1
|
Miao H, Wang P, Wu J, Li X, Du Y, Yan H, You Q, Dong W, Li L. Highly efficient and broad-spectrum antibacterial carbon dots combat antibiotic resistance. Talanta 2025; 281:126926. [PMID: 39305757 DOI: 10.1016/j.talanta.2024.126926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infections have become a major global public health issue, particularly with the emergence of multidrug-resistant strains. Therefore, developing non-antibiotic antimicrobial agents is crucial for treating drug-resistant bacterial infections. Building on previous research into natural products as novel antibacterial agents, this study synthesized curcumin-derived carbon dots using curcumin and ethylenediamine as raw materials through a hydrothermal method. The resulting carbon dots not only improved the water solubility and stability of curcumin but also exhibited highly efficient broad-spectrum antibacterial activity. Detailed investigations into the antibacterial performance and mechanisms of the carbon dots were conducted through experiments such as minimum inhibitory concentration (MIC) determination, live/dead bacterial staining, morphological studies, nucleic acid concentration detection, and reactive oxygen species (ROS) detection. The results indicated that the carbon dots significantly damaged the structural integrity of bacteria and generated large amounts of ROS. They exhibited remarkable antibacterial effects against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and effectively inhibited drug-resistant MRSA. Their antibacterial efficacy was notably superior to that of broad-spectrum antibiotics such as chloramphenicol and Sulfadiazine. This study highlights the potential application of curcumin-derived carbon dots in combating bacterial infections and provides valuable insights for developing novel antibacterial agents derived from natural products.
Collapse
Affiliation(s)
- Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Panyong Wang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Jie Wu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xinlu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Yuwei Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Haiyang Yan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Qiannan You
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Wenfei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| |
Collapse
|
2
|
Zhang L, Zhang X, Ran H, Chen Z, Ye Y, Jiang J, Hu Z, Azechi M, Peng F, Tian H, Xu Z, Tu Y. A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors. NANOSCALE 2024; 16:635-644. [PMID: 38087964 DOI: 10.1039/d3nr03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Photodynamic therapy (PDT) is a light-activated local treatment modality that has promising potential in cancer therapy. However, ineffective delivery of photosensitizers and hypoxia in the tumor microenvironment severely restrict the therapeutic efficacy of PDT. Herein, phototactic Chlorella (C) is utilized to carry photosensitizer-encapsulated nanoparticles to develop a near-infrared (NIR) driven green affording-oxygen microrobot system (CurNPs-C) for enhanced PDT. Photosensitizer (curcumin, Cur) loaded nanoparticles are first synthesized and then covalently attached to C through amide bonds. An in vitro study demonstrates that the developed CurNPs-C exhibits continuous oxygen generation and desirable phototaxis under NIR treatment. After intravenous injection, the initial 660 nm laser irradiation successfully induces the active migration of CurNPs-C to tumor sites for higher accumulation. Upon the second 660 nm laser treatment, CurNPs-C produces abundant oxygen, which in turn induces the natural product Cur to generate more reactive oxygen species (ROS) that significantly inhibit the growth of tumors in 4T1 tumor-bearing mice. This contribution showcases the ability of a light-driven green affording-oxygen microrobot to exhibit targeting capacity and O2 generation for enhancing photodynamic therapy.
Collapse
Affiliation(s)
- Lishan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hui Ran
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jiamiao Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ziwei Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Miral Azechi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhili Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Law SK, Leung AWN, Xu C. Photodynamic Action of Curcumin and Methylene Blue against Bacteria and SARS-CoV-2-A Review. Pharmaceuticals (Basel) 2023; 17:34. [PMID: 38256868 PMCID: PMC10818644 DOI: 10.3390/ph17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are no therapeutics that can avert this form of illness, and photodynamic therapy (PDT) may be an alternative approach against SARS-CoV-2. Curcumin and methylene blue have been approved and used in clinical practices as a photosensitizer in PDT for a long time with their anti-viral properties and for disinfection through photo-inactivated SARS-CoV-2. Previously, curcumin and methylene blue with antibacterial properties have been used against Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). METHODS To conduct a literature review, nine electronic databases were researched, such as WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any regard to language constraints. In vitro and in vivo studies were included that evaluated the effect of PDT mediated via curcumin or methylene blue to combat bacteria and SARS-CoV-2. All eligible studies were analyzed and summarized in this review. RESULTS Curcumin and methylene blue inhibited the replication of SARS-CoV-2. The reactive oxygen species (ROS) are generated during the treatment of PDT with curcumin and methylene blue to prevent the attachment of SARS-CoV-2 on the ACE2 receptor and damage to the nucleic acids either DNA or RNA. It also modulates pro-inflammatory cytokines and attenuates the clotting effects of the host response. CONCLUSION The photodynamic action of curcumin and methylene blue provides a possible approach against bacteria and SARS-CoV-2 infection because they act as non-toxic photosensitizers in PDT with an antibacterial effect, anti-viral properties, and disinfection functions.
Collapse
Affiliation(s)
- Siu Kan Law
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong;
| | | | - Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Wolnicka-Glubisz A, Wisniewska-Becker A. Dual Action of Curcumin as an Anti- and Pro-Oxidant from a Biophysical Perspective. Antioxidants (Basel) 2023; 12:1725. [PMID: 37760028 PMCID: PMC10525529 DOI: 10.3390/antiox12091725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Curcumin, a natural polyphenol widely used as a spice, colorant and food additive, has been shown to have therapeutic effects against different disorders, mostly due to its anti-oxidant properties. Curcumin also reduces the efficiency of melanin synthesis and affects cell membranes. However, curcumin can act as a pro-oxidant when blue light is applied, since upon illumination it can generate singlet oxygen. Our review aims to describe this dual role of curcumin from a biophysical perspective, bearing in mind its concentration, bioavailability-enhancing modifications and membrane interactions, as well as environmental conditions such as light. In low concentrations and without irradiation, curcumin shows positive effects and can be recommended as a beneficial food supplement. On the other hand, when used in excess or irradiated, curcumin can be toxic. Therefore, numerous attempts have been undertaken to test curcumin as a potential photosensitizer in photodynamic therapy (PDT). At that point, we underline that curcumin-based PDT is limited to the treatment of superficial tumors or skin and oral infections due to the weak penetration of blue light. Additionally, we conclude that an increase in curcumin bioavailability through the using nanocarriers, and therefore its concentration, as well as its topical use if skin is exposed to light, may be dangerous.
Collapse
Affiliation(s)
- Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Wisniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
5
|
Identification of Blood Transport Proteins to Carry Temoporfin: A Domino Approach from Virtual Screening to Synthesis and In Vitro PDT Testing. Pharmaceutics 2023; 15:pharmaceutics15030919. [PMID: 36986780 PMCID: PMC10056000 DOI: 10.3390/pharmaceutics15030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Temoporfin (mTHPC) is one of the most promising photosensitizers used in photodynamic therapy (PDT). Despite its clinical use, the lipophilic character of mTHPC still hampers the full exploitation of its potential. Low solubility in water, high tendency to aggregate, and low biocompatibility are the main limitations because they cause poor stability in physiological environments, dark toxicity, and ultimately reduce the generation of reactive oxygen species (ROS). Applying a reverse docking approach, here, we identified a number of blood transport proteins able to bind and disperse monomolecularly mTHPC, namely apohemoglobin, apomyoglobin, hemopexin, and afamin. We validated the computational results synthesizing the mTHPC-apomyoglobin complex (mTHPC@apoMb) and demonstrated that the protein monodisperses mTHPC in a physiological environment. The mTHPC@apoMb complex preserves the imaging properties of the molecule and improves its ability to produce ROS via both type I and type II mechanisms. The effectiveness of photodynamic treatment using the mTHPC@apoMb complex was then demonstrated in vitro. Blood transport proteins can be used as molecular “Trojan horses” in cancer cells by conferring mTHPC (i) water solubility, (ii) monodispersity, and (iii) biocompatibility, ultimately bypassing the current limitations of mTHPC.
Collapse
|
6
|
Wolnicka-Glubisz A, Olchawa M, Duda M, Pabisz P, Wisniewska-Becker A. The Role of Singlet Oxygen in Photoreactivity and Phototoxicity of Curcumin. Photochem Photobiol 2023; 99:57-67. [PMID: 35713484 DOI: 10.1111/php.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023]
Abstract
Curcumin is a plant-derived yellow-orange compound widely used as a spice, dye and food additive. It is also believed to have therapeutic effects against different disorders. On the other hand, there are data showing its phototoxicity against bacteria, fungi and various mammalian cells. Since the mechanism of its phototoxic action is not fully understood, we investigated here the phototoxic potential of curcumin in liposomal model membranes and in HaCaT cells. First, detection of singlet oxygen (1 O2 ) luminescence proved that curcumin generates 1 O2 upon blue light irradiation in organic solvent and in liposomes. Then, HPLC-EC(Hg) measurements revealed that liposomal and cellular cholesterol is oxidized by 1 O2 photogenerated by curcumin. Enrichment of liposome membranes with curcumin significantly increased the oxygen photo-consumption rate compared to the control liposomes as determined by EPR oximetry. Cytotoxicity measurements, mitochondrial membrane potential analyses and protein hydroperoxides detection confirmed strong phototoxic effects of curcumin in irradiated HaCaT cells. These data show that since curcumin is advertised as a valuable dietary supplement, or a component of cosmetics for topical use, caution should be recommended especially when skin is exposed to light.
Collapse
Affiliation(s)
- Agnieszka Wolnicka-Glubisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Duda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Pabisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Wisniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Mattioli EJ, Ulfo L, Marconi A, Pellicioni V, Costantini PE, Marforio TD, Di Giosia M, Danielli A, Fimognari C, Turrini E, Calvaresi M. Carrying Temoporfin with Human Serum Albumin: A New Perspective for Photodynamic Application in Head and Neck Cancer. Biomolecules 2022; 13:biom13010068. [PMID: 36671454 PMCID: PMC9855801 DOI: 10.3390/biom13010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced ROS generation that compromise photodynamic therapy (PDT) efficacy. Moreover, for its clinical administration, mTHPC requires the presence of ethanol and propylene glycol as solvents, often causing adverse effects in the site of injection. In this paper we explored the efficiency of a new mTHPC formulation that uses human serum albumin (HSA) to disperse the photosensitizer in solution (mTHPC@HSA), investigating its anticancer potential in two HNSCC cell lines. Through a comprehensive characterization, we demonstrated that mTHPC@HSA is stable in physiological environment, does not aggregate, and is extremely efficient in PDT performance, due to its high singlet oxygen generation and the high dispersion as monomolecular form in HSA. This is supported by the computational identification of the specific binding pocket of mTHPC in HSA. Moreover, mTHPC@HSA-PDT induces cytotoxicity in both HNSCC cell lines, increasing intracellular ROS generation and the number of γ-H2AX foci, a cellular event involved in the global response to cellular stress. Taken together these results highlight the promising phototoxic profile of the complex, prompting further studies to assess its clinical potential.
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Alessia Marconi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Valentina Pellicioni
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
- Correspondence: (E.T.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- Correspondence: (E.T.); (M.C.)
| |
Collapse
|
8
|
Zheng N, Zhou M, He Y, Xu H, Chen X, Duan Z, Yang L, Zeng R, Liu Y, Li M. Low curcumin concentrations combined with blue light inhibits cutibacterium acnes biofilm-induced inflammatory response through suppressing MAPK and NF-κB in keratinocytes. Photodiagnosis Photodyn Ther 2022; 40:103204. [PMID: 36403927 DOI: 10.1016/j.pdpdt.2022.103204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Curcumin has been employed as a photosensitizer agent during photodynamic therapy (PDT). Cutibacterium acnes (C. acnes) can cause an inflammatory response in human keratinocytes; however, no research has been conducted to determine whether curcumin and its photodynamic properties can prevent this inflammatory reaction. OBJECTIVE We hypothesized that curcumin may control the C. acnes biofilm-induced inflammatory response in keratinocytes, either alone or in combination with blue light photodynamic therapy. METHODS Following C. acnes biofilm stimulation, human primary keratinocytes were treated with 20 μM curcumin solution alone or 5 μM curcumin with combined blue light irradiation. The amount of secreted protein was measured using an ELISA kit. The expression levels of Toll-like receptor 2 (TLR2) and its downstream proteins were determined using western blot. RESULTS Treatment with 20 μM curcumin, but not 5 μM curcumin, reduced the inflammatory response to C. acnes biofilms in keratinocytes by blocking the TLR2/MAPK/NF-κB pathway. Interestingly, 5 μM curcumin combined with blue light also reduced the C. acnes biofilm-induced inflammation indicated above by blocking the TLR2/MAPK/NF-κB pathway. CONCLUSION Curcumin alone, in sufficient concentrations, or low-concentration curcumin with blue light had anti-inflammatory activity on keratinocytes stimulated by C. acnes biofilms through inhibition of MAPK and NF-κB signaling pathways by downregulating TLR2 expression.
Collapse
Affiliation(s)
- Nana Zheng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Meng Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Lu Yang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Rong Zeng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Yuzhen Liu
- Department of Dermatology, the Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Street, Nanjing, Jiangsu 210042, China.
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
9
|
Kaur B, Kaur N, Sharma T, Kaur G, Chaudhary GR. Metallosurfactant based synthetic liposomes as a substitute for phospholipids to safely store curcumin. Colloids Surf B Biointerfaces 2022; 217:112621. [PMID: 35714508 DOI: 10.1016/j.colsurfb.2022.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Curcumin has shown remarkable therapeutic utilization for various medical conditions. Still, its limited chemical stability and rapid hydrolysis capped its applications to a certain extent. Approaches have been made in the past to surpass these shortcomings by encapsulating the drug in surfactant-based micelles or liposomes and so far, natural surfactants have been used to do this bidding. Through this report, we are presenting curcumin entrapped inside synthetic metal-based liposomal assembly (metallosomes) based on hybrid-surfactants known as metallosurfactants (MS). Three metallosomes i.e. metallosomes (a), (b), and (c) were synthesized with increasing cholesterol (Chl) ratio w.r.t MS (MS:Chl 1:0, 1:0.5, and 1:1). Firstly, the membrane properties of the metallosomes were studied in the absence of the drug. The studies confirmed the direct influence of Chl concentration on the membrane properties and the metallosomes were found to be more hydrophobic, rigid, homogenous, stable, and less fluid with Chl incorporation. These studies were proven beneficial when drug-loaded metallosomes were studied and metallosomes (c), with the highest Chl content, emerged as the maximum drug loader due to their most hydrophobic nature. However, the drug was released at the slowest rate for this metallosomal system due to its less fluid and more rigid nature. On the other hand, these metallosomes were more efficient for shielding entrapped drug from acidic and alkaline environs as lesser drug degradation was observed in the experiments compared to the free curcumin. These metallosomes also exhibited efficient interactional behavior with bacterial (MRSA) DNA.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Navdeep Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Tanvi Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
10
|
Bruno S, Margiotta M, Cozzolino M, Bianchini P, Diaspro A, Cavanna L, Tognolini M, Abbruzzetti S, Viappiani C. A photosensitizing fusion protein with targeting capabilities. Biomol Concepts 2022; 13:175-182. [DOI: 10.1515/bmc-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marilena Margiotta
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marco Cozzolino
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Paolo Bianchini
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Alberto Diaspro
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza , Piacenza , Italy
| | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| |
Collapse
|
11
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
12
|
Yu S, Wang S, Xie Z, Yu S, Li L, Xiao H, Song Y. Hyaluronic acid coating on the surface of curcumin-loaded ZIF-8 nanoparticles for improved breast cancer therapy: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2021; 203:111759. [PMID: 33892283 DOI: 10.1016/j.colsurfb.2021.111759] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
Despite developments in surgery and chemotherapy, effective treatment of breast cancer is still an urgent problem owing to recurrence and metastasis. By combining the advantages of curcumin (Cur), zeolitic imidazolate framework-8 nanoparticles (ZIF-8), and hyaluronic acid (HA) in breast cancer therapy, Cur-loaded and HA-coated ZIF-8 (Cur@ZIF-8@HA) were synthesized using a method based on the pH-dependent solubility of Cur and the electrostatic interactions between zinc ions and carboxyl groups of HA. Cur@ZIF-8 were also prepared as a control group. Comprehensive comparisons of the physicochemical properties and anticancer activities of Cur@ZIF-8@HA and Cur@ZIF-8 were conducted. The results indicated that the degradation of Cur during the synthesis of Cur@ZIF-8 was negligible. The obtained Cur@ZIF-8 and Cur@ZIF-8@HA were truncated cubes with hydrodynamic diameters of 174 and 217 nm, respectively. Cur@ZIF-8@HA possessed better stability during storage in different media, a slower drug release rate under neutral and acidic conditions, and a greater inhibitory effect on breast cancer than Cur@ZIF-8. For 4T1 cells, treatment using Cur@ZIF-8@HA induced more cellular uptake and higher cytotoxicity, accompanied by higher lactate dehydrogenase release, cell cycle arrest in G2/M and S phases, production of reactive oxygen species, and apoptosis. In 4T1 tumor-bearing mice models, Cur@ZIF-8@HA showed a stronger inhibitory effect on tumor growth and pulmonary metastasis. Therefore, Cur@ZIF-8@HA might hold great potential as an agent for the effective therapy of breast cancer.
Collapse
Affiliation(s)
- Shaoxuan Yu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Shanyu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Zhike Xie
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Shuyan Yu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Haifang Xiao
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China.
| |
Collapse
|
13
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
14
|
Photodynamic inactivation of Streptococcus mutans by curcumin in combination with EDTA. Dent Mater 2021; 37:e1-e14. [DOI: 10.1016/j.dental.2020.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/03/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
|
15
|
Antimicrobial Photoinactivation Approach Based on Natural Agents for Control of Bacteria Biofilms in Spacecraft. Int J Mol Sci 2020; 21:ijms21186932. [PMID: 32967302 PMCID: PMC7554952 DOI: 10.3390/ijms21186932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
A spacecraft is a confined system that is inhabited by a changing microbial consortium, mostly originating from life-supporting devices, equipment collected in pre-flight conditions, and crewmembers. Continuous monitoring of the spacecraft’s bioburden employing culture-based and molecular methods has shown the prevalence of various taxa, with human skin-associated microorganisms making a substantial contribution to the spacecraft microbiome. Microorganisms in spacecraft can prosper not only in planktonic growth mode but can also form more resilient biofilms that pose a higher risk to crewmembers’ health and the material integrity of the spacecraft’s equipment. Moreover, bacterial biofilms in space conditions are characterized by faster formation and acquisition of resistance to chemical and physical effects than under the same conditions on Earth, making most decontamination methods unsafe. There is currently no reported method available to combat biofilm formation in space effectively and safely. However, antibacterial photodynamic inactivation based on natural photosensitizers, which is reviewed in this work, seems to be a promising method.
Collapse
|
16
|
Seidi Damyeh M, Mereddy R, Netzel ME, Sultanbawa Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr Rev Food Sci Food Saf 2020; 19:1727-1759. [PMID: 33337095 DOI: 10.1111/1541-4337.12583] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Consumer awareness on the side effects of chemical preservatives has increased the demand for natural preservation technologies. An efficient and sustainable alternative to current conventional preservation techniques should guarantee food safety and retain its quality with minimal side effects. Photosensitization, utilizing light and a natural photosensitizer, has been postulated as a viable and green alternative to the current conventional preservation techniques. The potential of curcumin as a natural photosensitizer is reviewed in this paper as a practical guide to develop a safe and effective decontamination tool for industrial use. The fundamentals of the photosensitization mechanism are discussed, with the main emphasis on the natural photosensitizer, curcumin, and its application to inactivate microorganisms as well as to enhance the shelf life of foods. Photosensitization has shown promising results in inactivating a wide spectrum of microorganisms with no reported microbial resistance due to its particular lethal mode of targeting nucleic acids. Curcumin as a natural photosensitizer has recently been investigated and demonstrated efficacy in decontamination and delaying spoilage. Moreover, studies have shown the beneficial impact of an appropriate encapsulation technique to enhance the cellular uptake of photosensitizers, and therefore, the phototoxicity. Further studies relating to improved delivery of natural photosensitizers with inherent poor solubility should be conducted. Also, detailed studies on various food products are warranted to better understand the impact of encapsulation on curcumin photophysical properties, photo-driven release mechanism, and nutritional and organoleptic properties of treated foods.
Collapse
Affiliation(s)
- Maral Seidi Damyeh
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, QLD, Australia
| | - Michael E Netzel
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| |
Collapse
|
17
|
Kazantzis KT, Koutsonikoli K, Mavroidi B, Zachariadis M, Alexiou P, Pelecanou M, Politopoulos K, Alexandratou E, Sagnou M. Curcumin derivatives as photosensitizers in photodynamic therapy: photophysical properties and in vitro studies with prostate cancer cells. Photochem Photobiol Sci 2020; 19:193-206. [PMID: 31956888 DOI: 10.1039/c9pp00375d] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive approach to treat various forms of cancer, based on the ability of certain non-toxic molecules (photosensitizers) to generate reactive oxygen species (ROS) after excitation by light of a certain wavelength and eventually induce strong phototoxic reactions against malignant cells and other pathogens. Curcumin is one of the most extensively investigated phytochemicals with a wide range of therapeutic properties and has been shown to induce strong photocytotoxic effects in micromolar concentrations against a variety of cancer cell lines. Curcumin (1) is comparatively evaluated with the naturally occurring bisdemethoxy Curcumin (2), which lacks the two methoxy groups, as well as two newly synthesized curcuminoids, the cinnamaldehyde derivative (3) and the dimethylamino one (4), designed to increase the absorption maximum and hence the tissue penetration. The synthetic curcuminoids were successfully synthesized in sufficient amounts and their photophysical properties such as absorption, fluorescence, photobleaching and free radical generation were investigated. Compound 4 exhibited a significant increase in peak absorption (497 nm) and strong fluorescent emission signals were recorded for all curcuminoids. Photobleaching of 4 was comparable to 1 whereas 2 and 3 showed more extended photobleaching but much higher ROS production in very short irradiation times. Compounds 2 and 4 exhibited specific intracellular localization. After dark and light cytotoxicity experiments against LNCaP prostate cancer cell line for all curcuminoids, concentration of 3 μM and irradiance of 6 mW cm-2 were selected for the PDT application which resulted in remarkable results with very short LD50. Curcuminoids 2 and 4 exhibited a significant dose-dependent PDT effect. The biphasic dose-response photodynamic effect observed for 1 and 3 may provide a strategy against prolonged and sustained photosensitivity.
Collapse
Affiliation(s)
- K T Kazantzis
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - K Koutsonikoli
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - B Mavroidi
- Laboratories of Structural Studies of Biomolecules and Pharmaceuticals with NMR, Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10, Athens, Greece.
| | - M Zachariadis
- Bioimaging and Cell analysis, Material and Chemical Characterisation Facility, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - P Alexiou
- Laboratories of Structural Studies of Biomolecules and Pharmaceuticals with NMR, Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10, Athens, Greece.
| | - M Pelecanou
- Laboratories of Structural Studies of Biomolecules and Pharmaceuticals with NMR, Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10, Athens, Greece.
| | - K Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - E Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - M Sagnou
- Laboratories of Structural Studies of Biomolecules and Pharmaceuticals with NMR, Institute of Biosciences and Applications, NCSR "Demokritos", Ag. Paraskevi, 153 10, Athens, Greece.
| |
Collapse
|
18
|
Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020; 19:445-461. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.
Collapse
|
19
|
Hally C, Delcanale P, Nonell S, Viappiani C, Abbruzzetti S. Photosensitizing proteins for antibacterial photodynamic inactivation. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Cormac Hally
- Institut Quimic de Sarrià, Universitat Ramon Llull Barcelona Spain
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| | - Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Santi Nonell
- Institut Quimic de Sarrià, Universitat Ramon Llull Barcelona Spain
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| |
Collapse
|
20
|
Mousavi SM, Mofrad MD, do Nascimento IJB, Milajerdi A, Mokhtari T, Esmaillzadeh A. The effect of zinc supplementation on blood pressure: a systematic review and dose-response meta-analysis of randomized-controlled trials. Eur J Nutr 2020; 59:1815-1827. [PMID: 32090294 DOI: 10.1007/s00394-020-02204-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Despite previous investigations on the effects of zinc supplementation on blood pressure, inconsistent findings are available in this regard. Therefore, we conducted a systematic review and meta-analysis of randomized clinical trials on the effects of zinc supplementation on blood pressure (BP) in adults. METHODS Relevant studies published up to September 2019 were searched through PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar using suitable keywords. All randomized clinical trials (RCTs) that examined the effect of oral zinc supplementation on systolic blood pressure (SBP) or diastolic blood pressure (DBP) in adults were included. RESULTS Overall, nine trials were included in our study. Zinc supplementation significantly reduced SBP compared to the control [weighted mean differences (WMD) - 1.49 mmHg; 95% CI - 2.85 to - 0.13; P = 0.03]. However, zinc supplementation had no significant effects on DBP (WMD - 0.88 mmHg; 95% CI - 2.04 to 0.29; P = 0.14). Nonlinear analysis failed to indicate a significant influence of supplementation dosage or duration on both SBP and DBP. Sensitivity analysis showed that no individual study had a significant impact on our final results. In addition, we found no evidence for the presence of small-study effects among studies for both SBP and DBP. CONCLUSION We found a significant reduction in SBP following zinc supplementation. However, zinc supplementation had no significant effect on DBP. In addition, no nonlinear association was found between supplementation dosage and duration with changes in both SBP and DBP. Further RCTs using different dosages of zinc in various durations are required to confirm our conclusion.
Collapse
Affiliation(s)
- Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Manije Darooghegi Mofrad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | | | - Alireza Milajerdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Tahereh Mokhtari
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular, Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|