fully understood. Some studies have shown that dysregulation of ovarian granulosa cells may be related to abnormal follicles and excessive androgen in women with PCOS. Our team has also confirmed the high expression status of H19 in PCOS patients in the early stage. However, the relationship between H19 and miR-19b in the development of PCOS is still unknown. Therefore, we used bioinformatics to predict the binding sites of human H19 and miR-19b, and of miR-19b and CTGF genes. After the silencing and overexpression of H19, real-time polymerase chain reaction (PCR) was used to detect the expressions of H19, miR-19b, and CTGF. Western blotting was used to detect CTGF protein. Proliferation of KGN cells after H19 silencing was detected by CCK8. Flow cytometry was used to detect the apoptosis of KGN cells after H19 silencing. After the overexpression of H19, it was found that the expression of miR-19b gene decreased and the expression of CTGF increased, whereas silencing of H19 did the opposite. In addition, H19 could promote cell proliferation and decrease cell apoptosis. Finally, luciferase reporter assays showed that the 3′-end sequences of lncRNA H19 and CTGF contained the binding site of miR-19b. In conclusion, our study indicated that lncRNA H19 acted as a ceRNA to bind to miR-19b via a “sponge” to regulate the effect of CTGF on KGN cells, which may play a vital role in PCOS.
Collapse
Affiliation(s)
- Xiuhong Sun
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Xiumin Yan
- Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Kailiang Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Min Wu
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Zhongyi Li
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Yao Wang
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Xingming Zhong
- Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Li Qin
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Chuican Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.,Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Xiangcai Wei
- Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
35
|
Mu YR, Zhou MY, Cai L, Liu MM, Li R. Overexpression of Aquaporin 1 in Synovium Aggravates Rat Collagen-Induced Arthritis Through Regulating β-Catenin Signaling: An in vivo and in vitro Study. J Inflamm Res 2020; 13:701-712. [PMID: 33116749 PMCID: PMC7550268 DOI: 10.2147/jir.s271664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Previous studies have confirmed that aquaporin 1 (AQP1) is up-regulated in synovium of rheumatoid arthritis (RA), but its exact pathogenic mechanisms in RA are unclear. This study revealed the pathogenic role of AQP1 in rat collagen-induced arthritis (CIA) and the underlying mechanisms related to β-catenin signaling. Materials and Methods Secondary paw swelling and pathological changes of ankle joints were used to evaluate the severity of rat CIA. Synovial AQP1 and β-catenin expression were measured by immunohistochemistry (IHC) and Western blot assay. AQP1 siRNA was applied to knockdown AQP1 in cultured CIA fibroblast-like synoviocyte (FLS). Assays of MTT, PCNA immunofluorescence and transwell were performed to detect cell proliferation, migration and invasion. The protein levels of β-catenin pathway members and ratio of TOP/FOP luciferase activity were also measured. Results In vivo, we revealed that synovial AQP1 and β-catenin expressions in CIA rats were higher than normal rats, and synovial AQP1 expression of CIA rats increased in parallel with secondary paw swelling and total pathological score on joint damage. Correlation analysis of IHC results indicated that synovial AQP1 expression positively correlated with β-catenin expression in CIA rat. In vitro, AQP1 siRNA apparently reduced the proliferation, migration and invasion of CIA FLS by inhibiting β-catenin signaling pathway. As an activator of β-catenin signaling, lithium chloride (an inhibitor of GSK-3β) reversed the inhibitory effects of AQP1 siRNA on the cultured CIA FLS. Conclusion We concluded that the overexpression of synovial AQP1 aggravated rat CIA by promoting the activation of FLS through β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu-Rong Mu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Meng-Yuan Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ming-Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
36
|
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020; 117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are transcripts with sizes of about 22 nucleotides, which are produced through a multistep process in the nucleus and cytoplasm. These transcripts modulate the expression of their target genes through binding with certain target regions, particularly 3' suntranslated regions. They are involved in the pathogenesis of several kinds of cancers, such as glioblastoma. Several miRNAs, including miR-10b, miR-21, miR-17-92-cluster, and miR-93, have been up-regulated in glioblastoma cell lines and clinical samples. On the other hand, expression of miR-7, miR-29b, miR-32, miR-34, miR-181 family members, and a number of other miRNAs have been decreased in this type of cancer. In the current review, we explain the role of miRNAs in the pathogenesis of glioblastoma through providing a summary of studies that reported dysregulation of these epigenetic effectors in this kind of brain cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers (Basel) 2020; 12:cancers12092534. [PMID: 32906592 PMCID: PMC7564168 DOI: 10.3390/cancers12092534] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The overall survival of brain cancer patients remains grim, with conventional therapies such as chemotherapy and radiotherapy only providing marginal benefits to patient survival. Cancers are complex, with multiple pathways being dysregulated simultaneously. Non-coding RNAs such as microRNA (miRNAs) are gaining importance due to their potential in regulating a variety of targets implicated in the pathology of cancers. This could be leveraged for the development of targeted and personalized therapies for cancers. Since miRNAs can upregulate and/or downregulate proteins, this review aims to understand the role of these miRNAs in primary and metastatic brain cancers. Here, we discuss the regulatory mechanisms of ten miRNAs that are highly dysregulated in glioblastoma and metastatic brain tumors. This will enable researchers to develop miRNA-based targeted cancer therapies and identify potential prognostic biomarkers. Abstract Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18–22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.
Collapse
|
38
|
Valtorta S, Salvatore D, Rainone P, Belloli S, Bertoli G, Moresco RM. Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance. Int J Mol Sci 2020; 21:E5631. [PMID: 32781585 PMCID: PMC7460665 DOI: 10.3390/ijms21165631] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
This review highlights the importance and the complexity of tumour biology and microenvironment in the progression and therapy resistance of glioma. Specific gene mutations, the possible functions of several non-coding microRNAs and the intra-tumour and inter-tumour heterogeneity of cell types contribute to limit the efficacy of the actual therapeutic options. In this scenario, identification of molecular biomarkers of response and the use of multimodal in vivo imaging and in particular the Positron Emission Tomography (PET) based molecular approach, can help identifying glioma features and the modifications occurring during therapy at a regional level. Indeed, a better understanding of tumor heterogeneity and the development of diagnostic procedures can favor the identification of a cluster of patients for personalized medicine in order to improve the survival and their quality of life.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Daniela Salvatore
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| |
Collapse
|
39
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
40
|
LncRNA MIR155HG Promotes Temozolomide Resistance by Activating the Wnt/β-Catenin Pathway Via Binding to PTBP1 in Glioma. Cell Mol Neurobiol 2020; 41:1271-1284. [PMID: 32529543 DOI: 10.1007/s10571-020-00898-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Temozolomide (TMZ) is widely used for glioma therapy in the clinic. Currently, the development of TMZ resistance has largely led to poor prognosis. However, very little is understood about the role of MIR155HG, as a long noncoding RNA, in TMZ resistance. In our study, MIR155HG level was markedly higher in glioma patients than in normal controls and that poor survival was positively correlated with MIR155HG expression. It was apparent that TMZ sensitivity was promoted by downregulation of MIR155HG, and this could be reversed by MIR155HG overexpression in vivo and in vitro. Furthermore, polypyrimidine tract binding protein 1 (PTBP1) was proven to bind with MIR155HG and to regulate MIR155HG-related TMZ resistance. Mechanistic investigation showed that the expression levels of both MIR155HG and PTBP1 influenced the expression of relevant proteins in the Wnt/β-catenin pathway. Collectively, the study demonstrated that the knockdown of MIR155HG increased glioma sensitivity to TMZ by inhibiting Wnt/β-catenin pathway activation via potently downregulating PTBP1.
Collapse
|
41
|
Cai HQ, Liu AS, Zhang MJ, Liu HJ, Meng XL, Qian HP, Wan JH. Identifying Predictive Gene Expression and Signature Related to Temozolomide Sensitivity of Glioblastomas. Front Oncol 2020; 10:669. [PMID: 32528873 PMCID: PMC7258082 DOI: 10.3389/fonc.2020.00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Temozolomide (TMZ) is considered a standard chemotherapeutic agent for glioblastoma (GBM). Characterizing the biological molecules and signaling pathways involved in TMZ sensitivity would be helpful for selecting therapeutic schemes and evaluating prognosis for GBM. Thus, in the present study, we selected 34 glioma cell lines paired with specific IC50 values of TMZ obtained from CancerRxGene and RNA-seq data downloaded from the Cancer Cell Line Encyclopedia to identify genes related to TMZ sensitivity. The results showed that 1,373 genes were related to the response of GBM cells to TMZ. Biological function analysis indicated that epithelial–mesenchymal transition, Wnt signaling, and immune response were the most significantly activated functions in TMZ-resistant cell lines. Additionally, negative regulation of telomere maintenance via telomerase was enriched in TMZ-sensitive glioma cell lines. We also preliminarily observed a synergistic effect of combination treatment comprising TMZ and a telomerase inhibitor in vitro. We identified six genes (MROH8, BET1, PTPRN2, STC1, NKX3-1, and ARMC10) using the random survival forests variable hunting algorithm based on the minimum error rate of the gene combination and constructed a gene expression signature. The signature was strongly related to GBM clinical characteristics and exhibited good prognosis accuracy for both The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Patients in the high score group had a shorter survival time than those in the low score group (11.2 vs. 22.2 months, hazard ratio = 7.31, p = 4.59e−11) of the TCGA dataset. The CGGA dataset was selected as a validation group with 40 patients in the high score set and 43 patients in the low score set (12.5 vs. 28.8 months, hazard ratio = 3.42, p = 8.61e−5). Moreover, the signature showed a better prognostic value than MGMT promoter methylation in both datasets. We also developed a nomogram for clinical use that integrated the TMZ response signature and four other risk factors to individually predict patient survival after TMZ chemotherapy. Overall, our study provides promising therapeutic targets and potential guidance for adjuvant therapy of GBM.
Collapse
Affiliation(s)
- Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ang-Si Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hou-Jie Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Meng
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Peng Qian
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Hai Wan
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
42
|
Phan NN, Moreno CS, Lai YH. Overexpression of SOX4 induces up-regulation of miR-126 and miR-195 in LNCaP prostate cancer cell line. Cytotechnology 2020; 72:527-537. [PMID: 32419068 DOI: 10.1007/s10616-020-00399-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/09/2020] [Indexed: 11/26/2022] Open
Abstract
The present study aims to investigate the association between SOX4, Wnt signaling, and miRNAs under Wnt3 induction via bioinformatics analysis and functional essays. To briefly explore the expression of SOX4 protein in various types of cancer, we used ONCOMINE, a highly reputable cancer database, for comparison of its expression in prostate carcinoma relative to normal prostate gland. Concomitantly, we used CCLE to plot the copy number of SOX4 against its mRNA expression status in various cancerous cell lines to confirm the carcinogenesis role of SOX4. Afterward, whole profiling expression of microRNA in SOX4-stably expressed LNCaP cell line under the effect of Wnt3A were demonstrated. After identifying microRNA targets, STRING database and MIROB were used to explore the functional connection between proteins and microRNA with proteins. The results from our study shows that over-expressed of SOX4 was confirmed in both carcinogenesis tissue and cancer cell lines in Oncomine and CCLE database. In addition, five miRNAs, miR-16, miR-19a, miR320, miR-195, and miR-126, were differentially expressed in LNCaP cell line induced by Wnt3a. Pathway analysis of these targets proposed interaction networks of SOX4, Wnt3a with miR-126 and miR-195. Altogether, the miRNAs involved in Wnt and SOX4-mediated prostate cancer such as miR-126 and miR-195 could be potential biomarkers in prostate cancer.
Collapse
Affiliation(s)
- Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 111, Taiwan.
| |
Collapse
|
43
|
Hassn Mesrati M, Behrooz AB, Y. Abuhamad A, Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells 2020; 9:E1236. [PMID: 32429463 PMCID: PMC7291262 DOI: 10.3390/cells9051236] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.H.M.); (A.B.B.); (A.Y.A.)
| |
Collapse
|
44
|
Kong S, Cao Y, Li X, Li Z, Xin Y, Meng Y. MiR-3116 sensitizes glioma cells to temozolomide by targeting FGFR1 and regulating the FGFR1/PI3K/AKT pathway. J Cell Mol Med 2020; 24:4677-4686. [PMID: 32181582 PMCID: PMC7176860 DOI: 10.1111/jcmm.15133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/11/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR-3116 in the TMZ resistance. miR-3116 and FGFR1 mRNA were quantified by real-time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR-3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR-3116 dipped in samples resistant to TMZ, while increased miR-3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR-3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR-3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR-3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Xin Li
- Department of NeurosurgeryThe First People's Hospital of ShenyangShenyangChina
| | - Zhenzhong Li
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yuling Xin
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yan Meng
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| |
Collapse
|
45
|
He P, Ding J. EWS promotes cell proliferation and inhibits cell apoptosis by regulating miR-199a-5p/Sox2 axis in osteosarcoma. Biotechnol Lett 2020; 42:1263-1274. [PMID: 32236759 DOI: 10.1007/s10529-020-02859-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Osteosarcoma is one of the most common malignant bone tumors which mainly occurs in children and adolescents. It is characterized by high malignancy and high metastasis rate, resulting in high mortality and disability. Accumulating studies have validated that long noncoding RNAs (lncRNAs) exerted vital roles in multiple cancer progression by regulating the expression of specific genes. This work aimed to explore the potential molecular mechanism of EWS in osteosarcoma. RESULTS In this study, we discovered that both EWS and Sox2 were highly expressed in osteosarcoma tissue samples. In addition, the expression of EWS was positively associated with Sox2 level. We conducted a series of functional assays and observed that Sox2 overexpression could significantly overturned the enhancement of cell proliferation and the decline of cell apoptosis induced by EWS knockdown in osteosarcoma. Moreover, we found a key upstream regulatory gene of Sox2: miR-199a-5p. CONCLUSIONS Through molecular biology studies and rescue assays, we further demonstrated that EWS promotes tumor growth through the miR-199a-5p/Sox2 signaling axis in osteosarcoma. These findings may provide an important theoretical basis for the clinical diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng He
- Department of Orthopedics, XD Group Hospital, Xi'an, 710077, Shaanxi, China
| | - Junjie Ding
- Department of Orthopedics, Yan'an People's Hospital, No. 57 Qilipu Street, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
46
|
Vaidya M, Sugaya K. Differential sequences and single nucleotide polymorphism of exosomal SOX2 DNA in cancer. PLoS One 2020; 15:e0229309. [PMID: 32092088 PMCID: PMC7039433 DOI: 10.1371/journal.pone.0229309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer, with an average life expectancy of fewer than two years post-diagnosis. We have previously reported that cancer cell originated exosomes, including GBM, have NANOG and NANOGP8 DNA associated with them. The exosomal NANOG DNA has certain differences as compared to its normal counterpart that are of immense importance as a potential cancer biomarker. NANOG has been demonstrated to play an essential role in the maintenance of embryonic stem cells, and its pseudogene, NANOGP8, is suggested to promote the cancer stem cell phenotype. Similarly, SOX2 is another stemness gene highly expressed in cancer stem cells with an intimate involvement in GBM progression and metastasis as well as promotion of tumorigenicity in Neuroblastoma (NB). Since exosomes are critical in intercellular communication with a role in dissipating hallmark biomolecules responsible for cancer, we conducted a detailed analysis of the association of the SOX2 gene with exosomes whose sequence modulations with further research and appropriate sample size can help to identify diagnostic markers for cancer. We have detected SOX2 DNA associated with exosomes and have identified some of the SNPs and nucleotide variations in the sequences from a GBM and SH-SY5Y sample. Although a further systematic investigation of exosomal DNA from GBM and NB patient's blood is needed, finding of SOX2 DNA in exosomes in the current study may have value in clinical research. SOX2 is known to be misregulated in cancer cells by changes in miRNA function, such as SNPs in the binding sites. Our finding of cancer-specific SNPs in exosomal SOX2 DNA sequence may reflect those changes in the cancer stem cells as well as cancer cells. A series of our study on embryonic stem cell gene analysis in exosomal DNA may lead to a minimally invasive exosome-based diagnosis, and give us a key in understanding the mechanisms of cancer formation, progression, and metastasis.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
47
|
Ichikawa R, Kawasaki R, Iwata A, Otani S, Nishio E, Nomura H, Fujii T. MicroRNA‑126‑3p suppresses HeLa cell proliferation, migration and invasion, and increases apoptosis via the PI3K/PDK1/AKT pathway. Oncol Rep 2020; 43:1300-1308. [PMID: 32323808 PMCID: PMC7057934 DOI: 10.3892/or.2020.7512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported that relative to normal cervical mucus, microRNA 126-3p (miR-126-3p) is present in significantly greater amounts in the cervical mucus of patients with overt cervical cancer or precursor lesions. Here, we investigated the effects of enforced miR-126-3p expression in the cervical cancer cell line, HeLa, on proliferation, migration, invasion, apoptosis and protein expression. We transfected HeLa cells with miR-126-3p miRNA and found that proliferation, migration and invasion by cell counting, wound healing, cell migration and invasion assay were significantly reduced in these cells relative to those transfected with a negative control mimic. The levels of phosphoinositide 3 kinase (PI3K), phosphorylated 3-phosphoinositide-dependent protein kinase-1 (p-PDK1) and p-AKT proteins were lower in the miR-126-3p-transfected cells. Phosphorylated 70S6K (p-p70S6K), phosphorylated glycogen synthase kinase 3β (p-GSK3β), phosphorylated S6K (p-S6K), cyclin D1, phosphorylated p21-activated kinase 1 (p-PAK1), Rho associated coiled-coil containing protein kinase 1 (ROCK1), myotonic dystrophy-related CDC42-binding kinases α (MRCKα) and phospholipase C γ1 (p-PLCγ1) were also downregulated. This suggests that downstream effectors of the PI3K/PDK1/AKT pathway are targets for inhibition by miR-126-3p. In contrast, apoptotic-related proteins including the BCL-2-associated agonist of cell death (Bad), B-cell lymphoma-extra-large (Bcl-xL) and BCL-2-associated X (Bax), were all upregulated by miR-126-3p, resulting in increased caspase 3/7 activity and apoptosis. Thus, enforced expression of miR-126-3p inhibited cell migration and invasion and also induced apoptosis by regulating the PI3K/PDK1/AKT pathway in HeLa cells. Hence, high levels of miR-126-3p may inhibit cervical carcinogenesis, and targeting the PI3K/PDK1/AKT pathway via miR-126-3p could represent a new approach for treating patients with cervical cancer.
Collapse
Affiliation(s)
- Ryoko Ichikawa
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Rie Kawasaki
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Aya Iwata
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Sayaka Otani
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Eiji Nishio
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi 470‑1192, Japan
| |
Collapse
|
48
|
Xia X, Cao F, Yuan X, Zhang Q, Chen W, Yu Y, Xiao H, Han C, Yao S. Low expression or hypermethylation of PLK2 might predict favorable prognosis for patients with glioblastoma multiforme. PeerJ 2019; 7:e7974. [PMID: 31763067 PMCID: PMC6873877 DOI: 10.7717/peerj.7974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/02/2019] [Indexed: 01/26/2023] Open
Abstract
Background As the most aggressive brain tumor, patients with glioblastoma multiforme (GBM) have a poor prognosis. Our purpose was to explore prognostic value of Polo-like kinase 2 (PLK2) in GBM, a member of the PLKs family. Methods The expression profile of PLK2 in GBM was obtained from The Cancer Genome Atlas database. The PLK2 expression in GBM was tested. Kaplan–Meier curves were generated to assess the association between PLK2 expression and overall survival (OS) in patients with GBM. Furthermore, to assess its prognostic significance in patients with primary GBM, we constructed univariate and multivariate Cox regression models. The association between PLK2 expression and its methylation was then performed. Differentially expressed genes correlated with PLK2 were identified by Pearson test and functional enrichment analysis was performed. Results Overall survival results showed that low PLK2 expression had a favorable prognosis of patients with GBM (P-value = 0.0022). Furthermore, PLK2 (HR = 0.449, 95% CI [0.243–0.830], P-value = 0.011) was positively associated with OS by multivariate Cox regression analysis. In cluster 5, DNA methylated PLK2 had the lowest expression, which implied that PLK2 expression might be affected by its DNA methylation status in GBM. PLK2 in CpG island methylation phenotype (G-CIMP) had lower expression than non G-CIMP group (P = 0.0077). Regression analysis showed that PLK2 expression was negatively correlated with its DNA methylation (P = 0.0062, Pearson r = −0.3855). Among all differentially expressed genes of GBM, CYGB (r = 0.5551; P < 0.0001), ISLR2 (r = 0.5126; P < 0.0001), RPP25 (r = 0.5333; P < 0.0001) and SOX2 (r = −0.4838; P < 0.0001) were strongly correlated with PLK2. Functional enrichment analysis results showed that these genes were enriched several biological processes or pathways that were associated with GBM. Conclusion Polo-like kinase 2 expression is regulated by DNA methylation in GBM, and its low expression or hypermethylation could be considered to predict a favorable prognosis for patients with GBM.
Collapse
Affiliation(s)
- Xiangping Xia
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Cao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolu Yuan
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Zhang
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Chen
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunhu Yu
- Department of Stroke Unit and Neurosurgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, China
| | - Hua Xiao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chong Han
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shengtao Yao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Stroke Unit and Neurosurgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, China
| |
Collapse
|
49
|
Meng X, Liu J, Wang H, Chen P, Wang D. MicroRNA-126-5p downregulates BCAR3 expression to promote cell migration and invasion in endometriosis. Mol Cell Endocrinol 2019; 494:110486. [PMID: 31233772 DOI: 10.1016/j.mce.2019.110486] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Endometriosis (EMs) is an estrogen-dependent multifactorial disease. Inhibition of estrogen in endometrial cells contributes to their failure to form lesions in ectopic sites. However, whether reducing or suppressing the inhibitory effect of estrogen results in the establishment of ectopic lesions remains unclear. The BCAR3 gene induces estrogen resistance in estrogen-dependent breast cancer cells and promotes cell migration, invasion, and epithelial-mesenchymal transition (EMT). However, the expression of BCAR3 in endometriosis and its effect on endometrial cell function and the anti-estrogen effect of endometriosis have not been reported. These issues are addressed in the present study. METHODS The study included 32 cases of ectopic endometrium and eutopic endometrium in patients with endometriosis and 31 cases of normal endometrium as controls. The expression of BCAR3 and microRNA (miR)-126-5p was detected by real-time PCR, immunohistochemistry, and western blotting. The effects of BCAR3 and miR-126-5p on the morphology and biological behavior of eutopic endometrial cells were verified using lentivirus overexpression and a vector knockdown model, the CCK-8 assay, Transwell experiments, and estrogen intervention experiments using primary cultures of epithelial and stromal cells. RESULTS The BCAR3 gene was highly expressed in ectopic endometrium and the eutopic endometrium of patients with endometriosis, and the expression level was higher in stage III-IV patients than in stage I-II patients. In vitro cell experiments showed that miR-126-5p negatively regulated the expression of BCAR3 and its effect on the migration and invasion of stromal cells. Low expression of miR-126-5p and high expression of BCAR3 promoted endometriosis stromal cell migration and invasion. Assessment of EMT in endometriosis compared with eutopic endometrium showed that the expression of vimentin was significantly increased and the expression of E-cadherin was significantly decreased in ectopic endometrium. Estrogen promoted EMT in eutopic endometrial epithelial cells and this effect was reversed by estrogen inhibitors. BCAR3 had no direct effect on EMT and did not act synergistically with estrogen on promoting EMT. CONCLUSION miR-126-5p negatively regulated BCAR3 expression in eutopic endometriosis, enhanced the migration and invasion of endometrial cells, and promoted the occurrence of endometriosis. BCAR3 did not induce EMT and had no synergistic effect with estrogen, but its inhibition of anti-estrogen function may provide new insight into the mechanism of local estrogen action in endometriosis.
Collapse
Affiliation(s)
- Xiannan Meng
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, PR China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, PR China
| | - Huimin Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, PR China
| | - Peng Chen
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, PR China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, PR China.
| |
Collapse
|